Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data obtained from ILOSTAT website. Collated various datasets from covid monitoring section. Most of the estimates are from 2020.
Description about columns: 1. country - Name of Country 2. total_weekly_hours_worked(estimates_in_thousands) - Total weekly hours worked of employed persons 3. percentage_of_working_hrs_lost(%) - Percentage of hours lost compared to the baseline (4th quarter of 2019) 4. percent_hours_lost_40hrs_per_week(thousands) - Percentage of hours lost compared to the baseline (4th quarter of 2019) expressed in full-time equivalent employment losses. This measure is constructed by dividing the number of weekly hours lost due to COVID-19 and dividing them by 40. 5. percent_hours_lost_48hrs_per_week(thousands) - Percentage of hours lost compared to the baseline (4th quarter of 2019) expressed in full-time equivalent employment losses. This measure constructed by dividing the number of weekly hours lost due to COVID-19 and dividing them by 48. 6. labour_dependency_ratio - Ratio of dependants (persons aged 0 to 14 + persons aged 15 and above that are either outside the labour force or unemployed) to total employment. 7. employed_female_25+_2019(estimates in thousands) - Employed female in 2019 who, during a specified brief period, were in one of the following categories: a) paid employment (whether at work or with a job but not at work); or b) self-employment (whether at work or with an enterprise but not at work). 8. employed_male_25+_2019(estimates in thousands) - Employed male in 2019 who, during a specified brief period, were in one of the following categories: a) paid employment (whether at work or with a job but not at work); or b) self-employment (whether at work or with an enterprise but not at work). 9. ratio_of_weekly_hours_worked_by_population_age_15-64 - Ratio of total weekly hours worked to population aged 15-64.
Facebook
TwitterData provided by the Russian Ministry of Labour at Pandemic Data Hack hackathon in the end of 2020. Contains data on applications for unemployment payment, disaggregated, anonymized
Start: 2020-04-09 End: 2020-10-31
Features are describes in Russian in PDF attached.
';' to ',' (current)Photo by Matt Noble on Unsplash
Facebook
TwitterUnemployment in King County resulting from strategies to slow the spread of COVID-19
Facebook
TwitterHistorical series of Pandemic Unemployment Assistance Activities reports (ETA-902P) is specific to the temporary Pandemic Unemployment Assistance (PUA) program enacted by Congress in response to the COVID-19 pandemic. This dataset contains information on PUA claims/workload and payment activities, PUA appeals activities, and PUA overpayment and recovery activities.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The employment and unemployment indicator shows several data points. The first figure is the number of people in the labor force, which includes the number of people who are either working or looking for work. The second two figures, the number of people who are employed and the number of people who are unemployed, are the two subcategories of the labor force. The unemployment rate is a calculation of the number of people who are in the labor force and unemployed as a percentage of the total number of people in the labor force.
The unemployment rate does not include people who are not employed and not in the labor force. This includes adults who are neither working nor looking for work. For example, full-time students may choose not to seek any employment during their college career, and are thus not considered in the unemployment rate. Stay-at-home parents and other caregivers are also considered outside of the labor force, and therefore outside the scope of the unemployment rate.
The unemployment rate is a key economic indicator, and is illustrative of economic conditions in the county at the individual scale.
There are additional considerations to the unemployment rate. Because it does not count those who are outside the labor force, it can exclude individuals who were looking for a job previously, but have since given up. The impact of this on the overall unemployment rate is difficult to quantify, but it is important to note because it shows that no statistic is perfect.
The unemployment rates for Champaign County, the City of Champaign, and the City of Urbana are extremely similar between 2000 and 2023.
All three areas saw a dramatic increase in the unemployment rate between 2006 and 2009. The unemployment rates for all three areas decreased overall between 2010 and 2019. However, the unemployment rate in all three areas rose sharply in 2020 due to the effects of the COVID-19 pandemic. The unemployment rate in all three areas dropped again in 2021 as pandemic restrictions were removed, and were almost back to 2019 rates in 2022. However, the unemployment rate in all three areas rose slightly from 2022 to 2023.
This data is sourced from the Illinois Department of Employment Security’s Local Area Unemployment Statistics (LAUS), and from the U.S. Bureau of Labor Statistics.
Sources: Illinois Department of Employment Security, Local Area Unemployment Statistics (LAUS); U.S. Bureau of Labor Statistics.
Facebook
TwitterThis dataset was created by yashpl11
Facebook
Twitterhttps://data.aussda.at/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11587/XJNNYAhttps://data.aussda.at/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11587/XJNNYA
Full edition for scientific use. The study "Causes and Consequences of Unemployment in the COVID-19 pandemic" addresses the financial and psychological consequences of unemployment for those affected in the second year of the Corona pandemic. The study is based on an Austria-wide standardised telephone survey of 1844 people aged 15 to 64. The interviews took place between 29 May and 11 July 2021. 1215 interviewees were unemployed at the time of the interview, 332 of them long-term unemployed, 629 interviewees were employed.
Facebook
TwitterBy Liz Friedman [source]
Welcome to the Opportunity Insights Economic Tracker! Our goal is to provide a comprehensive, real-time look into how COVID-19 and stabilization policies are affecting the US economy. To do this, we have compiled a wide array of data points on spending and employment, gathered from several sources.
This dataset includes daily/weekly/monthly information at the state/county/city level for eight types of data: Google Mobility; Low-Income Employment and Earnings; UI Claims; Womply Merchants and Revenue; as well as weekly Math Learning from Zearn. Additionally, three files- Accounting for Geoids-State/County/City provide crosswalks between geographic areas that can be merged with other files having shared geographical levels.
Our goal here is to enable data users around the world to follow economic conditions in the US during this tumultuous period with maximum clarity and precision. We make all our datasets freely available so if you use them we kindly ask you attribute our work by linking or citing both our accompanying paper as well as this Economic Tracker at https://tracktherecoveryorg By doing so you are also agreeing to uphold our privacy & integrity standards which commit us both to individual & business confidentiality without compromising on independent nonpartisan research & policy analysis!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides US COVID-19 case and death data, as well as Google Community Mobility Reports, on the state/county level. Here is how to use this dataset:
- Understand the file structure: This dataset consists of three main files: 1) US Cases & Deaths by State/County, 2) Google Community Mobility Reports, and 3) Data from third-parties providing small business openings & revenue information and unemployment insurance claim data (Low Inc Earnings & Employment, UI Claims and Womply Merchants & Revenue).
- Select your Subset: If you are interested in particular types of data (e.g., mobility or employment), select the corresponding files from within each section based on your geographic area of interest – national, state or county level – as indicated in each filename.
- Review metadata variables: Become familiar with the provided variables so that you can select which ones you need to explore further in your analysis. For example, if analyzing mobility trends at a city level look for columns such as ‘Retailer_and_recreation_percent_change’ or ‘Transit Stations Percent Change’; if focusing on employment decline look for columns such pay or emp figures that align with industries of interest to you such as low-income earners (emp_{inclow},pay_{inclow}).
- Unify dateformatting across row values : Convert date formats into one common unit so that all entries have consistent formatting if necessary; for exampe some entries may display dates using YYYY/MM/DD notation while others may use MM//DD//YY format depending on their source datasets; make sure to review column labels carefully before converting units where needed..
Merge datasets where applicable : Utilize GeoID crosswalks to combine multiple sets with same geographical coverageregionally covering ; example might be combining low income earnings figures with specific county settings by reference geo codes found in related documents like GeoIDs-County .
6 . Visualise Data : Now that all the different measures have been reviewed can begin generating charts visualize findings . This process may include cleaning up raw figures normalizing across currency formats , mapping geospatial locations others ; once ready create bar graphs line charts maps other visual according aggregate output desired Insightful representations at this stage will help inform concrete policy decisions during outbreak recovery period..Remember to cite
- Estimating the Impact of the COVID-19 Pandemic on Small Businesses - By comparing county-level Womply revenue and employment data with pre-COVID data, policymakers can gain an understanding of the economic impact that COVID has had on local small businesses.
- Analyzing Effects of Mobility Restrictions - The Google Mobility data provides insight into geographic areas where...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The global economy has been hard hit by the COVID-19 pandemic. Many countries are experiencing a severe and destructive recession. A significant number of firms and businesses have gone bankrupt or been scaled down, and many individuals have lost their jobs. The main goal of this study is to support policy- and decision-makers with additional and real-time information about the labor market flow using Twitter data. We leverage the data to trace and nowcast the unemployment rate of South Africa during the COVID-19 pandemic. First, we create a dataset of unemployment-related tweets using certain keywords. Principal Component Regression (PCR) is then applied to nowcast the unemployment rate using the gathered tweets and their sentiment scores. Numerical results indicate that the volume of the tweets has a positive correlation, and the sentiments of the tweets have a negative correlation with the unemployment rate during and before the COVID-19 pandemic. Moreover, the now-casted unemployment rate using PCR has an outstanding evaluation result with a low Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Symmetric MAPE (SMAPE) of 0.921, 0.018, 0.018, respectively and a high R2-score of 0.929.
Facebook
TwitterThis data package includes the underlying data and files to replicate the calculations, charts, and tables presented in US unemployment insurance in the pandemic and beyond, PIIE Policy Brief 20-10. If you use the data, please cite as: Furman, Jason. (2020). US unemployment insurance in the pandemic and beyond. PIIE Policy Brief 20-10. Peterson Institute for International Economics.
Facebook
TwitterContinued Claims for UI released by the CT Department of Labor. Continued Claims are total number of individuals being paid benefits in any particular week. Claims data can be access directly from CT DOL here: https://www1.ctdol.state.ct.us/lmi/claimsdata.asp
Claims are disaggregated by age, education, industry, race/national origin, sex, and wages.
The claim counts in this dataset may not match claim counts from other sources.
Unemployment claims tabulated in this dataset represent only one component of the unemployed. Claims do not account for those not covered under the Unemployment system (e.g. federal workers, railroad workers or religious workers) or the unemployed self-employed.
Claims filed for a particular week will change as time goes on and the backlog is addressed.
For data on continued claims at the town level, see the dataset "Continued Claims for Unemployment Benefits by Town" here: https://data.ct.gov/Government/Continued-Claims-for-Unemployment-Benefits-by-Town/r83t-9bjm
For data on initial claims see the following two datasets:
"Initial Claims for Unemployment Benefits in Connecticut," https://data.ct.gov/Government/Initial-Claims-for-Unemployment-Benefits/j3yj-ek9y
"Initial Claims for Unemployment Benefits by Town," https://data.ct.gov/Government/Initial-Claims-for-Unemployment-Benefits-by-Town/twvc-s7wy
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study, integrating sentiment, emotion, discourse, and timeline analyses together, conducts a corpus-based sentiment analysis of the news articles on unemployment from the New York Times in 2020, to capture the emotional dynamics conveyed by the newspaper as the pandemic-induced unemployment developed in the US. The results reveal that positive sentiment in the news articles on unemployment is significantly higher than negative sentiment. In emotion analysis, “trust” and “anticipation”rank the first and second among the eight emotions, while “fear”and “sadness” top the negative emotions. Complemented with a discourse analysis approach, the study reveals that the change of the sentiments and emotions over time is linked with the evolution of the pandemic and unemployment, the policy response as well as the protests against ethnic inequalities. This study highlights the important role mainstream news media play in information dissemination and solution-focused reportage at the time of severe crisis.This dataset contains 14 documents for the data of 2 sentiments and 8 emotions, generated by Python. It includes NRC lexicon categories for the sentiments and emotions in the study (data1-10), top 10 high-frequency words associated to the sentiments and emotions in each of the 12 subcorpora (data11-12), and monthly values of the sentiments and emotions in 2020 (data 13-14).
Facebook
TwitterThis layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: August 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor force Data obtained from the U.S. Bureau of Labor Statistics. Data downloaded: October 1, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and CountyNation Data Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova.As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in China decreased to 5.10 percent in October from 5.20 percent in September of 2025. This dataset provides - China Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThis archive provides the code and data to replicate the analysis in "Unemployment Insurance Recipiency During the Covid-19 Pandemic" published in the National Tax Journal in 2023.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Projected unemployment scenarios in NZ as a result of the COVID-19 pandemic and response to it (extracted from a NZ Treasury Report) [23, 30].
Facebook
TwitterTo contribute towards the research and analysis on COVID-19 and it's impact on the human life, I have made this data available in usable format for analysis.
I would like to thank "U.S. BUREAU OF LABOR STATISTICS" for making the data available. URL: https://data.bls.gov/cgi-bin/surveymost?ln
Facebook
TwitterUnemployment numbers and rates for those aged 16 or over. The unemployed population consists of those people out of work, who are actively looking for work and are available to start immediately.
Unemployed numbers and rates also shown for equalities groups, by age, sex, ethnic group, and disability.
The data are taken from the Labour Force Survey and Annual Population Survey, produced by the Office for National Statistics.
The data are produced monthly on a rolling quarterly basis. The month shown is the month the quarter ends on.
The International Labour Organization defines unemployed people as: without a job, want a job, have actively sought work in the last 4 weeks and are available to start work in the next 2 weeks, or, out of work, have found a job and are waiting to start it in the next 2 weeks.
The figures in this dataset are adjusted to compensate for seasonal variations in employment (seasonally adjusted).
Data by equalities groups has a longer time lag and is only available quarterly from the Annual Population Survey, which is not seasonally adjusted.
Useful links
Click here for Regional labour market statistics from the Office for National Statistics.
Click here for Labour market statistics from the Office for National Statistics.
See here for GLA Economics' Labour Market Analysis.
See here for Economic Inactivity statistics.
See here for Employment rates.
This dataset is one of the Greater London Authority's measures of Economic Fairness. Click here to find out more.
Facebook
TwitterThe outbreak of coronavirus disease-2019 (COVID-19) ineluctably caused social distancing and unemployment, which may bring additional health risks for patients with cancer. To investigate the association of the pandemic-related impacts with the health-related quality of life (HRQoL) among patients with melanoma during the COVID-19 pandemic, we conducted a cross-sectional study among Chinese patients with melanoma. A self-administered online questionnaire was distributed to melanoma patients through social media. Demographic and clinical data, and pandemic-related impacts (unemployment and income loss) were collected. HRQoL was determined by the Functional Assessment of Cancer Therapy-General (FACT-G) and its disease-specific module (the melanoma subscale, MS). A total of 135 patients with melanoma completed the study. The mean age of the patients was 55.8 ± 14.2 years, 48.1% (65/135) were male, and 17.04% (34/135) were unemployed since the epidemic. Unemployment of the patients and their family members and income loss were significantly associated with a lower FACT-G score, while the MS score was associated with the unemployment of the patients' family members. Our findings suggested that unemployment is associated with impaired HRQoL in melanoma patients during the COVID-19 epidemic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in Canada decreased to 6.90 percent in October from 7.10 percent in September of 2025. This dataset provides - Canada Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data obtained from ILOSTAT website. Collated various datasets from covid monitoring section. Most of the estimates are from 2020.
Description about columns: 1. country - Name of Country 2. total_weekly_hours_worked(estimates_in_thousands) - Total weekly hours worked of employed persons 3. percentage_of_working_hrs_lost(%) - Percentage of hours lost compared to the baseline (4th quarter of 2019) 4. percent_hours_lost_40hrs_per_week(thousands) - Percentage of hours lost compared to the baseline (4th quarter of 2019) expressed in full-time equivalent employment losses. This measure is constructed by dividing the number of weekly hours lost due to COVID-19 and dividing them by 40. 5. percent_hours_lost_48hrs_per_week(thousands) - Percentage of hours lost compared to the baseline (4th quarter of 2019) expressed in full-time equivalent employment losses. This measure constructed by dividing the number of weekly hours lost due to COVID-19 and dividing them by 48. 6. labour_dependency_ratio - Ratio of dependants (persons aged 0 to 14 + persons aged 15 and above that are either outside the labour force or unemployed) to total employment. 7. employed_female_25+_2019(estimates in thousands) - Employed female in 2019 who, during a specified brief period, were in one of the following categories: a) paid employment (whether at work or with a job but not at work); or b) self-employment (whether at work or with an enterprise but not at work). 8. employed_male_25+_2019(estimates in thousands) - Employed male in 2019 who, during a specified brief period, were in one of the following categories: a) paid employment (whether at work or with a job but not at work); or b) self-employment (whether at work or with an enterprise but not at work). 9. ratio_of_weekly_hours_worked_by_population_age_15-64 - Ratio of total weekly hours worked to population aged 15-64.