25 datasets found
  1. Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving...

    • moneymetals.com
    csv, json, xls, xml
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Money Metals Exchange (2024). Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving [Dataset]. https://www.moneymetals.com/bitcoin-price
    Explore at:
    json, xml, csv, xlsAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    Money Metals
    Authors
    Money Metals Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 2009 - Sep 12, 2023
    Area covered
    World
    Measurement technique
    Tracking market benchmarks and trends
    Description

    In March 2024 Bitcoin BTC reached a new all-time high with prices exceeding 73000 USD marking a milestone for the cryptocurrency market This surge was due to the approval of Bitcoin exchange-traded funds ETFs in the United States allowing investors to access Bitcoin without directly holding it This development increased Bitcoin’s credibility and brought fresh demand from institutional investors echoing previous price surges in 2021 when Tesla announced its 15 billion investment in Bitcoin and Coinbase was listed on the Nasdaq By the end of 2022 Bitcoin prices dropped sharply to 15000 USD following the collapse of cryptocurrency exchange FTX and its bankruptcy which caused a loss of confidence in the market By August 2024 Bitcoin rebounded to approximately 64178 USD but remained volatile due to inflation and interest rate hikes Unlike fiat currency like the US dollar Bitcoin’s supply is finite with 21 million coins as its maximum supply By September 2024 over 92 percent of Bitcoin had been mined Bitcoin’s value is tied to its scarcity and its mining process is regulated through halving events which cut the reward for mining every four years making it harder and more energy-intensive to mine The next halving event in 2024 will reduce the reward to 3125 BTC from its current 625 BTC The final Bitcoin is expected to be mined around 2140 The energy required to mine Bitcoin has led to criticisms about its environmental impact with estimates in 2021 suggesting that one Bitcoin transaction used as much energy as Argentina Bitcoin’s future price is difficult to predict due to the influence of large holders known as whales who own about 92 percent of all Bitcoin These whales can cause dramatic market swings by making large trades and many retail investors still dominate the market While institutional interest has grown it remains a small fraction compared to retail Bitcoin is vulnerable to external factors like regulatory changes and economic crises leading some to believe it is in a speculative bubble However others argue that Bitcoin is still in its early stages of adoption and will grow further as more institutions and governments recognize its potential as a hedge against inflation and a store of value 2024 has also seen the rise of Bitcoin Layer 2 technologies like the Lightning Network which improve scalability by enabling faster and cheaper transactions These innovations are crucial for Bitcoin’s wider adoption especially for day-to-day use and cross-border remittances At the same time central bank digital currencies CBDCs are gaining traction as several governments including China and the European Union have accelerated the development of their own state-controlled digital currencies while Bitcoin remains decentralized offering financial sovereignty for those who prefer independence from government control The rise of CBDCs is expected to increase interest in Bitcoin as a hedge against these centralized currencies Bitcoin’s journey in 2024 highlights its growing institutional acceptance alongside its inherent market volatility While the approval of Bitcoin ETFs has significantly boosted interest the market remains sensitive to events like exchange collapses and regulatory decisions With the limited supply of Bitcoin and improvements in its transaction efficiency it is expected to remain a key player in the financial world for years to come Whether Bitcoin is currently in a speculative bubble or on a sustainable path to greater adoption will ultimately be revealed over time.

  2. BTC/USDT Historical Price

    • dataandsons.com
    csv, zip
    Updated Mar 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Romain Delaitre (2023). BTC/USDT Historical Price [Dataset]. https://www.dataandsons.com/data-market/economic/btc-usdt-historical-price
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    Authors
    Romain Delaitre
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Nov 6, 2017 - Mar 10, 2023
    Description

    About this Dataset

    This dataset contains the prices of Bitcoin every minute over a period from 2017-11-06 03:00 to 2023-03-10 2:59 (YYYY-MM-DD). The data includes the time, close time, open, high, low, close prices, the volume exchanged per minute and the number of trades per minute. It represent Bitcoin prices over 2.8 millions values. This dataset is ideal for anyone who want to track, study and analyze BTC/USDT values over more than 5 years.

    Time range: From 2017-11-06 04:00 to 2023-03-40 14:00

    File format: Datas are in .csv format

    Columns values: - time: Date in milliseconds where observation begins - open: Opening ETH price in the minute - high: Highest ETH price in the minute - low: Lowest ETH price in the minute - close: Closing ETH price in the minute - volume: Volume exchanges between time and close_time - close_time: Date in milliseconds were observation ends

    Category

    Economic

    Keywords

    Bitcoin,BTC,#btc,Cryptocurrency,Crypto

    Row Count

    2808000

    Price

    $149.00

  3. USD2BTC: 10 Years of USD-BTC Market Data

    • kaggle.com
    Updated May 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wali M. Ahmad (2024). USD2BTC: 10 Years of USD-BTC Market Data [Dataset]. https://www.kaggle.com/datasets/walimuhammadahmad/btc-usd-2014-2024/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 2, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Wali M. Ahmad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Bitcoin Price Chronicles: 10 Years of USD-BTC Market Data (2014-2024)

    Overview

    This dataset contains daily historical market data for Bitcoin (BTC) priced in USD, spanning 10 years from Origin till 2024-05-01. It includes key financial metrics such as Open, High, Low, Close, Adjusted Close, and Volume. This dataset is perfect for economic analysis, time series modelling, and cryptocurrency research.

    Details

    • File Size: [291.37 kB]
    • Number of Rows: 3,511 (daily data points)
    • Number of Columns: 7
    • Data Source: Likely sourced from a cryptocurrency exchange or financial data provider.
    • Geospatial Coverage: Global, as Bitcoin is a decentralized cryptocurrency.

    Usage

    This dataset is ideal for: 1. Financial Analysis: Analyzing Bitcoin price trends, volatility, and market behaviour over a decade. 2. Time Series Analysis: Using historical data to build predictive models for Bitcoin prices. 3. Algorithmic Trading: Developing trading strategies and backtesting them. 4. Cryptocurrency Research: Studying the adoption and market dynamics of Bitcoin. 5. Data Visualization: Creating charts and graphs to visualize Bitcoin’s price history.

  4. Bitcoin (BTC) blockchain size as of July 15, 2025

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raynor de Best (2025). Bitcoin (BTC) blockchain size as of July 15, 2025 [Dataset]. https://www.statista.com/topics/2308/bitcoin/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Raynor de Best
    Description

    Bitcoin's blockchain size was close to reaching 652.93 gigabytes in June 2025, as the database saw exponential growth by nearly one gigabyte every few days. The Bitcoin blockchain contains a continuously growing and tamper-evident list of all Bitcoin transactions and records since its initial release in January 2009. Bitcoin has a set limit of 21 million coins, the last of which will be mined around 2140, according to a forecast made in 2017. Bitcoin mining: A somewhat uncharted world Despite interest in the topic, there are few accurate figures on how big Bitcoin mining is on a country-by-country basis. Bitcoin's design philosophy is at the heart of this. Created out of protest against governments and central banks, Bitcoin's blockchain effectively hides both the country of origin and the destination country within a (mining) transaction. Research involving IP addresses placed the United States as the world's most Bitcoin mining country in 2022 - but the source admits IP addresses can easily be manipulated using VPN. Note that mining figures are different from figures on Bitcoin trading: Africa and Latin America were more interested in buying and selling BTC than some of the world's developed economies. Bitcoin developments Bitcoin's trade volume slowed in the second quarter of 2023, after hitting a noticeable growth at the beginning of the year. The coin outperformed most of the market. Some attribute this to the announcement in June 2023 that BlackRock filed for a Bitcoin ETF. This iShares Bitcoin Trust was to use Coinbase Custody as its custodian. Regulators in the United States had not yet approved any applications for spot ETFs on Bitcoin.

  5. Integrated Cryptocurrency Historical Data for a Predictive Data-Driven...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/integrated-cryptocurrency-historical-data-for-a-predictive-data-driven-decision-making-algorithm
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA

  6. Bitcoin (BTC) daily network transaction history worldwide as of April 21,...

    • statista.com
    • ai-chatbox.pro
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Bitcoin (BTC) daily network transaction history worldwide as of April 21, 2025 [Dataset]. https://www.statista.com/statistics/730806/daily-number-of-bitcoin-transactions/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Bitcoin's transaction volume was at its highest in December 2023, when the network processed over ******* coins on the same day. Bitcoin generally has a higher transaction activity than other cryptocurrencies, except Ethereum. This cryptocurrency is often processed more than *********** times per day. Note that the transaction volume here refers to transactions registered within the Bitcoin blockchain. It should not be confused with Bitcoin's 24-hour trade volume, a metric associated with crypto exchanges. The more Bitcoin transactions, the more it is used in B2C payments? A Bitcoin transaction recorded in the blockchain can be any transaction, including B2C but also P2P. While it is possible to see in the blockchain which address sent Bitcoin to whom, details on who this person is and where they are from are typically missing. Bitcoin was designed to go against monetary authorities and prides itself on being anonymous. An important argument against Bitcoin replacing cash or cards in payments is that the cryptocurrency was not allowed for such a task: Bitcoin ranks among the slowest cryptocurrencies in terms of transaction speed. Are cryptocurrencies taking over payments? Cryptocurrency payments are set to grow at a CAGR of nearly ** percent between 2022 and 2029, although the market is relatively small. The forecast is according to a market estimate made in early 2023, based on various conditions and sources available at that time. Research across ** countries during the same time suggested that the market share of cryptocurrency in e-commerce transactions was "less than *** percent" in all surveyed countries, with predictions being this would not change in the future.

  7. Bitcoin OHLCV: Open, High, Low, and Close prices along with Volume of...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Bitcoin OHLCV: Open, High, Low, and Close prices along with Volume of Bitcoin trades - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/bitcoin-ohlcv-open-high-low-and-close-prices-along-with-volume-of-bitcoin-trades
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    OHLCV is an abbreviation for the five critical data points: Open, High, Low, Close, and Volume. It refers to the key points in analyzing an asset such as Bitcoin (BTC) in the market over a specified time. The dataset is important for not only traders and analysts but also for data scientists who work on BTC market prediction using artificial intelligence. The 'Open' and 'Close' prices represent the starting and ending price levels, while the 'High' and 'Low' are the highest and lowest prices during that period (a daily time frame (24h)). The 'Volume' is a measure of the total number of trades. This dataset provides five OHLCV data columns for BTC along with a column called "Next day close price" for regression problems and machine learning applications. The dataset includes daily information from 1/1/2012 to 8/6/2022.

  8. Crypto Price Monitoring Dataset for On-chain Derivatives Research

    • zenodo.org
    csv
    Updated Mar 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivan Vakhmyanin; Yana Volkovich; Ivan Vakhmyanin; Yana Volkovich (2023). Crypto Price Monitoring Dataset for On-chain Derivatives Research [Dataset]. http://doi.org/10.5281/zenodo.7749133
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 19, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ivan Vakhmyanin; Yana Volkovich; Ivan Vakhmyanin; Yana Volkovich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    # Crypto Price Monitoring Repository

    This repository contains two CSV data files that were created to support the research titled "Price Arbitrage for DeFi Derivatives." This research is to be presented at the IEEE International Conference on Blockchain and Cryptocurrencies, taking place on 5th May 2023 in Dubai, UAE. The data files include monitoring prices for various crypto assets from several sources. The data files are structured with five columns, providing information about the symbol, unified symbol, time, price, and source of the price.

    ## Data Files

    There are two CSV data files in this repository (one for each date):

    1. `Pricemon_results_2023_01_13.csv`
    2. `Pricemon_results_2023_01_14.csv`

    ## Data Format

    Both data files have the same format and structure, with the following five columns:

    1. `symbol`: The trading symbol for the crypto asset (e.g., BTC, ETH).
    2. `unified_symbol`: A standardized symbol used across different platforms.
    3. `time`: Timestamp for when the price data was recorded (in UTC format).
    4. `price`: The price of the crypto asset at the given time (in USD).
    5. `source`: The name of the price source for the data.

    ## Price Sources

    The `source` column in the data files refers to the provider of the price data for each record. The sources include:

    - `chainlink`: Chainlink Price Oracle
    - `mycellium`: Built-in oracle of the Mycellium platform
    - `bitfinex`: Bitfinex cryptocurrency exchange
    - `ftx`: FTX cryptocurrency exchange
    - `binance`: Binance cryptocurrency exchange

    ## Usage

    You can use these data files for various purposes, such as analyzing price discrepancies across different sources, identifying trends, or developing trading algorithms. To use the data, simply import the CSV files into your preferred data processing or analysis tool.

    ### Example

    Here's an example of how you can read and display the data using Python and the pandas library:

    import pandas as pd

    # Read the data from CSV file
    data = pd.read_csv('Pricemon_results_2023_01_13.csv')

    # Display the first 5 rows of the data
    print(data.head())`

    ## Acknowledgements

    These datasets were recorded and supported by Datamint company (value-added on-chain data provider) and its team.


    ## Contributing

    If you have any suggestions or find any issues with the data, please feel free to contact authors.

  9. Cryptocurrency extra data - Maker

    • kaggle.com
    Updated Jan 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Maker [Dataset]. http://doi.org/10.34740/kaggle/dsv/3067075
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  10. Bitcoin (BTC) blockchain size as of May 13, 2025

    • statista.com
    • ai-chatbox.pro
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Bitcoin (BTC) blockchain size as of May 13, 2025 [Dataset]. https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Bitcoin's blockchain size was close to reaching 5450 gigabytes in 2024, as the database saw exponential growth by nearly one gigabyte every few days. The Bitcoin blockchain contains a continuously growing and tamper-evident list of all Bitcoin transactions and records since its initial release in January 2009. Bitcoin has a set limit of 21 million coins, the last of which will be mined around 2140, according to a forecast made in 2017. Bitcoin mining: A somewhat uncharted world Despite interest in the topic, there are few accurate figures on how big Bitcoin mining is on a country-by-country basis. Bitcoin's design philosophy is at the heart of this. Created out of protest against governments and central banks, Bitcoin's blockchain effectively hides both the country of origin and the destination country within a (mining) transaction. Research involving IP addresses placed the United States as the world's most Bitcoin mining country in 2022 - but the source admits IP addresses can easily be manipulated using VPN. Note that mining figures are different from figures on Bitcoin trading: Africa and Latin America were more interested in buying and selling BTC than some of the world's developed economies. Bitcoin developments Bitcoin's trade volume slowed in the second quarter of 2023, after hitting a noticeable growth at the beginning of the year. The coin outperformed most of the market. Some attribute this to the announcement in June 203 that BlackRock filed for a Bitcoin ETF. This iShares Bitcoin Trust was to use Coinbase Custody as its custodian. Regulators in the United States had not yet approved any applications for spot ETFs on Bitcoin.

  11. Pagerank Dataset for Bitcoin Blockchain - Part 1 of 2

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bz2, txt
    Updated Dec 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baran Kılıç; Baran Kılıç; Can Özturan; Can Özturan; Alper Şen; Alper Şen (2022). Pagerank Dataset for Bitcoin Blockchain - Part 1 of 2 [Dataset]. http://doi.org/10.5281/zenodo.6052811
    Explore at:
    bz2, txtAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Baran Kılıç; Baran Kılıç; Can Özturan; Can Özturan; Alper Şen; Alper Şen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This dataset contains the Pagerank values and rankings of Bitcoin addresses and transaction IDs (TXID). It contains a total of 1.608.748.675 addresses or TXIDs.

    Part 2 is available at https://zenodo.org/deposit/6077428

    File format

    The dataset is compressed with bzip2. It can be uncompressed using the command bunzip2. The dataset is divided into multiple files since it was large. The files are space-delimited plain text files and have the following five fields:

    Label: A alphanumeric Bitcoin address (e.g. 1DzTCMmWABEDM1rYFL1RgdLyE59jXMzEHV) or a 64 character hexadecimal transaction ID (e.g. 000000000fdf0c619cd8e0d512c7e2c0da5a5808e60f12f1e0d01522d2986a51) Type: String

    Label type: It's value is 0 if the label is transaction ID and 1 if the label is a Bitcoin address. Type: Integer

    Rank: Unique Pagerank rank where the ties (addresses having the same Pagerank value) are resolved by sorting the addresses. Type: Integer

    Rank with ties: Pagerank rank where the ties (addresses having the same Pagerank value) have the same rank. Type: Integer

    Pagerank value: Pagerank of the address and transaction IDs calculated using Pagerank algorithm. Type: Floating-point number

    Sample lines:

    000000000fdf0c619cd8e0d512c7e2c0da5a5808e60f12f1e0d01522d2986a51 0 427225664 266976712 0.979246
    1DzTCMmWABEDM1rYFL1RgdLyE59jXMzEHV 1 1114666798 508037940 0.877961

    "head.txt" contains the first 10 lines of each file. "tail.txt" contains the last 10 lines of each file.

    Dataset Generation

    The Bitcoin transactions between blocks 0 (mined on 03.01.2009) and 713.999 (mined on 13.12.2021) are extracted. A transaction graph is constructed, where Bitcoin addresses and transaction IDs are nodes of the graph and the transaction inputs and outputs are edges of the graph. Pagerank is applied on this transaction graph. This computation is performed using the system presented in the paper 'Parallel analysis of Ethereum blockchain transaction data using cluster computing'.

    Note

    If you use our dataset in your research, please cite our paper: https://link.springer.com/article/10.1007/s10586-021-03511-0

    @article{kilic2022parallel, 
     title={Parallel Analysis of Ethereum Blockchain Transaction Data using Cluster Computing}, 
     journal={Cluster Computing},
     author={K{\i}l{\i}{\c{c}}, Baran and {\"O}zturan, Can and Sen, Alper},
     year={2022},
     month={Jan} 
    }

    Other Datasets

    If you are interested, please also check out our Pagerank Dataset for Ethereum Blockchain.

  12. Cryptocurrency extra data - TRON

    • kaggle.com
    Updated Jan 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - TRON [Dataset]. http://doi.org/10.34740/kaggle/dsv/3066485
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  13. A

    ‘Ethereum Cryptocurrency Historical Dataset ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Ethereum Cryptocurrency Historical Dataset ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-ethereum-cryptocurrency-historical-dataset-c5e9/08834dae/?iid=003-775&v=presentation
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Ethereum Cryptocurrency Historical Dataset ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kaushiksuresh147/ethereum-cryptocurrency-historical-dataset on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    https://www.bernardmarr.com/img/What%20Is%20The%20Difference%20Between%20Bitcoin%20and%20Ethereum.png">

    Context

    Ethereum a decentralized, open-source blockchain featuring smart contract functionality was proposed in 2013 by programmer Vitalik Buterin. Development was crowdfunded in 2014, and the network went live on 30 July 2015, with 72 million coins premined.

    Some interesting facts about Ethereum(ETH): - Ether (ETH) is the native cryptocurrency of the platform. It is the second-largest cryptocurrency by market capitalization, after Bitcoin. Ethereum is the most actively used blockchain. - Some of the world’s leading corporations joined the EEA(Ethereum Alliance, is a collaboration of many block start-ups) and supported “further development.” Some of the most famous companies are Samsung SDS, Toyota Research Institute, Banco Santander, Microsoft, J.P.Morgan, Merck GaA, Intel, Deloitte, DTCC, ING, Accenture, Consensys, Bank of Canada, and BNY Mellon.

    Content

    The dataset consists of ETH prices from March-2016 to the current date(1830days) and the dataset will be updated on a weekly basis.

    Information regarding the data

    The data totally consists of 1813 records(1813 days) with 7 columns. The description of the features is given below

    | No |Columns | Descriptions | | -- | -- | -- | | 1 | Date | Date of the ETH prices | | 2 | Price | Prices of ETH(dollars) | | 3 | Open | Opening price of ETH on the respective date(Dollars) | | 4 | High | Highest price of ETH on the respective date(Dollars) | | 5 | Low | Lowest price of ETH on the respective date(Dollars) | | 6 | Vol. | Volume of ETH on the respective date(Dollars). | | 7 | Change % | Percentage of Change in ETH prices on the respective date | |

    Acknowledgements

    The dataset was extracted from investing.com

    Inspiration

    Experts say that ethereum has a huge potential in the future. Do you believe it? Well, let's find it by building our own creative models to predict if the statement is true.

    --- Original source retains full ownership of the source dataset ---

  14. Bitcoin (BTC) circulating supply history up to July 16, 2025

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Bitcoin (BTC) circulating supply history up to July 16, 2025 [Dataset]. https://www.statista.com/topics/2308/bitcoin/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    Bitcoin's circulating supply has grown steadily since its inception in 2009, reaching over 19 million coins by early 2025. This gradual increase reflects the cryptocurrency's design, which put a limit of 21 million on the total number of bitcoins that can ever exist. This impacts the Bitcoin price somewhat, as its scarcity can lead to volatility on the market. Maximum supply and scarcity Bitcoin is unusual from other cryptocurrencies in that its maximum supply is getting closer. By 2025, more than 90 percent of all possible Bitcoin had been created. That said, Bitcoin's circulating supply is expected to reach its maximum around the year 2140. Meanwhile, mining becomes exponentially more difficult and energy-intensive. Institutional investors In 2025, countries like the United States openly started discussion the possibility of buying bitcoins to hold in reserve. By the time of writing, it was unclear whether this would happen. Nevertheless, institutional investors displayed more interest in the cryptocurrency than before. Certain companies owned several thousands of Bitcoin tokens in 2025, for example. This and the limited number of Bitcoin may further fuel price volatility.

  15. A

    ‘Crypto Fear and Greed Index’ analyzed by Analyst-2

    • analyst-2.ai
    Updated May 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Crypto Fear and Greed Index’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-crypto-fear-and-greed-index-e01d/latest
    Explore at:
    Dataset updated
    May 28, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Crypto Fear and Greed Index’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/adelsondias/crypto-fear-and-greed-index on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Crypto Fear and Greed Index

    Each day, the website https://alternative.me/crypto/fear-and-greed-index/ publishes this index based on analysis of emotions and sentiments from different sources crunched into one simple number: The Fear & Greed Index for Bitcoin and other large cryptocurrencies.

    Why Measure Fear and Greed?

    The crypto market behaviour is very emotional. People tend to get greedy when the market is rising which results in FOMO (Fear of missing out). Also, people often sell their coins in irrational reaction of seeing red numbers. With our Fear and Greed Index, we try to save you from your own emotional overreactions. There are two simple assumptions:

    • Extreme fear can be a sign that investors are too worried. That could be a buying opportunity.
    • When Investors are getting too greedy, that means the market is due for a correction.

    Therefore, we analyze the current sentiment of the Bitcoin market and crunch the numbers into a simple meter from 0 to 100. Zero means "Extreme Fear", while 100 means "Extreme Greed". See below for further information on our data sources.

    Data Sources

    We are gathering data from the five following sources. Each data point is valued the same as the day before in order to visualize a meaningful progress in sentiment change of the crypto market.

    First of all, the current index is for bitcoin only (we offer separate indices for large alt coins soon), because a big part of it is the volatility of the coin price.

    But let’s list all the different factors we’re including in the current index:

    Volatility (25 %)

    We’re measuring the current volatility and max. drawdowns of bitcoin and compare it with the corresponding average values of the last 30 days and 90 days. We argue that an unusual rise in volatility is a sign of a fearful market.

    Market Momentum/Volume (25%)

    Also, we’re measuring the current volume and market momentum (again in comparison with the last 30/90 day average values) and put those two values together. Generally, when we see high buying volumes in a positive market on a daily basis, we conclude that the market acts overly greedy / too bullish.

    Social Media (15%)

    While our reddit sentiment analysis is still not in the live index (we’re still experimenting some market-related key words in the text processing algorithm), our twitter analysis is running. There, we gather and count posts on various hashtags for each coin (publicly, we show only those for Bitcoin) and check how fast and how many interactions they receive in certain time frames). A unusual high interaction rate results in a grown public interest in the coin and in our eyes, corresponds to a greedy market behaviour.

    Surveys (15%) currently paused

    Together with strawpoll.com (disclaimer: we own this site, too), quite a large public polling platform, we’re conducting weekly crypto polls and ask people how they see the market. Usually, we’re seeing 2,000 - 3,000 votes on each poll, so we do get a picture of the sentiment of a group of crypto investors. We don’t give those results too much attention, but it was quite useful in the beginning of our studies. You can see some recent results here.

    Dominance (10%)

    The dominance of a coin resembles the market cap share of the whole crypto market. Especially for Bitcoin, we think that a rise in Bitcoin dominance is caused by a fear of (and thus a reduction of) too speculative alt-coin investments, since Bitcoin is becoming more and more the safe haven of crypto. On the other side, when Bitcoin dominance shrinks, people are getting more greedy by investing in more risky alt-coins, dreaming of their chance in next big bull run. Anyhow, analyzing the dominance for a coin other than Bitcoin, you could argue the other way round, since more interest in an alt-coin may conclude a bullish/greedy behaviour for that specific coin.

    Trends (10%)

    We pull Google Trends data for various Bitcoin related search queries and crunch those numbers, especially the change of search volumes as well as recommended other currently popular searches. For example, if you check Google Trends for "Bitcoin", you can’t get much information from the search volume. But currently, you can see that there is currently a +1,550% rise of the query „bitcoin price manipulation“ in the box of related search queries (as of 05/29/2018). This is clearly a sign of fear in the market, and we use that for our index.

    There's a story behind every dataset and here's your opportunity to share yours.

    Copyright disclaimer

    This dataset is produced and maintained by the administrators of https://alternative.me/crypto/fear-and-greed-index/.

    This published version is an unofficial copy of their data, which can be also collected using their API (e.g., GET https://api.alternative.me/fng/?limit=10&format=csv&date_format=us).

    --- Original source retains full ownership of the source dataset ---

  16. F

    Coinbase Bitcoin

    • fred.stlouisfed.org
    json
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Coinbase Bitcoin [Dataset]. https://fred.stlouisfed.org/series/CBBTCUSD
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 23, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Coinbase Bitcoin (CBBTCUSD) from 2014-12-01 to 2025-07-23 about cryptocurrency and USA.

  17. Annual cryptocurrency adoption in 56 different countries worldwide 2019-2025...

    • statista.com
    • ai-chatbox.pro
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual cryptocurrency adoption in 56 different countries worldwide 2019-2025 [Dataset]. https://www.statista.com/statistics/1202468/global-cryptocurrency-ownership/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Consumers from countries in Africa, Asia, and South America were most likely to be an owner of cryptocurrencies, such as Bitcoin, in 2025. This conclusion can be reached after combining ** different surveys from the Statista's Consumer Insights over the course of that year. Nearly one out of three respondents to Statista's survey in Nigeria, for instance, mentioned they either owned or use a digital coin, rather than *** out of 100 respondents in the United States. This is a significant change from a list that looks at the Bitcoin (BTC) trading volume in ** countries: There, the United States and Russia were said to have traded the highest amounts of this particular virtual coin. Nevertheless, African and Latin American countries are noticeable entries in that list too. Daily use, or an investment tool? The survey asked whether consumers either owned or used cryptocurrencies but does not specify their exact use or purpose. Some countries, however, are more likely to use digital currencies on a day-to-day basis. Nigeria increasingly uses mobile money operations to either pay in stores or to send money to family and friends. Polish consumers could buy several types of products with a cryptocurrency in 2019. Opposed to this is the country of Vietnam: Here, the use of Bitcoin and other cryptocurrencies as a payment method is forbidden. Owning some form of cryptocurrency in Vietnam as an investment is allowed, however. Which countries are more likely to invest in cryptocurrencies? Professional investors looking for a cryptocurrency-themed ETF were more often found in Europe than in the United or China, according to a survey in early 2020. Most of the largest crypto hedge fund managers with a location in Europe in 2020, were either from the United Kingdom or Switzerland - the country with the highest cryptocurrency adoption rate in Europe according to Statista's Global Consumer Survey. Whether this had changed by 2025 was not yet clear.

  18. Cryptocurrency extra data - Ethereum Classic

    • kaggle.com
    Updated Jan 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Ethereum Classic [Dataset]. http://doi.org/10.34740/kaggle/dsv/3066021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 19, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  19. Bitcoin historical price

    • kaggle.com
    Updated Nov 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ronny Kimathi kaimenyi (2017). Bitcoin historical price [Dataset]. https://www.kaggle.com/ronnykym/bitcoinprice/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 6, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ronny Kimathi kaimenyi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PART I: Distribution table: Interval Frequency Cumulative Frequency Percentage distribution Cumulative percentage distribution 10-12 2 2 13.33 13.33 12.1-14 5 7 33.33 46.66 14.1-16 8 15 53.33 99.99 16.1-18 0 15 0 99.99

    18.1 0 15 0 99.99

    Majority of the countries, eight, fall in the 14.1-16 category. Five countries fall in the 12.1-14 category and two countries in the 10-12 bin. The remaining categories have zero entries. This means the data does not follow a normal distribution since most of the countries are concentrated at the highest peak. This data could be better visualized in a histogram.

    Frequency distribution with revised interval: Interval Frequency Cumulative Frequency Percentage Frequency Cumulative percentage <12 2 2 13.33 13.33 12-12.9 1 3 6.67 20 13-13.9 4 7 26.67 46.67 14-14.9 4 11 26.67 73.34 15-15.9 3 14 20 93.34 16-16.9 1 15 6.67 100.01 17-17.9 0 15 0 100.01

    18 0 15 0 100.01 Eight countries have between 14% and 18% of their population above age 65. The number of countries with 14% - 18% of their population above 65 years remain the same even after revising the interval. The percentage of countries that have between 14-18 percent of their population above age 65 is 53.33%.

    PART II Q1. Time series chart for divorce rate in Netherlands

    Q2. Describe divorce rate in Netherlands before and after 1970. There is a decline in divorce rate between 1950 and 1960. There is a moderate rise in divorce rate between 1960 and 1970, the rate steadily rises between 1970 and 1980 and thereafter exhibits a slight decline between 1980 and 1990. The rate shifts to a declining trend after the year 2000. The decline does not indicate negative number of divorces, this could be attributed to increased population size and fewer number of divorce cases filed. Q3. A bar graph would best display the divorce rate for each year, hence easy comparison. Q4. Bar graph The highest number of divorce cases were recorded in the year 2000, while the least number was observed in 1960.

    Set 2: Show how different elements contributed to population change in 2018

    Immigration contributed 34 percent of the change in population; births, Emigration, and deaths contributed almost equal change in population.

    Q2. Elements of population growth

    Immigration contributed the largest change in population growth compared to birth.

    Q3. A time series to show changes in male and female population

    Both populations show an increasing trend over the 4 years. We could also conclude there are more females than males in the country’s population.

  20. Crypto Trading and Technical Indicators

    • kaggle.com
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Crypto Trading and Technical Indicators [Dataset]. https://www.kaggle.com/datasets/thedevastator/crypto-trading-and-technical-indicators/versions/2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 11, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Crypto Trading and Technical Indicators

    Understanding the Market Dynamics of 600 Popular Cryptocurrencies

    By [source]

    About this dataset

    This dataset provides an unprecedented overview of the crypto industry, offering comprehensive market analysis of more than 600 well-known cryptocurrencies. The data contained in this dataset is extremely up-to-date, ranging from trading statuses, price movements and volatility levels to technical indicators and market capitalization. Perfect for those interested in cryptocurrency trading, technical analysis or investing, this data can be used to facilitate informed decisions and fulfill respective requirements.
    The 35 columns present in this dataset enable users to gain a greater understanding into price movements and distinguish between various levels of volatility. It also allows users to analyze oscillator ratings for each crypto asset listed within for accurate risk management. Banks, investors, data analysts as well as crypto exchanges could all benefit from utilizing this powerful dataset; its ability to provide a top level summary into the entire crypto industry has earned it a valuable place among the cryptocurrency community worldwide

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive market analysis of more than 600 popular cryptocurrencies, including trading prices, volatility, technical indicators, and market capitalization. In this guide, we'll cover what kind of information you can obtain from the dataset, how to use it effectively to gain insight into the crypto industry, and how to analyze the results in order to make informed decisions regarding cryptocurrency trading.

    The dataset consists of 35 columns that are divided into two main categories: Market Information and Technical Indicators. The Market Information section contains data about each cryptocurrency's price performance – including change percentages for 1 week/1 month/3 months/6 months/1 year – as well as its fully diluted market capitalization (FD Mkt Cap), traded volume (Traded Vol), last trading price in USD (Last_y), available coins (Avail Coins), total coins created with a max supply(Total Coins) and its respective rating out of 5 stars by moving averages(Moving Averages Rating). The Technical Indicators section includes data pertaining to oscillator ratings (Oscillators Rating) such as Average Directional Index (ADX), Awesome Oscillator(AO), Average True Range(ATR) , Commodity Channel Index20(CCI20) etc., moving averages such as Simple Moving Average 20 days /50 days / 200 days (SMA20/ SMA50 / SMA200) , Bollinger Bands upper & lower limit lines comprised of standard deviations known as BB Up & BB Low respectively , Momentum(MOM ), Relative Strength Index14 day time frame indicator denoted by RSI14 , Macd level & signal line along with Stochitic %K &%D indicators.

    With all that knowledge now let’s take a look at some tips on how you can analyse this data effectively. For example: finding safety ranks based on volatility scores or locatingcryptocurrencies whose MACD line has recently crossed over its signal line thus giving buy signals or vice versa giving sell signals also mining through various time frames using multiple technical indicators like ADX +CCI20+RSI14 etc can help spot potential trends which may be indicative for a particular currency . Also moving averages assessments over several time periods might be useful for calculating trend based values in order for possible bullish or bearish orientations . Furthermore when examining long term trends across multiple currencies it might be suitable carry out simple comparisons between certain columns from one currency against

    Research Ideas

    • Utilizing the price movements and technical indicators, investors can analyze the different crypto industry trends and develop strategies to apply them in their portfolios.
    • Governmental institutions and banks can use this dataset to monitor the industry’s activity from country to country, helping create regulatory policies when necessary.
    • Crypto exchanges can design algorithms based on this data set which will assist with detecting any manipulation or malicious activities in trades occurring in their platform

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - Y...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Money Metals Exchange (2024). Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving [Dataset]. https://www.moneymetals.com/bitcoin-price
Organization logo

Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving

Explore at:
json, xml, csv, xlsAvailable download formats
Dataset updated
Sep 12, 2024
Dataset provided by
Money Metals
Authors
Money Metals Exchange
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 2009 - Sep 12, 2023
Area covered
World
Measurement technique
Tracking market benchmarks and trends
Description

In March 2024 Bitcoin BTC reached a new all-time high with prices exceeding 73000 USD marking a milestone for the cryptocurrency market This surge was due to the approval of Bitcoin exchange-traded funds ETFs in the United States allowing investors to access Bitcoin without directly holding it This development increased Bitcoin’s credibility and brought fresh demand from institutional investors echoing previous price surges in 2021 when Tesla announced its 15 billion investment in Bitcoin and Coinbase was listed on the Nasdaq By the end of 2022 Bitcoin prices dropped sharply to 15000 USD following the collapse of cryptocurrency exchange FTX and its bankruptcy which caused a loss of confidence in the market By August 2024 Bitcoin rebounded to approximately 64178 USD but remained volatile due to inflation and interest rate hikes Unlike fiat currency like the US dollar Bitcoin’s supply is finite with 21 million coins as its maximum supply By September 2024 over 92 percent of Bitcoin had been mined Bitcoin’s value is tied to its scarcity and its mining process is regulated through halving events which cut the reward for mining every four years making it harder and more energy-intensive to mine The next halving event in 2024 will reduce the reward to 3125 BTC from its current 625 BTC The final Bitcoin is expected to be mined around 2140 The energy required to mine Bitcoin has led to criticisms about its environmental impact with estimates in 2021 suggesting that one Bitcoin transaction used as much energy as Argentina Bitcoin’s future price is difficult to predict due to the influence of large holders known as whales who own about 92 percent of all Bitcoin These whales can cause dramatic market swings by making large trades and many retail investors still dominate the market While institutional interest has grown it remains a small fraction compared to retail Bitcoin is vulnerable to external factors like regulatory changes and economic crises leading some to believe it is in a speculative bubble However others argue that Bitcoin is still in its early stages of adoption and will grow further as more institutions and governments recognize its potential as a hedge against inflation and a store of value 2024 has also seen the rise of Bitcoin Layer 2 technologies like the Lightning Network which improve scalability by enabling faster and cheaper transactions These innovations are crucial for Bitcoin’s wider adoption especially for day-to-day use and cross-border remittances At the same time central bank digital currencies CBDCs are gaining traction as several governments including China and the European Union have accelerated the development of their own state-controlled digital currencies while Bitcoin remains decentralized offering financial sovereignty for those who prefer independence from government control The rise of CBDCs is expected to increase interest in Bitcoin as a hedge against these centralized currencies Bitcoin’s journey in 2024 highlights its growing institutional acceptance alongside its inherent market volatility While the approval of Bitcoin ETFs has significantly boosted interest the market remains sensitive to events like exchange collapses and regulatory decisions With the limited supply of Bitcoin and improvements in its transaction efficiency it is expected to remain a key player in the financial world for years to come Whether Bitcoin is currently in a speculative bubble or on a sustainable path to greater adoption will ultimately be revealed over time.

Search
Clear search
Close search
Google apps
Main menu