100+ datasets found
  1. N

    United States Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f93a357-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  2. N

    states in U.S. Ranked by Other Race Population // 2025 Edition

    • neilsberg.com
    csv, json
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). states in U.S. Ranked by Other Race Population // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lists/states-in-united-states-by-other-race-population/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Other Race Population, Other Race Population as Percent of Total Population of states in United States, Other Race Population as Percent of Total Other Race Population of United States
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the racial categories identified by the U.S. Census Bureau. Based on the required racial category classification, we calculated the rank. For geographies with no population reported for the chosen race, we did not assign a rank and excluded them from the list. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories and do not rely on any ethnicity classification, unless explicitly required.For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 51 states in the United States by Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each states over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2018-2022 American Community Survey 5-Year Estimates
    • 2017-2021 American Community Survey 5-Year Estimates
    • 2016-2020 American Community Survey 5-Year Estimates
    • 2015-2019 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by Other Race Population: This column displays the rank of states in the United States by their Some Other Race (SOR) population, using the most recent ACS data available.
    • states: The states for which the rank is shown in the previous column.
    • Other Race Population: The Other Race population of the states is shown in this column.
    • % of Total states Population: This shows what percentage of the total states population identifies as Other Race. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total U.S. Other Race Population: This tells us how much of the entire United States Other Race population lives in that states. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: TThis column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  3. Statewise Quality of Life Index 2024

    • kaggle.com
    zip
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hassan (2024). Statewise Quality of Life Index 2024 [Dataset]. https://www.kaggle.com/datasets/msjahid/statewise-quality-of-life-index-2024
    Explore at:
    zip(1100 bytes)Available download formats
    Dataset updated
    Jun 6, 2024
    Authors
    Hassan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Quality of Life by State 2024

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1937611%2F82267b1a15f8669ec2a072972bebccb5%2Fquality-of-life-by-us-state.png?generation=1717697280376438&alt=media" alt="">

    This dataset provides insights into the quality of life across different states in the United States for the year 2024. Quality of life, encompassing aspects like comfort, health, and happiness, is evaluated through various metrics including affordability, economy, education, and safety. Dive into this dataset to understand how different states fare in terms of overall quality of life and its individual components.

    Columns Description

    • State: The name of the U.S. state.
    • QualityOfLifeTotalScore: The total score representing the overall quality of life for the respective state. This score is calculated based on various quality of life metrics.
    • QualityOfLifeQualityOfLife: The score representing the quality of life aspect for the respective state. This aspect may include subjective factors related to happiness, satisfaction, and overall well-being. Higher scores may indicate a higher level of subjective well-being, happiness, or overall satisfaction among residents. Lower scores could suggest lower levels of subjective well-being.
    • QualityOfLifeAffordability: The score representing the affordability aspect of the quality of life for the respective state. This aspect evaluates factors such as cost of living, housing affordability, and income levels. Higher scores typically indicate greater affordability of housing, cost of living, and basic necessities. Lower scores may suggest that these essentials are less accessible or more expensive for residents.
    • QualityOfLifeEconomy: The score representing the economic aspect of the quality of life for the respective state. This aspect assesses factors such as employment opportunities, economic growth, and income distribution. Higher scores may reflect a stronger economy with more job opportunities, higher incomes, and lower levels of poverty. Lower scores might indicate economic challenges such as unemployment or income inequality.
    • QualityOfLifeEducationAndHealth: The score representing the education and health aspect of the quality of life for the respective state. This aspect considers factors such as access to quality education, healthcare facilities, and overall public health indicators. Higher scores generally signify better access to quality education, healthcare services, and overall public health. Lower scores may indicate deficiencies in these areas, such as limited access to healthcare or lower educational attainment levels.
    • QualityOfLifeSafety: The score representing the safety aspect of the quality of life for the respective state. This aspect evaluates factors such as crime rates, public safety measures, and community well-being initiatives. Higher scores suggest lower crime rates, better community safety, and a higher sense of security among residents. Lower scores may indicate higher crime rates or concerns about safety.

    These descriptions provide an overview of what each column represents and the specific aspects of quality of life they assess for each U.S. state.

  4. US County Demographics

    • kaggle.com
    zip
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US County Demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-demographics/data
    Explore at:
    zip(7779793 bytes)Available download formats
    Dataset updated
    Jan 24, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US County Demographics

    Social, Health, and Economic Indicators

    By Danny [source]

    About this dataset

    This dataset contains US county-level demographic data from 2016, giving insight into the health and economic conditions of counties in the United States. Aggregated and filtered from various sources such as the US Census Small Area Income and Poverty Estimates (SAIPE) Program, American Community Survey, CDC National Center for Health Statistics, and more, this comprehensive dataset provides information on population as well as desert population for each county. Additionally, data is split between metropolitan and nonmetropolitan areas according to the Office of Management and Budget's 2013 classification scheme. Valuable information pertaining to infant mortality rates and total population are also included in this detailed set of data. Use this dataset to gain a better understanding of one of our nation's most essential regions

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Look at the information within the 'About this Dataset' section to have an understanding of what data sources were used to create this dataset as well as any transformations that may have been done while creating it.
    • Familiarize yourself with the columns provided in the data set to understand what information is available for each county such as total population (totpop), parental education level (educationLvl), median household income (medianIncome), etc.,
    • Use a combination of filtering and sorting techniques to narrow down results and focus in on more specific county demographics that you are looking for such as total households living below poverty line by state or median household income per capita between two counties etc.,
    • Keep in mind any additional transformations/simplifications/aggregations done during step 2 when using your data for analysis. For example, if certain variables were pivoted during step two from being rows into columns because it was easier to work with multiple years of income levels by having them all consolidated into one column then be aware that some states may not appear in all records due to those transformations being applied differently between regions which could result in missing values or other inconsistencies when doing downstream analysis on your selected variables.
    • Utilize resources such as Wikipedia and government census estimates if you need more detailed information surrounding these demographic characteristics beyond what's available within our current dataset – these can be helpful when conducting further research outside of solely relying on our provided spreadsheet values alone!

    Research Ideas

    • Creating a US county-level heat map of infant mortality rates, offering insight into which areas are most at risk for poor health outcomes.
    • Generating predictive models from the population data to anticipate and prepare for future population trends in different states or regions.
    • Developing an interactive web-based tool for school districts to explore potential impacts of student mobility on their area's population stability and diversity

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: Food Desert.csv | Column name | Description | |:--------------------|:----------------------------------------------------------------------------------| | year | The year the data was collected. (Integer) | | fips | The Federal Information Processing Standard (FIPS) code for the county. (Integer) | | state_fips | The FIPS code for the state. (Integer) | | county_fips | The FIPS code for the county. (Integer)...

  5. N

    United States Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/65ba9f6f-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of United States by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of United States across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 50.5% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the United States is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Gender. You can refer the same here

  6. International Datasets

    • kaggle.com
    zip
    Updated Jun 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2017). International Datasets [Dataset]. https://www.kaggle.com/census/international-data
    Explore at:
    zip(853301245 bytes)Available download formats
    Dataset updated
    Jun 27, 2017
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Description

    Content

    The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.

    The full documentation is available here. For basic field details, please see the data dictionary.

    Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000.

    Acknowledgements

    This dataset was created by the United States Census Bureau.

    Inspiration

    Which countries have made the largest improvements in life expectancy? Based on current trends, how long will it take each country to catch up to today’s best performers?

    Use this dataset with BigQuery

    You can use Kernels to analyze, share, and discuss this data on Kaggle, but if you’re looking for real-time updates and bigger data, check out the data on BigQuery, too: https://cloud.google.com/bigquery/public-data/international-census.

  7. Population Health (BRFSS: HRQOL)

    • kaggle.com
    zip
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Population Health (BRFSS: HRQOL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlock-population-health-needs-with-brfss-hrqol
    Explore at:
    zip(2247473 bytes)Available download formats
    Dataset updated
    Dec 14, 2022
    Authors
    The Devastator
    Description

    Population Health (BRFSS: HRQOL)

    Examining Trends, Disparities and Determinants of Health in the US Population

    By Health [source]

    About this dataset

    The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.

    The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.

    Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.

    Research Ideas

    • Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
    • Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
    • Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...

  8. Counties

    • catalog.data.gov
    • datasets.ai
    • +5more
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (USCB) (Point of Contact) (2025). Counties [Dataset]. https://catalog.data.gov/dataset/counties2
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Counties dataset was updated on October 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529015

  9. U

    United States US: Urban Population Growth

    • ceicdata.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: Urban Population Growth [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-urban-population-growth
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Urban Population Growth data was reported at 0.952 % in 2017. This records a decrease from the previous number of 0.968 % for 2016. United States US: Urban Population Growth data is updated yearly, averaging 1.152 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 2.449 % in 1960 and a record low of 0.927 % in 1974. United States US: Urban Population Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects.; ; World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.; Weighted average;

  10. d

    EnviroAtlas - Household income metrics related to quality of life by Census...

    • catalog.data.gov
    Updated Jul 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Household income metrics related to quality of life by Census Block Group for the Conterminous United States [Dataset]. https://catalog.data.gov/dataset/enviroatlas-household-income-metrics-related-to-quality-of-life-by-census-block-group-for-the-c4
    Explore at:
    Dataset updated
    Jul 26, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    Contiguous United States, United States
    Description

    This EnviroAtlas dataset portrays the percentage of population within different household income ranges for each Census Block Group (CBG), a threshold estimated to be an optimal household income for quality of life, and the percentage of households with income below this threshold. Data were compiled from the Census ACS (American Community Survey) 5-year Summary Data (2008-2012). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. N

    Live Oak, TX Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Live Oak, TX Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ecc95c8-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Live Oak, Texas
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Live Oak population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Live Oak across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Live Oak was 15,953, a 0.52% increase year-by-year from 2021. Previously, in 2021, Live Oak population was 15,870, an increase of 0.32% compared to a population of 15,819 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Live Oak increased by 6,390. In this period, the peak population was 16,499 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Live Oak is shown in this column.
    • Year on Year Change: This column displays the change in Live Oak population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Live Oak Population by Year. You can refer the same here

  12. Reddit users in the United States 2019-2028

    • statista.com
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Reddit users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.

  13. Social media users in the United States 2020-2029

    • statista.com
    • abripper.com
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Social media users in the United States 2020-2029 [Dataset]. https://www.statista.com/statistics/278409/number-of-social-network-users-in-the-united-states/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of social media users in the United States was forecast to continuously increase between 2024 and 2029 by in total 26 million users (+8.55 percent). After the ninth consecutive increasing year, the social media user base is estimated to reach 330.07 million users and therefore a new peak in 2029. Notably, the number of social media users of was continuously increasing over the past years.The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  14. US Industry Data by State, by Industry

    • kaggle.com
    zip
    Updated Jan 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Industry Data by State, by Industry [Dataset]. https://www.kaggle.com/datasets/thedevastator/2012-us-industry-data-by-state-by-industry
    Explore at:
    zip(53066 bytes)Available download formats
    Dataset updated
    Jan 15, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Industry Data by State, by Industry

    Number of Establishments, Sales, Payroll, and Employees

    By Gary Hoover [source]

    About this dataset

    This data set provides a detailed look into the US economy. It includes information on establishments and nonemployer businesses, as well as sales revenue, payrolls, and the number of employees. Gleaned from the Economic Census done every five years, this data is a valuable resource to anyone curious about where the nation was economically at the time. With columns including geographic area name, North American Industry Classification System (NAICS) codes for industries, descriptions of those codes meaning of operation or tax status, and annual payroll, this information-rich dataset contains all you need to track economic trends over time. Whether you’re a researcher studying industry patterns or an entrepreneur looking for market insight — this dataset has what you’re looking for!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides detailed US industry data by state, including the number of establishments, value of sales, payroll, and number of employees. All the data is based on the North American Industry Classification System (NAICS) code for each specific industry. This will allow you to easily analyze and compare industries across different states or regions.

    Research Ideas

    • Analyzing the economic impact of a new business or industry trends in different states: Comparing the change in the number of establishments, payroll, and employees over time can give insight into how a state is affected by a new industry trend or introduction of a new service or product.
    • Estimating customer sales potential for businesses: This dataset can be used to estimate the potential customer base for businesses in different geographic areas. By analyzing total business done by non-employers in an area along with its estimated population can help estimate how much overall sales potential exists for a given region.
    • Tracking competitor performance: By looking at shipments, receipts, and value of business done across industries in different regions or even cities, companies can track their competitors’ performance and compare it to their own to better assess their strategies going forward

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: 2012 Industry Data by Industry and State.csv | Column name | Description | |:----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------| | Geographic area name | The name of the geographic area the data is for. (String) | | NAICS code | The North American Industry Classification System (NAICS) code for the industry. (String) | | Meaning of NAICS code | The description of the NAICS code. (String) | | Meaning of Type of operation or tax status code | The description of the type of operation or tax status code. (String) ...

  15. t

    RESIDENCE 1 YEAR AGO - DP02_PIN_P - Dataset - CKAN

    • portal.tad3.org
    Updated Jul 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). RESIDENCE 1 YEAR AGO - DP02_PIN_P - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/residence-1-year-ago-dp02_pin_p
    Explore at:
    Dataset updated
    Jul 23, 2023
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES RESIDENCE 1 YEAR AGO - DP02 Universe - Population 1 year and over Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 For the ACS, people who had moved from another residence in the United States or Puerto Rico 1 year earlier were asked to report the exact address (number and street name); the name of the city, town, or post office; the name of the U.S. county or municipio in Puerto Rico; state or Puerto Rico; and the ZIP Code where they lived 1 year ago. People living outside the United States and Puerto Rico were asked to report the name of the foreign country or U.S. Island Area where they were living 1 year ago.

  16. g

    Census of Population and Housing, 2000 [United States]: Summary File 4,...

    • search.gesis.org
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2021). Census of Population and Housing, 2000 [United States]: Summary File 4, District of Columbia - Version 1 [Dataset]. http://doi.org/10.3886/ICPSR13520.v1
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    Authors
    United States Department of Commerce. Bureau of the Census
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457436https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457436

    Area covered
    Washington, United States
    Description

    Abstract (en): Summary File 4 (SF 4) from the United States 2000 Census contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals: urban and rural, households and families, marital status, grandparents as caregivers, language and ability to speak English, ancestry, place of birth, citizenship status, year of entry, migration, place of work, journey to work (commuting), school enrollment and educational attainment, veteran status, disability, employment status, industry, occupation, class of worker, income, and poverty status. Housing items include basic housing totals: urban and rural, number of rooms, number of bedrooms, year moved into unit, household size and occupants per room, units in structure, year structure built, heating fuel, telephone service, plumbing and kitchen facilities, vehicles available, value of home, monthly rent, and shelter costs. In Summary File 4, the sample data are presented in 213 population tables (matrices) and 110 housing tables, identified with "PCT" and "HCT" respectively. Each table is iterated for 336 population groups: the total population, 132 race groups, 78 American Indian and Alaska Native tribe categories (reflecting 39 individual tribes), 39 Hispanic or Latino groups, and 86 ancestry groups. The presentation of SF4 tables for any of the 336 population groups is subject to a population threshold. That is, if there are fewer than 100 people (100-percent count) in a specific population group in a specific geographic area, and there are fewer than 50 unweighted cases, their population and housing characteristics data are not available for that geographic area in SF4. For the ancestry iterations, only the 50 unweighted cases test can be performed. See Appendix H: Characteristic Iterations, for a complete list of characteristic iterations. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.. All persons in housing units in the District of Columbia in 2000. 2013-05-25 Multiple Census data file segments were repackaged for distribution into a single zip archive per dataset. No changes were made to the data or documentation.2006-01-12 All files were removed from dataset 342 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 341 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 340 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 339 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 338 and flagged as study-level files, so that they will accompany all downloads. Because of the number of files per state in Summary File 4, ICPSR has given each state its own ICPSR study number in the range ICPSR 13512-13563. The study number for the national file is 13570. Data for each state are being released as they become available.The data are provided in 38 segments (files) per iteration. These segments are PCT1-PCT4, PCT5-PCT16, PCT17-PCT34, PCT35-PCT37, PCT38-PCT45, PCT46-PCT49, PCT50-PCT61, PCT62-PCT67, PCT68-PCT71, PCT72-PCT76, PCT77-PCT78, PCT79-PCT81, PCT82-PCT84, PCT85-PCT86 (partial), PCT86 (partial), PCT87-PCT103, PCT104-PCT120, PCT121-PCT131, PCT132-PCT137, PCT138-PCT143, PCT144, PCT145-PCT150, PCT151-PCT156, PCT157-PCT162, PCT163-PCT208, PCT209-PCT213, HCT1-HCT9, HCT10-HCT18, HCT19-HCT22, HCT23-HCT25, HCT26-HCT29, HCT30-HCT39, HCT40-HCT55, HCT56-HCT61, HCT62-HCT70, HCT71-HCT81, HCT82-HCT86, and HCT87-HCT110. The iterations are Parts 1-336, the Geographic Header File is Part 337. The Geographic Header File is in fixed-format ASCII and the table files are in comma-delimited ASCII format. A merged iteration will have 7,963 variables.For Parts 251-336, the part names contain numbers within parentheses that refer to the Ancestry Code List (page G1 of the codebook).

  17. The Impact of COVID-19 on Veterans in America

    • kaggle.com
    zip
    Updated Nov 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). The Impact of COVID-19 on Veterans in America [Dataset]. https://www.kaggle.com/datasets/thedevastator/the-impact-of-covid-19-on-veterans-in-america/suggestions
    Explore at:
    zip(10110385 bytes)Available download formats
    Dataset updated
    Nov 6, 2022
    Authors
    The Devastator
    Area covered
    United States
    Description

    The Impact of COVID-19 on Veterans in America

    County-Level Data on Veteran Cases and Proportion of Population

    About this dataset

    Welcome to the Kaggle dataset on The Impact of COVID-19 on Veterans in the United States! This dataset contains data on confirmed cases of COVID-19 in counties across the United States, as well as information on the percentage of each county's population that are veterans. With this dataset, you can investigate how the pandemic has impacted veterans specifically, and compare veteran case rates to the general population. How do veteran cases differ across age groups? Are there any geographical patterns? What can we learn about risk factors for COVID-19 among veterans? Download the dataset and explore for yourself today!

    How to use the dataset

    This dataset includes information on the number of confirmed cases of COVID-19 by county, as well as the percentage of the population in each county that are veterans. This data can be used to examine the relationship between veteran cases and the proportion of population who are veterans.

    To do this, simply look at the 'CASES' and 'VET_CASES' columns for each county. The 'CASES' column represents the total number of confirmed cases of COVID-19 in that county, while the 'VET_CASES' column represents the number of confirmed cases among veterans. To compare these two values, simply divide 'VET_CASES' by 'CASES'. This will give you a ratio of veteran cases to total cases for each county.

    You can then use this ratio to compare counties and see which ones have a higher proportion of veteran cases. This data can be used to help understand where more outreach may be needed to support veterans during this pandemic

    Research Ideas

    • Find the correlation between the number of veterans in a county and the number of confirmed cases of COVID-19.
    • Find the counties with the highest percentage of veterans and the lowest number of confirmed cases of COVID-19.
    • Predict how many veterans in a county will contract COVID-19 based on the percentage of veterans in the population

    Columns

    File: CountyVACOVID.csv | Column name | Description | |:---------------------------|:-----------------------------------------------------------------------------------------------------------------------| | FIPS | Federal Information Processing Standards code that uniquely identifies counties within the USA. (String) | | COUNTY | County name. (String) | | STATE | State name. (String) | | POP | County population. (Integer) | | VETS | Number of veterans in the county. (Integer) | | VET_PERCENT | Percentage of the population that are veterans. (Float) | | CASES | Number of confirmed cases of COVID-19 in the county. (Integer) | | YESTER_CASES | Number of confirmed cases of COVID-19 in the county from the previous day. (Integer) | | VET_CASES | Number of confirmed cases of COVID-19 in veterans in the county. (Integer) | | VET_YESTER | Number of confirmed cases of COVID-19 in veterans in the county from the previous day. (Integer) | | LOWER_Hospitalizations | Lower bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | UPPER_Hospitalizations | Upper bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | DATE | Date of data. (Date) |

    File: VAChart.csv | Column name | Description | |:------------------------|:----------------------------------------------------------------------------------| | DATE | Date of data. (Date) | | US Cases | The number of confirmed cases of COVID-19 in the United States. (Integer) | | **New US ...

  18. NCHS - Natality Measures for Females by Hispanic Origin Subgroup: United...

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Mar 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). NCHS - Natality Measures for Females by Hispanic Origin Subgroup: United States [Dataset]. https://catalog.data.gov/dataset/nchs-natality-measures-for-females-by-hispanic-origin-subgroup-united-states
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset includes live births, birth rates, and fertility rates by Hispanic origin of mother in the United States since 1989. National data on births by Hispanic origin exclude data for Louisiana, New Hampshire, and Oklahoma in 1989; New Hampshire and Oklahoma in 1990; and New Hampshire in 1991 and 1992. Birth and fertility rates for the Central and South American population includes other and unknown Hispanic. Information on reporting Hispanic origin is detailed in the Technical Appendix for the 1999 public-use natality data file (see ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/Nat1999doc.pdf). SOURCES NCHS, National Vital Statistics System, birth data (see https://www.cdc.gov/nchs/births.htm); public-use data files (see https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES National Office of Vital Statistics. Vital Statistics of the United States, 1950, Volume I. 1954. Available from: https://www.cdc.gov/nchs/data/vsus/vsus_1950_1.pdf. Hetzel AM. U.S. vital statistics system: major activities and developments, 1950-95. National Center for Health Statistics. 1997. Available from: https://www.cdc.gov/nchs/data/misc/usvss.pdf. National Center for Health Statistics. Vital Statistics of the United States, 1967, Volume I–Natality. 1969. Available from: https://www.cdc.gov/nchs/data/vsus/nat67_1.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final data for 2016. National Vital Statistics Reports; vol 67 no 1. Hyattsville, MD: National Center for Health Statistics. 2018. Available from: https://www.cdc.gov/nvsr/nvsr67/nvsr67_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Births: Final data for 2018. National vital statistics reports; vol 68 no 13. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_13.pdf.

  19. N

    German Population Distribution Data - United States States (2019-2023)

    • neilsberg.com
    csv, json
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). German Population Distribution Data - United States States (2019-2023) [Dataset]. https://www.neilsberg.com/insights/lists/german-population-in-united-states-by-state/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    German Population Count, German Population Percentage, German Population Share of United States
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the origins / ancestries identified by the U.S. Census Bureau. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified origins / ancestries and do not rely on any ethnicity classification, unless explicitly required. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 50 states in the United States by German population, as estimated by the United States Census Bureau. It also highlights population changes in each state over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2014-2018 American Community Survey 5-Year Estimates
    • 2009-2013 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by German Population: This column displays the rank of state in the United States by their German population, using the most recent ACS data available.
    • State: The State for which the rank is shown in the previous column.
    • German Population: The German population of the state is shown in this column.
    • % of Total State Population: This shows what percentage of the total state population identifies as German. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total United States German Population: This tells us how much of the entire United States German population lives in that state. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: This column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  20. a

    ACS Median Household Income Variables - Boundaries

    • umn.hub.arcgis.com
    Updated Apr 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Minnesota (2021). ACS Median Household Income Variables - Boundaries [Dataset]. https://umn.hub.arcgis.com/datasets/dab218ee6f9f4421a2c96477abee6f30
    Explore at:
    Dataset updated
    Apr 25, 2021
    Dataset authored and provided by
    University of Minnesota
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 10, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2023). United States Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f93a357-3d85-11ee-9abe-0aa64bf2eeb2/

United States Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis

Explore at:
csv, jsonAvailable download formats
Dataset updated
Sep 18, 2023
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
United States
Variables measured
Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
Measurement technique
The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

Key observations

In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

Content

When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

Data Coverage:

  • From 2000 to 2022

Variables / Data Columns

  • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
  • Population: The population for the specific year for the United States is shown in this column.
  • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
  • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu