https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of global population trends, historical data, and future projections. It includes detailed information for various countries and regions, encompassing key demographic indicators such as population size, growth rates, and density.
The dataset covers a broad time span, from 1980 to 2050, allowing for analysis of long-term population dynamics. It incorporates data from reputable sources like the United Nations Population Division and World Population Review, ensuring data accuracy and reliability.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.
Update Frequency: Biannual
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics
https://cloud.google.com/bigquery/public-data/world-bank-hnp
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Citation: The World Bank: Health Nutrition and Population Statistics
Banner Photo by @till_indeman from Unplash.
What’s the average age of first marriages for females around the world?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Population of countries (1960 to 2023) dataset from World Bank.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the White Earth population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of White Earth across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of White Earth was 93, a 0% decrease year-by-year from 2022. Previously, in 2022, White Earth population was 93, a decline of 4.12% compared to a population of 97 in 2021. Over the last 20 plus years, between 2000 and 2023, population of White Earth increased by 28. In this period, the peak population was 99 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Year. You can refer the same here
Copy of https://www.kaggle.com/datasets/kisoibo/countries-databasesqlite
Updated the name of the table from 'countries of the world' to 'countries', for ease of writing queries.
Info about the dataset:
Table Total Rows Total Columns countries of the world **0 ** ** 20** Country, Region, Population, Area (sq. mi.), Pop. Density (per sq. mi.), Coastline (coast/area ratio), Net migration, Infant mortality (per 1000 births), GDP ($ per capita), Literacy (%), Phones (per 1000), Arable (%), Crops (%), Other (%), Climate, Birthrate, Deathrate, Agriculture, Industry, Service
Acknowledgements Source: All these data sets are made up of data from the US government. Generally they are free to use if you use the data in the US. If you are outside of the US, you may need to contact the US Govt to ask. Data from the World Factbook is public domain. The website says "The World Factbook is in the public domain and may be used freely by anyone at anytime without seeking permission." https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html
When making visualisations related to countries, sometimes it is interesting to group them by attributes such as region, or weigh their importance by population, GDP or other variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Any work using this dataset should cite the following paper:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.
For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.
Contact points:
Maintainer: Leticia Pina
Maintainer: Sarah E., Castle
Data lineage:
The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.
References:
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.
Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Online resources:
GEE asset for "Forest proximate people - 5km cutoff distance"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in World was estimated at 8142.1 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset includes a chart with historical data for World Population.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/YTRCQEhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/YTRCQE
Replication Data for: Who governs? A new global dataset on members of cabinets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.
Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).
The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.
The survey is focused on three core areas of research:
Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.
If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".
Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.
Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.
The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."
The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:
The survey data will be provided under embargo in both comma-delimited and statistical formats.
Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)
Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.
Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.
Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.
Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
https://www.factori.ai/privacy-policyhttps://www.factori.ai/privacy-policy
Our proprietary People Data is a mobile user dataset that connects anonymous IDs to a wide range of attributes, including demographics, device ownership, audience segments, key locations, and more. This rich dataset allows our partner brands to gain a comprehensive view of consumers based on their personas, enabling them to derive actionable insights swiftly.
Reach Our extensive data reach covers a variety of categories, encompassing user demographics, Mobile Advertising IDs (MAID), device details, locations, affluence, interests, traveled countries, and more. Data Export Methodology We dynamically collect and provide the most updated data and insights through the best-suited method at appropriate intervals, whether daily, weekly, monthly, or quarterly.
Our People Data caters to various business needs, offering valuable insights for consumer analysis, data enrichment, sales forecasting, and retail analytics, empowering brands to make informed decisions and optimize their strategies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is World-wide issues : people, resources and the environment. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is People and education in the Third World. It features 7 columns including author, publication date, language, and book publisher.
The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book series. It has 1 row and is filtered where the books is Global politics as if people mattered. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of global population trends, historical data, and future projections. It includes detailed information for various countries and regions, encompassing key demographic indicators such as population size, growth rates, and density.
The dataset covers a broad time span, from 1980 to 2050, allowing for analysis of long-term population dynamics. It incorporates data from reputable sources like the United Nations Population Division and World Population Review, ensuring data accuracy and reliability.