The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)
United States Census Bureau
SELECT
zipcode,
population
FROM
bigquery-public-data.census_bureau_usa.population_by_zip_2010
WHERE
gender = ''
ORDER BY
population DESC
LIMIT
10
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
This dataset lists the total population 18 years and older by census block in Connecticut before and after population adjustments were made pursuant to Public Act 21-13. PA 21-13 creates a process to adjust the U.S. Census Bureau population data to allow for most individuals who are incarcerated to be counted at their address before incarceration. Prior to enactment of the act, these inmates were counted at their correctional facility address. The act requires the CT Office of Policy and Management (OPM) to prepare and publish the adjusted and unadjusted data by July 1 in the year after the U.S. census is taken or 30 days after the U.S. Census Bureau’s publication of the state’s data. A report documenting the population adjustment process was prepared by a team at OPM composed of the Criminal Justice Policy and Planning Division (OPM CJPPD) and the Data and Policy Analytics (DAPA) unit. The report is available here: https://portal.ct.gov/-/media/OPM/CJPPD/CjAbout/SAC-Documents-from-2021-2022/PA21-13_OPM_Summary_Report_20210921.pdf Note: On September 21, 2021, following the initial publication of the report, OPM and DOC revised the count of juveniles, reallocating 65 eighteen-year-old individuals who were incorrectly designated as being under age 18. After the DOC released the updated data to OPM, the report and this dataset were updated to reflect the revision.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Overview This dataset re-shares cartographic and demographic data from the U.S. Census Bureau to provide an obvious supplement to Open Environments Block Group publications.These results do not reflect any proprietary or predictive model. Rather, they extract from Census Bureau results with some proportions and aggregation rules applied. For additional support or more detail, please see the Census Bureau citations below. Cartographics refer to shapefiles shared in the Census TIGER/Line publications. Block Group areas are updated annually, with major revisions accompanying the Decennial Census at the turn of each decade. These shapes are useful for visualizing estimates as a map and relating geographies based upon geo-operations like overlapping. This data is kept in a geodatabase file format and requires the geopandas package and its supporting fiona and DAL software. Demographics are taken from popular variables in the American Community Survey (ACS) including age, race, income, education and family structure. This data simply requires csv reader software or pythons pandas package. While the demographic data has many columns, the cartographic data has a very, very large column called "geometry" storing the many-point boundaries of each shape. So, this process saves the data separately, with demographics columns in a csv file and geometry in a gpd file needed an installation of geopandas, fiona and DAL software. More details on the ACS variables selected and derivation rules applied can be found in the commentary docstrings in the source code found here: https://github.com/OpenEnvironments/blockgroupdemographics. ## Files While the demographic data has many columns, the cartographic data has a very, very large column called "geometry" storing the many-point boundaries of each shape. So, this process saves the data separately, with demographics columns in a csv file named YYYYblcokgroupdemographics.csv. The cartographic column, 'geometry', is shared as file named YYYYblockgroupdemographics-geometry.pkl. This file needs an installation of geopandas, fiona and DAL software.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset expands on my earlier New York City Census Data dataset. It includes data from the entire country instead of just New York City. The expanded data will allow for much more interesting analyses and will also be much more useful at supporting other data sets.
The data here are taken from the DP03 and DP05 tables of the 2015 American Community Survey 5-year estimates. The full datasets and much more can be found at the American Factfinder website. Currently, I include two data files:
The two files have the same structure, with just a small difference in the name of the id column. Counties are political subdivisions, and the boundaries of some have been set for centuries. Census tracts, however, are defined by the census bureau and will have a much more consistent size. A typical census tract has around 5000 or so residents.
The Census Bureau updates the estimates approximately every year. At least some of the 2016 data is already available, so I will likely update this in the near future.
The data here were collected by the US Census Bureau. As a product of the US federal government, this is not subject to copyright within the US.
There are many questions that we could try to answer with the data here. Can we predict things such as the state (classification) or household income (regression)? What kinds of clusters can we find in the data? What other datasets can be improved by the addition of census data?
The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics for the Department of Housing and Urban Development (HUD). The AHS national survey was conducted annually from 1973-1981 and biennially (every two years) since 1983. Metropolitan area surveys have been conducted annually or biennially since 1974.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are a number of Kaggle datasets that provide spatial data around New York City. For many of these, it may be quite interesting to relate the data to the demographic and economic characteristics of nearby neighborhoods. I hope this data set will allow for making these comparisons without too much difficulty.
Exploring the data and making maps could be quite interesting as well.
This dataset contains two CSV files:
nyc_census_tracts.csv
This file contains a selection of census data taken from the ACS DP03 and DP05 tables. Things like total population, racial/ethnic demographic information, employment and commuting characteristics, and more are contained here. There is a great deal of additional data in the raw tables retrieved from the US Census Bureau website, so I could easily add more fields if there is enough interest.
I obtained data for individual census tracts, which typically contain several thousand residents.
census_block_loc.csv
For this file, I used an online FCC census block lookup tool to retrieve the census block code for a 200 x 200 grid containing
New York City and a bit of the surrounding area. This file contains the coordinates and associated census block codes along
with the state and county names to make things a bit more readable to users.
Each census tract is split into a number of blocks, so one must extract the census tract code from the block code.
The data here was taken from the American Community Survey 2015 5-year estimates (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml).
The census block coordinate data was taken from the FCC Census Block Conversions API (https://www.fcc.gov/general/census-block-conversions-api)
As public data from the US government, this is not subject to copyright within the US and should be considered public domain.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Census Tracts 1960’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d609e7aa-5bfe-4efe-a6e2-cf0f2efb54b0 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
This boundary file contains historic census tract boundaries for which the U.S. Census Bureau tabulated data and was produced by the Minnesota Population Center as part of the National Historical Geographic Information System (NHGIS) project. The NHGIS is an National Science Foundation-sponsored project (Grant No. BCS0094908) to create a digital spatial-temporal database of all available historical US aggregate census materials. The available shapefiles on the NHGIS site represent version 1.0 of historical US census tract boundary files for the 1910-2000 censuses. These electronic census tract boundary files were created by referencing publicly available, printed U.S. Census Bureau maps and considerable care was taken during their production. TIGER/Line spatial features that corresponded to boundaries on these maps were used to construct proper historic boundaries. When a TIGER/Line features was not available, we digitized the historic boundary from a geo-referenced, scanned census map. The boundary files have been checked against currently available historical census aggregate data.
--- Original source retains full ownership of the source dataset ---
The Travel Time to Work indicator compares the mean, or average, commute time for Champaign County residents to the mean commute time for residents of Illinois and the United States as a whole. On its own, mean travel time of all commuters on all mode types could be reflective of a number of different conditions. Congestion, mode choice, changes in residential patterns, changes in the location of major employment centers, and changes in the transit network can all impact travel time in different and often conflicting ways. Since the onset of the COVID-19 pandemic in 2020, the workplace location (office vs. home) is another factor that can impact the mean travel time of an area. We don’t recommend trying to draw any conclusions about conditions in Champaign County, or anywhere else, based on mean travel time alone.
However, when combined with other indicators in the Mobility category (and other categories), mean travel time to work is a valuable measure of transportation behaviors in Champaign County.
Champaign County’s mean travel time to work is lower than the mean travel time to work in Illinois and the United States. Based on this figure, the state of Illinois has the longest commutes of the three analyzed areas.
The year-to-year fluctuations in mean travel time have been statistically significant in the United States since 2014, and in Illinois in 2021 and 2022. Champaign County’s year-to-year fluctuations in mean travel time were statistically significant from 2021 to 2022, the first time since this data first started being tracked in 2005.
Mean travel time data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Travel Time to Work.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (17 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).
This map shows schools, school districts, and population density throughout the US. Click on the map to learn more about the school districts and schools within an area. A few things you can learn within this map:How many public/private schools fall within the district?What type of population density lives within this district? Socioeconomic factors about the Census Tracts which fall within the district:School enrollment of under 19 by grade Children living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of the population within the districtFor more information about the data sources:Socioeconomic factors:The American Community Survey (ACS) helps us understand the population in the US. This app uses the 5-year estimates, and the data is updated annually when the U.S. Census Bureau releases the newest estimates. For detailed metadata, visit the links in the bullet points above. Current School Districts layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Private Schools layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Public Schools layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.WorldPop Populated Foorprint layer:This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of United States across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.5% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here
A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco. The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person. The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons: • The person was not asked about their race and ethnicity. • The person was asked, but refused to answer. • The person answered, but the testing provider did not include the person's answers in the reports. • The testing provider reported the person's answers in a format that could not be used by the health department. For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.” B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown." The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.” If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Cape Shirreff Phocid Census (CS-PHOC) dataset is part of long-term monitoring efforts at Cape Shirreff, Livingston Island. The National Oceanic and Atmospheric Administration (NOAA) United States Antarctic Marine Living Resources Program (U.S. AMLR) and the Chilean Antarctic Institute (INACH) have conducted synoptic, weekly counts of Southern Ocean phocids hauled out on Cape Shirreff during most austral summers since 1997-98. These census data, which will continue to be collected by the U.S. AMLR program and thus updated yearly, provide a rare and valuable source of information about changes in population trends and area use by Southern Ocean phocids in a climate change hot spot. CS-PHOC is a sampling event type dataset published as open data with technical support provided by SCAR Antarctic Biodiversity Portal (biodiversity.aq) (BELSPO project RT/23/ADVANCE). This dataset is described in the paper “CS-PHOC: weekly census counts of Southern Ocean phocids at Cape Shirreff, Livingston Island” (Woodman et al., 2024). This dataset contains records of Hydrurga leptonyx, Leptonychotes weddellii, Lobodon carcinophagus, and Mirounga leonina census counts at Cape Shirreff, Livingston Island (62.47° S, 60.77° W). All census records were collected by field biologists using binoculars during field expeditions at Cape Shirreff in the austral summers from December 1997 to February 2023. The data is published as a standardized Darwin Core Archive, which contains presence, absence, sex and life stage of Southern Ocean phocids observed in each survey. This dataset is published under the license CC0 1.0. Please follow the guidelines from the SCAR Data Policy (SCAR, 2023) when using the data. A manuscript describing the CS-PHOC dataset is currently in review; if you are interested in the project or have any questions regarding this dataset, please contact us via the contact information provided in the metadata or via data-biodiversity-aq@naturalsciences.be. Issues with dataset can be reported at https://github.com/us-amlr/cs-phoc This dataset is part of the U.S. Antarctic Marine Living Resources program funded by NOAA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Bothell by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Bothell across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.62% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bothell Population by Race & Ethnicity. You can refer the same here
Dataset quality **: Medium/high quality dataset, not quality checked or modified by the EIDC team
Census data plays a pivotal role in academic data research, particularly when exploring relationships between different demographic characteristics. The significance of this particular dataset lies in its ability to facilitate the merging of various datasets with basic census information, thereby streamlining the research process and eliminating the need for separate API calls.
The American Community Survey is an ongoing survey conducted by the U.S. Census Bureau, which provides detailed social, economic, and demographic data about the United States population. The ACS collects data continuously throughout the decade, gathering information from a sample of households across the country, covering a wide range of topics
The Census Data Application Programming Interface (API) is an API that gives the public access to raw statistical data from various Census Bureau data programs.
We used this API to collect various demographic and socioeconomic variables from both the ACS and the Deccenial survey on different geographical levels:
ZCTAs:
ZIP Code Tabulation Areas (ZCTAs) are generalized areal representations of United States Postal Service (USPS) ZIP Code service areas. The USPS ZIP Codes identify the individual post office or metropolitan area delivery station associated with mailing addresses. USPS ZIP Codes are not areal features but a collection of mail delivery routes.
Census Tract:
Census Tracts are small, relatively permanent statistical subdivisions of a county or statistically equivalent entity that can be updated by local participants prior to each decennial census as part of the Census Bureau’s Participant Statistical Areas Program (PSAP).
Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. A census tract usually covers a contiguous area; however, the spatial size of census tracts varies widely depending on the density of settlement. Census tract boundaries are delineated with the intention of being maintained over a long time so that statistical comparisons can be made from census to census.
Block Groups:
Block groups (BGs) are the next level above census blocks in the geographic hierarchy (see Figure 2-1 in Chapter 2). A BG is a combination of census blocks that is a subdivision of a census tract or block numbering area (BNA). (A county or its statistically equivalent entity contains either census tracts or BNAs; it can not contain both.) A BG consists of all census blocks whose numbers begin with the same digit in a given census tract or BNA; for example, BG 3 includes all census blocks numbered in the 300s. The BG is the smallest geographic entity for which the decennial census tabulates and publishes sample data.
Census Blocks:
Census blocks, the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Excel, AL, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/excel-al-median-household-income-by-household-size.jpeg" alt="Excel, AL median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Taylorsville by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Taylorsville across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 51.03% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Taylorsville Population by Race & Ethnicity. You can refer the same here
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.