The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
Source: https://en.wikipedia.org/wiki/United_States_Census
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.
The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa
https://cloud.google.com/bigquery/public-data/us-census
Dataset Source: United States Census Bureau
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What are the ten most populous zip codes in the US in the 2010 census?
What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?
https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png">
https://cloud.google.com/bigquery/images/census-population-map.png
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Census of Agriculture is a complete count of U.S. farms and ranches and the people who operate them. Even small plots of land - whether rural or urban - growing fruit, vegetables or some food animals count if $1,000 or more of such products were raised and sold, or normally would have been sold, during the Census year. The Census of Agriculture, taken only once every five years, looks at land use and ownership, operator characteristics, production practices, income and expenditures. For America's farmers and ranchers, the Census of Agriculture is their voice, their future, and their opportunity. The Census Data Query Tool (CDQT) is a web-based tool that is available to access and download table level data from the Census of Agriculture Volume 1 publication. The data found via the CDQT may also be accessed in the NASS Quick Stats database. The CDQT is unique in that it automatically displays data from the past five Census of Agriculture publications. The CDQT is presented as a "2017 centric" view of the Census of Agriculture data. All data series that are present in the 2017 dataset are available within the CDQT, and any matching data series from prior Census years will also display (back to 1997). If a data series is not included in the 2017 dataset, then data cells will remain blank in the tool. For example, one of the data series had a label change from "Operator" to "Producer." This means that data from prior Census years labelled "Operator" will not show up where the label has changed to “Producer” for 2017. The new Census Data Query Tool application can be used to query Census data from 1997 through 2017. Data are searchable by Census table and are downloadable as CSV or PDF files. 2017 Census Ag Atlas Maps are also available for download. Resources in this dataset:Resource Title: 2017 Census of Agriculture - Census Data Query Tool (CDQT). File Name: Web Page, url: https://www.nass.usda.gov/Quick_Stats/CDQT/chapter/1/table/1 The Census Data Query Tool (CDQT) is a web based tool that is available to access and download table level data from the Census of Agriculture Volume 1 publication. The data found via the CDQT may also be accessed in the NASS Quick Stats database. The CDQT is unique in that it automatically displays data from the past five Census of Agriculture publications. The CDQT is presented as a "2017 centric" view of the Census of Agriculture data. All data series that are present in the 2017 dataset are available within the CDQT, and any matching data series from prior Census years will also display (back to 1997). If a data series is not included in the 2017 dataset, then data cells will remain blank in the tool. For example, one of the data series had a label change from "Operator" to "Producer." This means that data from prior Census years labelled "Operator" will not show up where the label has changed to "Producer" for 2017. Using CDQT:
Upon entering the CDQT, a data table is present. Changing the parameters at the top of the data table will retrieve different combinations of Census Chapter, Table, State, or County (when selecting Chapter 2). For the U.S., Volume 1, US/State Chapter 1 will include only U.S. data; Chapter 2 will include U.S. and State level data. For a State, Volume 1 US/State Level Data Chapter 1 will include only the State level data; Chapter 2 will include the State and county level data. Once a selection is made, press the “Update Grid” button to retrieve the new data table. Comma-separated values (CSV) download, compatible with most spreadsheet and database applications: to download a CSV file of the data as it is currently presented in the data grid, press the "CSV" button in the "Export Data" section of the toolbar. When CSV is chosen, data will be downloaded as numeric. To view the source PDF file for the data table, press the "View PDF" button in the toolbar.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Nome Census Area by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Nome Census Area across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 52.32% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Nome Census Area Population by Gender. You can refer the same here
This product provides tabular data from the U.S. Department of Agriculture (USDA) Census of Agriculture for selected items for the period 1950-2017 for counties in the conterminous United States. Data from 1950-2012 are taken from LaMotte (2015) and 2017 data are retrieved from the USDA QuickStats online tool. Data which are withheld in the Census of Agriculture are filled with estimates. The data include crop production values for 12 commodities (for example, corn in bushels), land use values for 7 land use types (for example, acres of total cropland), and 9 values for livestock types (for example, number of hogs and pigs). The data are largely intended as a 2017 update to the LaMotte dataset for items of research interest. LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016.
This data set is a vector polygon digital data structure taken from Census Bureau's TIGER/Line Files, 1994, for New Mexico. The source software used was ARC/INFO 7.0.3.
Abstract copyright UK Data Service and data collection copyright owner.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Bothell by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Bothell across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.62% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bothell Population by Race & Ethnicity. You can refer the same here
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
SA1 based data for Family Blending, in General Community Profile (GCP), 2016 Census. Count of couple families with children. Classifies couple families based on the parent-child relationships within them. Temporarily absent children are taken into consideration when classifying families. Excludes 'Couple families with no children', 'One parent families' and 'Other families'. Excludes families in: 'Non-family/Non-classifiable households', 'Non-private dwellings' and 'Migratory, off-shore and shipping' SA1s. Excludes overseas visitors. The data is by SA1 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Kennard by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Kennard across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 54.91% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Kennard Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Southeast Fairbanks Census Area by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Southeast Fairbanks Census Area across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of male population, with 57.3% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Southeast Fairbanks Census Area Population by Race & Ethnicity. You can refer the same here
This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1900 datasets.
The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Independence by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Independence across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 51.08% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Independence Population by Race & Ethnicity. You can refer the same here
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Background: In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis.FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2020 Participant and Program Characteristics (PC2020) is the 17th to be completed using the prototype PC reporting system. In April 2020, there were 89 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and 33 Indian Tribal Organizations (ITOs).Processing methods and equipment used: Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2020. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency. Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2020.Study spatial scale (size of replicates and spatial scale of study area): In April 2020, there were 89 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and 33 Indian Tribal Organizations (ITOs).Level of true replication: UnknownSampling precision (within-replicate sampling or pseudoreplication):State Agency Data Submissions. PC2020 is a participant dataset consisting of 7,036,867 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data.PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 7 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public.National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The national sample consists of 1 percent of the total number of participants, or 70,368 records. The distribution by category is 5,469 pregnant women, 6,131 breastfeeding women, 4,373 postpartum women, 16,817 infants, and 37,578 children.Level of subsampling (number and repeat or within-replicate sampling): The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample.Study design (before–after, control–impacts, time series, before–after-control–impacts): None – Non-experimentalDescription of any data manipulation, modeling, or statistical analysis undertaken: Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers.Description of any gaps in the data or other limiting factors: All State agencies provided data on a census of their WIC participants.Resources in this dataset:Resource Title: WIC PC 2020 National Sample File Public Use Codebook.; File Name: PC2020 National Sample File Public Use Codebook.docx; Resource Description: WIC PC 2020 National Sample File Public Use CodebookResource Title: WIC PC 2020 Public Use CSV Data.; File Name: wicpc2020_public_use.csv; Resource Description: WIC PC 2020 Public Use CSV DataResource Title: WIC PC 2020 Data Set SAS, R, SPSS, Stata.; File Name: PC2020 Ag Data Commons.zipResource; Description: WIC PC 2020 Data Set SAS, R, SPSS, Stata One dataset in multiple formats
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Dillingham Census Area by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Dillingham Census Area across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 51.7% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Dillingham Census Area Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Oxnard by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Oxnard across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 50.31% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Oxnard Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Shirley by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Shirley across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 52.24% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Shirley Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Onsted by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Onsted across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 53.7% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Onsted Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Joseph by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Joseph across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 55.14% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Joseph Population by Race & Ethnicity. You can refer the same here
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.