Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cleaned dataset from the Billionaires Statistic Dataset (2023) that can be found here.
The code I used to clean and re-structure the data is also here.
First things first: a big shout-out to Nidula Elgiriyewithana for providing the original data.
As with it, this dataset contains various information about the world's wealthiest persons in different columns that can be grouped into three different types:
If you want a challenge, you can create a dashboard using tools such as Plotly to dynamically visualize the data using one or different attributes (such as industry, age or country). I did it, leave the link below in case you want to investigate:
If you find this dataset informative or inspirational, a vote is appreciated for others to easily discover value in it ππ°
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a synthetic overview of the 1,000 wealthiest individuals in the world, offering insights into the distribution of wealth across industries and regions. It is designed to help analysts, researchers, and data enthusiasts explore global wealth trends, industry dominance, and regional wealth concentration.
Whether you're conducting market research, financial analysis, or data modeling, this dataset serves as a valuable resource for understanding the characteristics of the world's top billionaires.
π Key Features: Name π€: The name of the billionaire. Country π: Country of residence or primary business operation. Industry π: Industry in which the individual has built their wealth. Net Worth (in billions) π΅: Estimated net worth in billions of USD. Company π’: The primary company or business associated with the billionaire. β οΈ Important Note: This dataset is 100% synthetic and does not contain real financial or personal data. It is artificially generated for educational, analytical, and research purposes.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Forbes published "The Definitive Ranking of the Wealthiest Americans In 2022". And here is the top 200 list including additional information on each of the billionaires.
This dataset contains the top 200 richest American based on their net worth.
| Column | Meaning | | -- | -- | | rank | their rank | | name | their name | | net worth | their net worth | | age | their age | | title | their title (e.g. CEO, Chairman etc.) | | source of wealth | the source of how they've managed to get this much money | | self made score | shows how far each of these billionaires has climbed to make it to the top. According to Forbes, The score ranges from 1 to 10, with 1 through 5 indicating someone who inherited some or all of his or her fortune; while 6 through 10 are for those who built their company or established a fortune on his or her own. | | philanthropy score | this score shows how much these billionaires donates on nonprofits foundations | | residence | their residence | | marital status | their marital status | | children | their children | | education | their education |
This dataset was acquired using a web scraping tool called Beautiful soup and scraped Forbes website
Image by pch.vector on Freepik
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cleaned dataset from the Billionaires Statistic Dataset (2023) that can be found here.
The code I used to clean and re-structure the data is also here.
First things first: a big shout-out to Nidula Elgiriyewithana for providing the original data.
As with it, this dataset contains various information about the world's wealthiest persons in different columns that can be grouped into three different types:
If you want a challenge, you can create a dashboard using tools such as Plotly to dynamically visualize the data using one or different attributes (such as industry, age or country). I did it, leave the link below in case you want to investigate:
If you find this dataset informative or inspirational, a vote is appreciated for others to easily discover value in it ππ°