42 datasets found
  1. o

    COVID-19 impacts on employment in Vietnam - Dataset OD Mekong Datahub

    • data.opendevelopmentmekong.net
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). COVID-19 impacts on employment in Vietnam - Dataset OD Mekong Datahub [Dataset]. https://data.opendevelopmentmekong.net/dataset/covid-19-impacts-on-employment-in-vietnam
    Explore at:
    Dataset updated
    Aug 24, 2020
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Vietnam
    Description

    The data set provides readers with data on the first half of the workforce for the years 2011 to 2020, per capita income for the first half of 2020 compared to 2019, and the unemployment rate in the working age. activities in the first half of the year from 2011 to 2020.

  2. C

    Employment and Unemployment

    • data.ccrpc.org
    csv
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Employment and Unemployment [Dataset]. https://data.ccrpc.org/dataset/employment-and-unemployment
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The employment and unemployment indicator shows several data points. The first figure is the number of people in the labor force, which includes the number of people who are either working or looking for work. The second two figures, the number of people who are employed and the number of people who are unemployed, are the two subcategories of the labor force. The unemployment rate is a calculation of the number of people who are in the labor force and unemployed as a percentage of the total number of people in the labor force.

    The unemployment rate does not include people who are not employed and not in the labor force. This includes adults who are neither working nor looking for work. For example, full-time students may choose not to seek any employment during their college career, and are thus not considered in the unemployment rate. Stay-at-home parents and other caregivers are also considered outside of the labor force, and therefore outside the scope of the unemployment rate.

    The unemployment rate is a key economic indicator, and is illustrative of economic conditions in the county at the individual scale.

    There are additional considerations to the unemployment rate. Because it does not count those who are outside the labor force, it can exclude individuals who were looking for a job previously, but have since given up. The impact of this on the overall unemployment rate is difficult to quantify, but it is important to note because it shows that no statistic is perfect.

    The unemployment rates for Champaign County, the City of Champaign, and the City of Urbana are extremely similar between 2000 and 2023.

    All three areas saw a dramatic increase in the unemployment rate between 2006 and 2009. The unemployment rates for all three areas decreased overall between 2010 and 2019. However, the unemployment rate in all three areas rose sharply in 2020 due to the effects of the COVID-19 pandemic. The unemployment rate in all three areas dropped again in 2021 as pandemic restrictions were removed, and were almost back to 2019 rates in 2022. However, the unemployment rate in all three areas rose slightly from 2022 to 2023.

    This data is sourced from the Illinois Department of Employment Security’s Local Area Unemployment Statistics (LAUS), and from the U.S. Bureau of Labor Statistics.

    Sources: Illinois Department of Employment Security, Local Area Unemployment Statistics (LAUS); U.S. Bureau of Labor Statistics.

  3. USA Unemployment & Education Level

    • kaggle.com
    Updated Sep 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Val Bauman (2021). USA Unemployment & Education Level [Dataset]. https://www.kaggle.com/valbauman/student-engagement-online-learning-supplement/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2021
    Dataset provided by
    Kaggle
    Authors
    Val Bauman
    Area covered
    United States
    Description

    Context & Content

    This dataset consists of the unemployment rate and education level of adults in the USA by county. That is, for each county in the USA, this dataset provides the count and percentage of unemployed adults as well as the count and percentage of adults of various educational backgrounds. Each county was been assigned one of four locale categories (City, Suburb, Town, Rural) according to its 2013 Urban Influence Code and their descriptions provided in UIC_codes.csv. From the descriptions of each of the codes and the descriptions of the locales "City", "Suburb", "Town", and "Rural" provided on page 2 of the locale user manual (locale_user_manual.pdf), each county was assigned one of four locales.

    The unemployment rate data includes the count and percentage of unemployed adults for each county in the USA for each year from 2000-2020. The median household income for 2019 is also included. The education level data includes the count and percentage of adults with less than a high school diploma, a high school diploma only, some college, and a bachelor's degree/four years of college or more for the years 1970, 1980, 1990, 2000, and 2019. The Urban Influence Code data includes the UIC and locale description of each county in the USA and the locale user manual has been included as a PDF as strictly a reference file, to understand how each county was assigned a locale within the unemployment.csv and education.csv files.

    Data Sources

    Source for the unemployment rate and education level data by county: "County-level Data Sets." USDA Economic Research Service, US Department of Agriculture. Access date: Sept 8, 2021. URL: https://www.ers.usda.gov/data-products/county-level-data-sets/

    Source for Urban Influence Codes by county: "Urban Influence Codes." USDA Economic Research Service, US Department of Agriculture. Access date: Sept 8, 2021. URL: https://www.ers.usda.gov/data-products/urban-influence-codes/#:~:text=The%202013%20Urban%20Influence%20Codes,to%20metro%20and%20micropolitan%20areas.&text=An%20update%20of%20the%20Urban,is%20planned%20for%20mid%2D2023.

    Inspiration

    This dataset was created to be used as an additional data source for the LearnPlatform COVID-19 Impact on Digital Learning Kaggle competition, but is suitable for other analyses related to unemployment rate and education level in the USA.

  4. d

    COVID-19 Impact on Unemployment Claims

    • catalog.data.gov
    • data.kingcounty.gov
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2024). COVID-19 Impact on Unemployment Claims [Dataset]. https://catalog.data.gov/dataset/covid-19-impact-on-unemployment-claims
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    data.kingcounty.gov
    Description

    Unemployment in King County resulting from strategies to slow the spread of COVID-19

  5. Pandemic Unemployment Assistance Activities (ETA-902P)

    • catalog.data.gov
    • datasets.ai
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment and Training Administration (2024). Pandemic Unemployment Assistance Activities (ETA-902P) [Dataset]. https://catalog.data.gov/dataset/pandemic-unemployment-assistance-activities-eta-902p
    Explore at:
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Employment and Training Administrationhttps://www.dol.gov/agencies/eta
    Description

    Historical series of Pandemic Unemployment Assistance Activities reports (ETA-902P) is specific to the temporary Pandemic Unemployment Assistance (PUA) program enacted by Congress in response to the COVID-19 pandemic. This dataset contains information on PUA claims/workload and payment activities, PUA appeals activities, and PUA overpayment and recovery activities.

  6. US Unemployment Dataset (2010 - 2020)

    • kaggle.com
    Updated Apr 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aniruddha Shirahatti (2020). US Unemployment Dataset (2010 - 2020) [Dataset]. https://www.kaggle.com/datasets/aniruddhasshirahatti/us-unemployment-dataset-2010-2020
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 29, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aniruddha Shirahatti
    Area covered
    United States
    Description

    Context

    To contribute towards the research and analysis on COVID-19 and it's impact on the human life, I have made this data available in usable format for analysis.

    Content

    1. This dataset contains time series data of unemployment rate in US from January 2010 to Present. It contains unemployment rate records based on education qualification, race, and gender of adults.
    2. This dataset also contains state-wise unemployment rate data for year 2020. The data set is clean and doesn't require much pre-processing. Dataset can be used with BI tools like Tableau as well.

    Acknowledgements

    I would like to thank "U.S. BUREAU OF LABOR STATISTICS" for making the data available. URL: https://data.bls.gov/cgi-bin/surveymost?ln

    Inspiration

    1. Combine with COVID-19 dataset to understand the impact on Unemployment rate in the United States.
    2. Perform Individual study on Unemployment in United States.
  7. c

    Causes and Consequences of Unemployment in the COVID-19 pandemic (SUF...

    • datacatalogue.cessda.eu
    • data.aussda.at
    Updated Sep 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schönherr, Daniel; Lehner, Lukas (2024). Causes and Consequences of Unemployment in the COVID-19 pandemic (SUF edition) [Dataset]. http://doi.org/10.11587/XJNNYA
    Explore at:
    Dataset updated
    Sep 14, 2024
    Dataset provided by
    SORA Institute for Social Research and Consulting
    Institute for New Economic Thinking at the Oxford Martin School
    Authors
    Schönherr, Daniel; Lehner, Lukas
    Time period covered
    May 29, 2021 - Jul 11, 2021
    Area covered
    Austria
    Variables measured
    Individual
    Measurement technique
    Telephone interview: CATI
    Description

    Full edition for scientific use. The study "Causes and Consequences of Unemployment in the COVID-19 pandemic" addresses the financial and psychological consequences of unemployment for those affected in the second year of the Corona pandemic. The study is based on an Austria-wide standardised telephone survey of 1844 people aged 15 to 64. The interviews took place between 29 May and 11 July 2021. 1215 interviewees were unemployed at the time of the interview, 332 of them long-term unemployed, 629 interviewees were employed.

  8. T

    China Unemployment Rate

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Unemployment Rate [Dataset]. https://tradingeconomics.com/china/unemployment-rate
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 2002 - Jun 30, 2025
    Area covered
    China
    Description

    Unemployment Rate in China remained unchanged at 5 percent in June. This dataset provides - China Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  9. O

    2019-Present Top Industries Impacted by COVID-19

    • data.ct.gov
    application/rdfxml +5
    Updated Jun 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Labor (2022). 2019-Present Top Industries Impacted by COVID-19 [Dataset]. https://data.ct.gov/Government/2019-Present-Top-Industries-Impacted-by-COVID-19/cke3-uemm
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, json, xmlAvailable download formats
    Dataset updated
    Jun 30, 2022
    Dataset authored and provided by
    Department of Labor
    Description

    Continued Claims for UI released by the CT Department of Labor. Continued Claims are total number of individuals being paid benefits in any particular week. Claims data can be access directly from CT DOL here: https://www1.ctdol.state.ct.us/lmi/claimsdata.asp

    Claims are disaggregated by age, education, industry, race/national origin, sex, and wages.

    The claim counts in this dataset may not match claim counts from other sources.

    Unemployment claims tabulated in this dataset represent only one component of the unemployed. Claims do not account for those not covered under the Unemployment system (e.g. federal workers, railroad workers or religious workers) or the unemployed self-employed.

    Claims filed for a particular week will change as time goes on and the backlog is addressed.

    For data on continued claims at the town level, see the dataset "Continued Claims for Unemployment Benefits by Town" here: https://data.ct.gov/Government/Continued-Claims-for-Unemployment-Benefits-by-Town/r83t-9bjm

    For data on initial claims see the following two datasets:

    "Initial Claims for Unemployment Benefits in Connecticut," https://data.ct.gov/Government/Initial-Claims-for-Unemployment-Benefits/j3yj-ek9y

    "Initial Claims for Unemployment Benefits by Town," https://data.ct.gov/Government/Initial-Claims-for-Unemployment-Benefits-by-Town/twvc-s7wy

  10. f

    Data_Sheet_1_Nowcasting unemployment rate during the COVID-19 pandemic using...

    • frontiersin.figshare.com
    docx
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zahra Movahedi Nia; Ali Asgary; Nicola Bragazzi; Bruce Mellado; James Orbinski; Jianhong Wu; Jude Kong (2023). Data_Sheet_1_Nowcasting unemployment rate during the COVID-19 pandemic using Twitter data: The case of South Africa.docx [Dataset]. http://doi.org/10.3389/fpubh.2022.952363.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    Frontiers
    Authors
    Zahra Movahedi Nia; Ali Asgary; Nicola Bragazzi; Bruce Mellado; James Orbinski; Jianhong Wu; Jude Kong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    The global economy has been hard hit by the COVID-19 pandemic. Many countries are experiencing a severe and destructive recession. A significant number of firms and businesses have gone bankrupt or been scaled down, and many individuals have lost their jobs. The main goal of this study is to support policy- and decision-makers with additional and real-time information about the labor market flow using Twitter data. We leverage the data to trace and nowcast the unemployment rate of South Africa during the COVID-19 pandemic. First, we create a dataset of unemployment-related tweets using certain keywords. Principal Component Regression (PCR) is then applied to nowcast the unemployment rate using the gathered tweets and their sentiment scores. Numerical results indicate that the volume of the tweets has a positive correlation, and the sentiments of the tweets have a negative correlation with the unemployment rate during and before the COVID-19 pandemic. Moreover, the now-casted unemployment rate using PCR has an outstanding evaluation result with a low Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Symmetric MAPE (SMAPE) of 0.921, 0.018, 0.018, respectively and a high R2-score of 0.929.

  11. County

    • legacy-cities-lincolninstitute.hub.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +6more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). County [Dataset]. https://legacy-cities-lincolninstitute.hub.arcgis.com/datasets/esri::county-76
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: May 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: July 2nd, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  12. f

    Data from: News media in crisis: a sentiment and emotion analysis of US news...

    • figshare.com
    zip
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lingli Yu; Ling Yang (2024). News media in crisis: a sentiment and emotion analysis of US news articles on unemployment in the COVID-19 pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.25879897.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 22, 2024
    Dataset provided by
    figshare
    Authors
    Lingli Yu; Ling Yang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study, integrating sentiment, emotion, discourse, and timeline analyses together, conducts a corpus-based sentiment analysis of the news articles on unemployment from the New York Times in 2020, to capture the emotional dynamics conveyed by the newspaper as the pandemic-induced unemployment developed in the US. The results reveal that positive sentiment in the news articles on unemployment is significantly higher than negative sentiment. In emotion analysis, “trust” and “anticipation”rank the first and second among the eight emotions, while “fear”and “sadness” top the negative emotions. Complemented with a discourse analysis approach, the study reveals that the change of the sentiments and emotions over time is linked with the evolution of the pandemic and unemployment, the policy response as well as the protests against ethnic inequalities. This study highlights the important role mainstream news media play in information dissemination and solution-focused reportage at the time of severe crisis.This dataset contains 14 documents for the data of 2 sentiments and 8 emotions, generated by Python. It includes NRC lexicon categories for the sentiments and emotions in the study (data1-10), top 10 high-frequency words associated to the sentiments and emotions in each of the 12 subcorpora (data11-12), and monthly values of the sentiments and emotions in 2020 (data 13-14).

  13. A

    ‘Unemployment in India’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Unemployment in India’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-unemployment-in-india-0aa9/d00ecd7d/?iid=009-772&v=presentation
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Analysis of ‘Unemployment in India’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/gokulrajkmv/unemployment-in-india on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    The story behind this datasets is how lock-down affects employment opportunities and how the unemployment rate increases during the Covid-19.

    Content

    This dataset contains the unemployment rate of all the states in India

    Region = states in India Date = date which the unemployment rate observed Frequency = measuring frequency (Monthly)
    Estimated Unemployment Rate (%) = percentage of people unemployed in each States of India Estimated Employed = percentage of people employed Estimated Labour Participation Rate (%) = labour force participation rate by dividing the number of people actively participating in the labour force by the total number of people eligible to participate in the labor force force

    Acknowledgements

    I wouldn't be here without the help of my friends. I owe you thanks !!

    Inspiration

    questions? 1. How Covid-19 affects the employment 2. how far the unemployment rate will go

    source of datasets https://unemploymentinindia.cmie.com/

    --- Original source retains full ownership of the source dataset ---

  14. Mixed Earner Unemployment Compensation (ETA-902M)

    • catalog.data.gov
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment and Training Administration (2024). Mixed Earner Unemployment Compensation (ETA-902M) [Dataset]. https://catalog.data.gov/dataset/mixed-earner-unemployment-compensation-eta-902m
    Explore at:
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Employment and Training Administrationhttps://www.dol.gov/agencies/eta
    Description

    This dataset contains the historical series of Mixed Earner Unemployment Compensation (MEUC) reports (ETA-902M), which are specific to the MEUC program enacted by Congress in response to the COVID-19 pandemic. The MEUC program was enacted by the Continued Assistance Act signed into law on December 27, 2020. This dataset includes MEUC claims/workload and payment activities, MEUC appeals activities, and MEUC workload funding amounts.

  15. A

    ‘COVID-19 State Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘COVID-19 State Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-state-data-85fa/4a8c7dec/?iid=002-627&v=presentation
    Explore at:
    Dataset updated
    Mar 31, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

    --- Original source retains full ownership of the source dataset ---

  16. T

    United States Labor Force Participation Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Labor Force Participation Rate [Dataset]. https://tradingeconomics.com/united-states/labor-force-participation-rate
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jun 30, 2025
    Area covered
    United States
    Description

    Labor Force Participation Rate in the United States decreased to 62.30 percent in June from 62.40 percent in May of 2025. This dataset provides the latest reported value for - United States Labor Force Participation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  17. State

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +11more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). State [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/esri::bureau-of-labor-statistics-monthly-unemployment-latest-14-months?layer=1
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: May 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: July 2nd, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  18. f

    Data from: S1 Dataset -

    • plos.figshare.com
    zip
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raghav Gupta; Md. Mahadi Hasan; Syed Zahurul Islam; Tahmina Yasmin; Jasim Uddin (2023). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0287342.s002
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Raghav Gupta; Md. Mahadi Hasan; Syed Zahurul Islam; Tahmina Yasmin; Jasim Uddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The economic landscape of the United Kingdom has been significantly shaped by the intertwined issues of Brexit, COVID-19, and their interconnected impacts. Despite the country’s robust and diverse economy, the disruptions caused by Brexit and the COVID-19 pandemic have created uncertainty and upheaval for both businesses and individuals. Recognizing the magnitude of these challenges, academic literature has directed its attention toward conducting immediate research in this crucial area. This study sets out to investigate key economic factors that have influenced various sectors of the UK economy and have broader economic implications within the context of Brexit and COVID-19. The factors under scrutiny include the unemployment rate, GDP index, earnings, and trade. To accomplish this, a range of data analysis tools and techniques were employed, including the Box-Jenkins method, neural network modeling, Google Trend analysis, and Twitter-sentiment analysis. The analysis encompassed different periods: pre-Brexit (2011-2016), Brexit (2016-2020), the COVID-19 period, and post-Brexit (2020-2021). The findings of the analysis offer intriguing insights spanning the past decade. For instance, the unemployment rate displayed a downward trend until 2020 but experienced a spike in 2021, persisting for a six-month period. Meanwhile, total earnings per week exhibited a gradual increase over time, and the GDP index demonstrated an upward trajectory until 2020 but declined during the COVID-19 period. Notably, trade experienced the most significant decline following both Brexit and the COVID-19 pandemic. Furthermore, the impact of these events exhibited variations across the UK’s four regions and twelve industries. Wales and Northern Ireland emerged as the regions most affected by Brexit and COVID-19, with industries such as accommodation, construction, and wholesale trade particularly impacted in terms of earnings and employment levels. Conversely, industries such as finance, science, and health demonstrated an increased contribution to the UK’s total GDP in the post-Brexit period, indicating some positive outcomes. It is worth highlighting that the impact of these economic factors was more pronounced on men than on women. Among all the variables analyzed, trade suffered the most severe consequences in the UK. By early 2021, the macroeconomic situation in the country was characterized by a simple dynamic: economic demand rebounded at a faster pace than supply, leading to shortages, bottlenecks, and inflation. The findings of this research carry significant value for the UK government and businesses, empowering them to adapt and innovate based on forecasts to navigate the challenges posed by Brexit and COVID-19. By doing so, they can promote long-term economic growth and effectively address the disruptions caused by these interrelated issues.

  19. C

    COVID-19 Household Telephone Survey in Barbados - Round 2: 2020

    • data.iadb.org
    csv, dta, pdf
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IDB Datasets (2025). COVID-19 Household Telephone Survey in Barbados - Round 2: 2020 [Dataset]. http://doi.org/10.60966/z9hg-kx29
    Explore at:
    csv(3962), csv(6096), csv(440704), dta(178251), pdf(1824167), dta(1376869), csv(165160)Available download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    IDB Datasets
    License

    Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020
    Area covered
    Barbados
    Description

    This dataset constitutes a panel follow-up to the 2016 Barbados Survey of Living Conditions. It measures welfare related variables before and after the onset of the COVID-19 pandemic including labor market outcomes, financial literacy, and food security. The survey was executed in November 2020. The Barbados COVID-19 Survey is a project of the Inter-American Development Bank (IDB). It collected data on critical socioeconomic topics in the context of the COVID-19 pandemic to support policymaking and help mitigate the crisis impacts on the populations welfare. The first survey round recontacted households interviewed in 2016 by the Barbados Survey of Living Conditions (BSLC) and was conducted by phone due to the mobility restrictions and social distancing measures in place. It interviewed 896 households and all their members over 29 days during May and June 2020 and gathered information about disease transmission, household finances, labor, income, remittances, spending, and social protection programs. Data and documentation of this first round can be found at: https://publications.iadb.org/en/covid-19-household-telephone-survey-barbados. The second round was carried out in November 2020 and recontacted respondent households from the first round. It focused on labor and interviewed 758 households. Both Barbados COVID-19 Survey rounds were designed and implemented by Sistemas Integrales. This publication describes the second rounds main methodological aspects, such as sample design, estimation procedures, topics covered by the questionnaire, field organization and quality control. It also presents the structure and codebook for the two resulting datasets.

  20. Tech layoffs worldwide 2020-2024, by quarter

    • statista.com
    • ai-chatbox.pro
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Tech layoffs worldwide 2020-2024, by quarter [Dataset]. https://www.statista.com/statistics/199999/worldwide-tech-layoffs-covid-19/
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The tech industry had a rough start to 2024. Technology companies worldwide saw a significant reduction in their workforce in the first quarter of 2024, with over 57 thousand employees being laid off. By the second quarter, layoffs impacted more than 43 thousand tech employees. In the final quarter of the year around 12 thousand employees were laid off. Layoffs impacting all global tech giants Layoffs in the global market escalated dramatically in the first quarter of 2023, when the sector saw a staggering record high of 167.6 thousand employees losing their jobs. Major tech giants such as Google, Microsoft, Meta, and IBM all contributed to this figure during this quarter. Amazon, in particular, conducted the most rounds of layoffs with the highest number of employees laid off among global tech giants. Industries most affected include the consumer, hardware, food, and healthcare sectors. Notable companies that have laid off a significant number of staff include Flink, Booking.com, Uber, PayPal, LinkedIn, and Peloton, among others. Overhiring led the trend, but will AI keep it going? Layoffs in the technology sector started following an overhiring spree during the COVID-19 pandemic. Initially, companies expanded their workforce to meet increased demand for digital services during lockdowns. However, as lockdowns ended, economic uncertainties persisted and companies reevaluated their strategies, layoffs became inevitable, resulting in a record number of 263 thousand laid off employees in the global tech sector by trhe end of 2022. Moreover, it is still unclear how advancements in artificial intelligence (AI) will impact layoff trends in the tech sector. AI-driven automation can replace manual tasks leading to workforce redundancies. Whether through chatbots handling customer inquiries or predictive algorithms optimizing supply chains, the pursuit of efficiency and cost savings may result in more tech industry layoffs in the future.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2020). COVID-19 impacts on employment in Vietnam - Dataset OD Mekong Datahub [Dataset]. https://data.opendevelopmentmekong.net/dataset/covid-19-impacts-on-employment-in-vietnam

COVID-19 impacts on employment in Vietnam - Dataset OD Mekong Datahub

Explore at:
Dataset updated
Aug 24, 2020
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Area covered
Vietnam
Description

The data set provides readers with data on the first half of the workforce for the years 2011 to 2020, per capita income for the first half of 2020 compared to 2019, and the unemployment rate in the working age. activities in the first half of the year from 2011 to 2020.

Search
Clear search
Close search
Google apps
Main menu