100+ datasets found
  1. census-bureau-usa

    • kaggle.com
    zip
    Updated May 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-usa [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-usa
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 18, 2020
    Dataset authored and provided by
    Google BigQuery
    Area covered
    United States
    Description

    Context :

    The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)

    Dataset source

    United States Census Bureau

    Sample Query

    SELECT zipcode, population FROM bigquery-public-data.census_bureau_usa.population_by_zip_2010 WHERE gender = '' ORDER BY population DESC LIMIT 10

    Terms of use

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data

  2. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    application/jsonl, parquet, spss, csv, arrow, stata, avro, sasAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  3. United States Census

    • kaggle.com
    zip
    Updated Apr 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2018). United States Census [Dataset]. https://www.kaggle.com/census/census-bureau-usa
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 17, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
    Source: https://en.wikipedia.org/wiki/United_States_Census

    Content

    The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.

    The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa

    https://cloud.google.com/bigquery/public-data/us-census

    Dataset Source: United States Census Bureau

    Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by Steve Richey from Unsplash.

    Inspiration

    What are the ten most populous zip codes in the US in the 2010 census?

    What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?

    https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png"> https://cloud.google.com/bigquery/images/census-population-map.png

  4. Data from: US Census Data

    • console.cloud.google.com
    Updated Jun 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:United%20States%20Census%20Bureau&hl=de&inv=1&invt=Ab2oWg (2022). US Census Data [Dataset]. https://console.cloud.google.com/marketplace/product/united-states-census-bureau/us-census-data?hl=de
    Explore at:
    Dataset updated
    Jun 22, 2022
    Dataset provided by
    Googlehttp://google.com/
    Area covered
    United States
    Description

    The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  5. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  6. d

    2020 U.S. Census Block Adjustments

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). 2020 U.S. Census Block Adjustments [Dataset]. https://catalog.data.gov/dataset/2020-u-s-census-block-adjustments
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.ct.gov
    Description

    This dataset lists the total population 18 years and older by census block in Connecticut before and after population adjustments were made pursuant to Public Act 21-13. PA 21-13 creates a process to adjust the U.S. Census Bureau population data to allow for most individuals who are incarcerated to be counted at their address before incarceration. Prior to enactment of the act, these inmates were counted at their correctional facility address. The act requires the CT Office of Policy and Management (OPM) to prepare and publish the adjusted and unadjusted data by July 1 in the year after the U.S. census is taken or 30 days after the U.S. Census Bureau’s publication of the state’s data. A report documenting the population adjustment process was prepared by a team at OPM composed of the Criminal Justice Policy and Planning Division (OPM CJPPD) and the Data and Policy Analytics (DAPA) unit. The report is available here: https://portal.ct.gov/-/media/OPM/CJPPD/CjAbout/SAC-Documents-from-2021-2022/PA21-13_OPM_Summary_Report_20210921.pdf Note: On September 21, 2021, following the initial publication of the report, OPM and DOC revised the count of juveniles, reallocating 65 eighteen-year-old individuals who were incorrectly designated as being under age 18. After the DOC released the updated data to OPM, the report and this dataset were updated to reflect the revision.

  7. Economic Census: Core Statistics: US Industry Product Data

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Economic Census: Core Statistics: US Industry Product Data [Dataset]. https://catalog.data.gov/dataset/economic-census-core-statistics-us-industry-product-data
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The Economic Census is the U.S. Government's official five-year measure of American business and the economy. It is conducted by the U.S. Census Bureau, and response is required by law. In October through December of the census year, forms are sent out to nearly 4 million businesses, including large, medium and small companies representing all U.S. locations and industries. Respondents were asked to provide a range of operational and performance data for their companies. This dataset presents company, establishments, value of shipments, value of product shipments, percentage of product shipments of the total value of shipments, and percentage of distribution of value of product shipments.

  8. US Census Demographic Data

    • kaggle.com
    zip
    Updated Mar 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MuonNeutrino (2019). US Census Demographic Data [Dataset]. https://www.kaggle.com/muonneutrino/us-census-demographic-data
    Explore at:
    zip(11110116 bytes)Available download formats
    Dataset updated
    Mar 3, 2019
    Authors
    MuonNeutrino
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset expands on my earlier New York City Census Data dataset. It includes data from the entire country instead of just New York City. The expanded data will allow for much more interesting analyses and will also be much more useful at supporting other data sets.

    Content

    The data here are taken from the DP03 and DP05 tables of the 2015 American Community Survey 5-year estimates. The full datasets and much more can be found at the American Factfinder website. Currently, I include two data files:

    1. acs2015_census_tract_data.csv: Data for each census tract in the US, including DC and Puerto Rico.
    2. acs2015_county_data.csv: Data for each county or county equivalent in the US, including DC and Puerto Rico.

    The two files have the same structure, with just a small difference in the name of the id column. Counties are political subdivisions, and the boundaries of some have been set for centuries. Census tracts, however, are defined by the census bureau and will have a much more consistent size. A typical census tract has around 5000 or so residents.

    The Census Bureau updates the estimates approximately every year. At least some of the 2016 data is already available, so I will likely update this in the near future.

    Acknowledgements

    The data here were collected by the US Census Bureau. As a product of the US federal government, this is not subject to copyright within the US.

    Inspiration

    There are many questions that we could try to answer with the data here. Can we predict things such as the state (classification) or household income (regression)? What kinds of clusters can we find in the data? What other datasets can be improved by the addition of census data?

  9. A

    ‘Census Tracts 1960’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Census Tracts 1960’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-census-tracts-1960-5b30/latest
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Census Tracts 1960’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d609e7aa-5bfe-4efe-a6e2-cf0f2efb54b0 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    This boundary file contains historic census tract boundaries for which the U.S. Census Bureau tabulated data and was produced by the Minnesota Population Center as part of the National Historical Geographic Information System (NHGIS) project. The NHGIS is an National Science Foundation-sponsored project (Grant No. BCS0094908) to create a digital spatial-temporal database of all available historical US aggregate census materials. The available shapefiles on the NHGIS site represent version 1.0 of historical US census tract boundary files for the 1910-2000 censuses. These electronic census tract boundary files were created by referencing publicly available, printed U.S. Census Bureau maps and considerable care was taken during their production. TIGER/Line spatial features that corresponded to boundaries on these maps were used to construct proper historic boundaries. When a TIGER/Line features was not available, we digitized the historic boundary from a geo-referenced, scanned census map. The boundary files have been checked against currently available historical census aggregate data.

    --- Original source retains full ownership of the source dataset ---

  10. H

    2020 General Election Voting by US Census Block Group

    • dataverse.harvard.edu
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Bryan (2025). 2020 General Election Voting by US Census Block Group [Dataset]. http://doi.org/10.7910/DVN/NKNWBX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Michael Bryan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...

  11. American Housing Survey (AHS)

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). American Housing Survey (AHS) [Dataset]. https://catalog.data.gov/dataset/american-housing-survey-ahs
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Area covered
    United States
    Description

    The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics for the Department of Housing and Urban Development (HUD). The AHS national survey was conducted annually from 1973-1981 and biennially (every two years) since 1983. Metropolitan area surveys have been conducted annually or biennially since 1974.

  12. N

    Bothell, WA Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Bothell, WA Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b2221721-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bothell, Washington
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Bothell by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Bothell across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 50.62% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Bothell is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Bothell total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Bothell Population by Race & Ethnicity. You can refer the same here

  13. D

    ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time

    • data.sfgov.org
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health - Population Health Division (2024). ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time [Dataset]. https://data.sfgov.org/Health-and-Social-Services/ARCHIVED-COVID-19-Testing-by-Race-Ethnicity-Over-T/kja3-qsky
    Explore at:
    xml, csv, json, tsv, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 12, 2024
    Dataset authored and provided by
    Department of Public Health - Population Health Division
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.

    The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.

    The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.

    When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:

    • The person was not asked about their race and ethnicity.
    • The person was asked, but refused to answer.
    • The person answered, but the testing provider did not include the person's answers in the reports.
    • The testing provider reported the person's answers in a format that could not be used by the health department.
    

    For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”

    B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."

    The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”

    If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value is reported as “Unknown” on their first test and then on a subsequent test they report “Asian;” "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" or "White”, then this subsequent reported race/ethnicity will overwrite the previous recording of “Unknown”. If a person has only ever selected “Unknown” as their race/ethnicity, then it will be recorded as “Unknown.” This change provides more specific and actionable data on who is tested in San Francisco.

    The second exception is if a person ever marks “Hispanic or Latino/a, all races” for race/ethnicity then this choice will always overwrite any previous or future response. This is because it is an overarching category that can include any and all other races and is mutually exclusive with the other responses.

    A person's race/ethnicity will be recorded as “Multi-racial” if they select two or more values among the following choices: “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other.” If a person selects a combination of two or more race/ethnicity answers that includes “Hispanic or Latino/a, all races” then they will still be recorded as “Hispanic or Latino/a, all races”—not as “Multi-racial.”

    C. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information.

    D. UPDATE PROCESS Updates automatically at 5:00AM Pacific Time each day. Redundant runs are scheduled at 7:00AM and 9:00AM in case of pipeline failure.

    E. HOW TO USE THIS DATASET San Francisco population estimates for race/ethnicity can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24, 2020 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.

    In order to track trends over time, a user can analyze this data by sorting or filtering by the "specimen_collection_date" field.

    Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. When there are fewer than 20 positives tests for a given race/ethnicity and time period, the positivity rate is not calculated for the public tracker because rates of small test counts are less reliable.

    Calculating Testing Rates: To calculate the testing rate per 10,000 residents, divide the total number of tests collected (positive, negative, and indeterminate results) for the specified race/ethnicity by the total number of residents who identify as that race/ethnicity (according to the 2016-2020 American Community Survey (ACS) population estimate), then multiply by 10,000. When there are fewer than 20 total tests for a given race/ethnicity and time period, the testing rate is not calculated for the public tracker because rates of small test counts are less reliable.

    Read more about how this data is updated and validated daily: https://sf.gov/information/covid-19-data-questions

    F. CHANGE LOG

    • 1/12/2024 - This dataset will stop updating as of 1/12/2024
    • 6/21/2023 - A small number of additional COVID-19 testing records were released as part of our ongoing data cleaning efforts. An update to the race or ethnicity designation among a subset of testing records was simultaneously released.
    • 1/31/2023 - updated “population_estimate” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/31/2023 - renamed column “last_updated_at” to “data_as_of”.
    • 3/23/2022 - ‘Native American’ changed to ‘American Indian or Alaska Native’ to align with the census.
    • 2/10/2022 - race/ethnicity categorization was changed. See section NOTE ON RACE/ETHNICITY for additional information.
    • 4/16/2021 - dataset updated to refresh with a five-day data lag.

  14. o

    Data from: CS-PHOC: weekly census counts of Southern Ocean phocids at Cape...

    • obis.org
    • gbif.org
    • +1more
    zip
    Updated May 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Koninklijk Belgisch Instituut voor Natuurwetenschappen (2025). CS-PHOC: weekly census counts of Southern Ocean phocids at Cape Shirreff, Livingston Island [Dataset]. http://doi.org/10.48361/gklk1u
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset authored and provided by
    Koninklijk Belgisch Instituut voor Natuurwetenschappen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    1997 - 2025
    Area covered
    Southern Ocean, Livingston
    Description

    The Cape Shirreff Phocid Census (CS-PHOC) dataset is part of long-term monitoring efforts at Cape Shirreff, Livingston Island. The National Oceanic and Atmospheric Administration (NOAA) United States Antarctic Marine Living Resources Program (U.S. AMLR) and the Chilean Antarctic Institute (INACH) have conducted synoptic, weekly counts of Southern Ocean phocids hauled out on Cape Shirreff during most austral summers since 1997-98. These census data, which will continue to be collected by the U.S. AMLR program and thus updated yearly, provide a rare and valuable source of information about changes in population trends and area use by Southern Ocean phocids in a climate change hot spot. CS-PHOC is a sampling event type dataset published as open data with technical support provided by SCAR Antarctic Biodiversity Portal (biodiversity.aq) (BELSPO project RT/23/ADVANCE). This dataset is described in the paper “CS-PHOC: weekly census counts of Southern Ocean phocids at Cape Shirreff, Livingston Island” (Woodman et al., 2024). This dataset contains records of Hydrurga leptonyx, Leptonychotes weddellii, Lobodon carcinophagus, and Mirounga leonina census counts at Cape Shirreff, Livingston Island (62.47° S, 60.77° W). All census records were collected by field biologists using binoculars during field expeditions at Cape Shirreff in the austral summers from December 1997 to February 2023. The data is published as a standardized Darwin Core Archive, which contains presence, absence, sex and life stage of Southern Ocean phocids observed in each survey. This dataset is published under the license CC0 1.0. Please follow the guidelines from the SCAR Data Policy (SCAR, 2023) when using the data. A manuscript describing the CS-PHOC dataset is currently in review; if you are interested in the project or have any questions regarding this dataset, please contact us via the contact information provided in the metadata or via data-biodiversity-aq@naturalsciences.be. Issues with dataset can be reported at https://github.com/us-amlr/cs-phoc This dataset is part of the U.S. Antarctic Marine Living Resources program funded by NOAA.

  15. N

    Babylon, NY Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Babylon, NY Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f00dfe99-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Babylon, Babylon, New York
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Babylon, NY population pyramid, which represents the Babylon population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Babylon, NY, is 22.9.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Babylon, NY, is 28.3.
    • Total dependency ratio for Babylon, NY is 51.1.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Babylon, NY is 3.5.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Babylon population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Babylon for the selected age group is shown in the following column.
    • Population (Female): The female population in the Babylon for the selected age group is shown in the following column.
    • Total Population: The total population of the Babylon for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Babylon Population by Age. You can refer the same here

  16. New York City Census Data

    • kaggle.com
    Updated Aug 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MuonNeutrino (2017). New York City Census Data [Dataset]. https://www.kaggle.com/datasets/muonneutrino/new-york-city-census-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 4, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    MuonNeutrino
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    New York
    Description

    Context

    There are a number of Kaggle datasets that provide spatial data around New York City. For many of these, it may be quite interesting to relate the data to the demographic and economic characteristics of nearby neighborhoods. I hope this data set will allow for making these comparisons without too much difficulty.

    Exploring the data and making maps could be quite interesting as well.

    Content

    This dataset contains two CSV files:

    1. nyc_census_tracts.csv

      This file contains a selection of census data taken from the ACS DP03 and DP05 tables. Things like total population, racial/ethnic demographic information, employment and commuting characteristics, and more are contained here. There is a great deal of additional data in the raw tables retrieved from the US Census Bureau website, so I could easily add more fields if there is enough interest.

      I obtained data for individual census tracts, which typically contain several thousand residents.

    2. census_block_loc.csv

      For this file, I used an online FCC census block lookup tool to retrieve the census block code for a 200 x 200 grid containing New York City and a bit of the surrounding area. This file contains the coordinates and associated census block codes along
      with the state and county names to make things a bit more readable to users.

      Each census tract is split into a number of blocks, so one must extract the census tract code from the block code.

    Acknowledgements

    The data here was taken from the American Community Survey 2015 5-year estimates (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml).

    The census block coordinate data was taken from the FCC Census Block Conversions API (https://www.fcc.gov/general/census-block-conversions-api)

    As public data from the US government, this is not subject to copyright within the US and should be considered public domain.

  17. US Census - ACS and Decennial files **

    • redivis.com
    application/jsonl +7
    Updated Jul 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2023). US Census - ACS and Decennial files ** [Dataset]. https://redivis.com/datasets/b2fz-a8gwpvnh4
    Explore at:
    avro, csv, spss, stata, sas, parquet, application/jsonl, arrowAvailable download formats
    Dataset updated
    Jul 4, 2023
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    United States
    Description

    Abstract

    Dataset quality **: Medium/high quality dataset, not quality checked or modified by the EIDC team

    Census data plays a pivotal role in academic data research, particularly when exploring relationships between different demographic characteristics. The significance of this particular dataset lies in its ability to facilitate the merging of various datasets with basic census information, thereby streamlining the research process and eliminating the need for separate API calls.

    The American Community Survey is an ongoing survey conducted by the U.S. Census Bureau, which provides detailed social, economic, and demographic data about the United States population. The ACS collects data continuously throughout the decade, gathering information from a sample of households across the country, covering a wide range of topics

    Methodology

    The Census Data Application Programming Interface (API) is an API that gives the public access to raw statistical data from various Census Bureau data programs.

    We used this API to collect various demographic and socioeconomic variables from both the ACS and the Deccenial survey on different geographical levels:

    ZCTAs:

    ZIP Code Tabulation Areas (ZCTAs) are generalized areal representations of United States Postal Service (USPS) ZIP Code service areas. The USPS ZIP Codes identify the individual post office or metropolitan area delivery station associated with mailing addresses. USPS ZIP Codes are not areal features but a collection of mail delivery routes.

    Census Tract:

    Census Tracts are small, relatively permanent statistical subdivisions of a county or statistically equivalent entity that can be updated by local participants prior to each decennial census as part of the Census Bureau’s Participant Statistical Areas Program (PSAP).

    Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. A census tract usually covers a contiguous area; however, the spatial size of census tracts varies widely depending on the density of settlement. Census tract boundaries are delineated with the intention of being maintained over a long time so that statistical comparisons can be made from census to census.

    Block Groups:

    Block groups (BGs) are the next level above census blocks in the geographic hierarchy (see Figure 2-1 in Chapter 2). A BG is a combination of census blocks that is a subdivision of a census tract or block numbering area (BNA). (A county or its statistically equivalent entity contains either census tracts or BNAs; it can not contain both.) A BG consists of all census blocks whose numbers begin with the same digit in a given census tract or BNA; for example, BG 3 includes all census blocks numbered in the 300s. The BG is the smallest geographic entity for which the decennial census tabulates and publishes sample data.

    Census Blocks:

    Census blocks, the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps.

  18. United States Energy, Census, and GDP 2010-2014

    • kaggle.com
    Updated Mar 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lislejoem (2017). United States Energy, Census, and GDP 2010-2014 [Dataset]. https://www.kaggle.com/lislejoem/us_energy_census_gdp_10-14/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Lislejoem
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    The purpose of this data set is to allow exploration between various types of data that is commonly collected by the US government across the states and the USA as a whole. The data set consists of three different types of data:

    • Census and Geographic Data;
    • Energy Data; and
    • Economic Data.

    When creating the data set, I combined data from many different types of sources, all of which are cited below. I have also provided the fields included in the data set and what they represent below. I have not performed any research on the data yet, but am going to dive in soon. I am particularly interested in the relationships between various types of data (i.e. GDP or birth rate) in prediction algorithms. Given that I have compiled 5 years’ worth of data, this data set was primarily constructed with predictive algorithms in mind.

    An additional note before you delve into the fields: * There could have been many more variables added across many different fields of metrics. I have stopped here, but it could potentially be beneficial to observe the interaction of these variables with others (i.e. the GDP of certain industries, the average age in a state, the male/female gender ratio, etc.) to attempt to find additional trends.

    Census and Geographic Data

    • StateCodes: The state 2-letter abbreviations. Note that I added "US" for the United States.
    • Region: The number corresponding to the region the state lies within, according to the 2010 census. (1 = Northeast, 2 = Midwest, 3 = South, 4 = West)
    • Division: The number corresponding to the division the state lies within, according to the 2010 census. (1 = New England, 2 = Middle Atlantic, 3 = East North Central, 4 = West North Central, 5 = South Atlantic, 6 = East South Central, 7 = West South Central, 8 = Mountain, 9 = Pacific)
    • Coast: Whether the state shares a border with an ocean. (1 = Yes, 0 = No)
    • Great Lakes: Whether the state shares a border with a great lake. (1 = Yes, 0 = No
    • CENSUS2010POP: 4/1/2010 resident total Census 2010 population
    • POPESTIMATE{year}: 7/1/{year} resident total population estimate
    • RBIRTH{year}: Birth rate in period 7/1/{year - 1} to 6/30/
    • RDEATH{year}: Death rate in period 7/1/{year - 1} to 6/30/
    • RNATURALINC{year}: Natural increase rate in period 7/1/{year - 1} to 6/30/
    • RINTERNATIONALMIG{year}: Net international migration rate in period 7/1/{year - 1} to 6/30/
    • RDOMESTICMIG{year}: Net domestic migration rate in period 7/1/{year - 1} to 6/30/
    • RNETMIG{year}: Net migration rate in period 7/1/{year - 1} to 6/30/

    As noted from the census:

    Net international migration for the United States includes the international migration of both native and foreign-born populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net migration of natives to and from the United States, and (d) the net movement of the Armed Forces population between the United States and overseas. Net international migration for Puerto Rico includes the migration of native and foreign-born populations between the United States and Puerto Rico.

    Codes for most of the data, information about the geographic terms and coditions, and more information about the methodology behind the population estimates can be found on the US Census website.

    Energy Data

    • TotalC{year}: Total energy consumption in billion BTU in given year.
    • TotalP{year}: Total energy production in billion BTU in given year.
    • TotalE{year}: Total Energy expenditures in million USD in given year.
    • TotalPrice{year}: Total energy average price in USD/million BTU in given year.
    • TotalC{first year}–{second year}: The first year’s total energy consumption divided by the second year’s total energy consumption, times 100. (The percent change between years in total energy consumption.)
    • TotalP{first year}–{second year}: The first year’s total energy production divided by the second year’s total energy production, times 100. (The percent change between years in total energy production.)
    • TotalE{first year}–{second year}: The first year’s total energy expenditure divided by the second year’s total energy expenditure, times 100. (The percent change between years in total energy expenditure.)
    • TotalPrice{first year}–{second year}: The first year’s total energy average price divided by the second year’s total energy average price, times 100. (The percent change between years in total energy average price.)
    • BiomassC{year}: Biomass total consumption in billion BTU in given year.
    • CoalC{year}: Coal total consumption in billion BTU in given year.
    • CoalP{year}: Coal total production in billion BTU in given year.
    • CoalE{year}: Coal total expenditures in million USD in given year.
    • CoalPrice{year}:...
  19. N

    Wilsonville, OR Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Wilsonville, OR Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b25d898a-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wilsonville, Oregon
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Wilsonville by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Wilsonville across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 51.77% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Wilsonville is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Wilsonville total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Wilsonville Population by Race & Ethnicity. You can refer the same here

  20. N

    Kingman, AZ Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Kingman, AZ Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b23ceca8-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kingman, Arizona
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Kingman by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Kingman across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 50.57% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Kingman is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Kingman total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Kingman Population by Race & Ethnicity. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Google BigQuery (2020). census-bureau-usa [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-usa
Organization logo

census-bureau-usa

United States Census Bureau

Explore at:
zip(0 bytes)Available download formats
Dataset updated
May 18, 2020
Dataset authored and provided by
Google BigQuery
Area covered
United States
Description

Context :

The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)

Dataset source

United States Census Bureau

Sample Query

SELECT zipcode, population FROM bigquery-public-data.census_bureau_usa.population_by_zip_2010 WHERE gender = '' ORDER BY population DESC LIMIT 10

Terms of use

This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data

Search
Clear search
Close search
Google apps
Main menu