Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing Nigeria poverty rate by year from 1985 to 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset focuses on the social protection policy responses to poverty in Nigeria. It provides comprehensive information on various aspects of living conditions, demographics, and socio-economic factors of 204 respondents from the Bwari, Kuje, and Gwagwalada Area Councils in Abuja, Nigeria. The data was collected and analysed using SPSS, and descriptive statistics were used to explore the variables of interest. The dataset has been extrapolated to Excel for easy accessibility. The dataset includes descriptive results on several key aspects. It covers the education level of the respondents, the distribution of household heads among them, the types of dwellings they live in, the health conditions within their households, access to medical care, accommodation types, and waste distribution. The dataset also provides key variables of insights into the poverty levels and perceptions among the respondents. The "MPI" (Multidimensional Poverty Index) measures multidimensional poverty, while "povertylevel" indicates the poverty level of the respondents. In addition to the key variables, the dataset includes additional rows that highlight different combinations of variables related to living conditions. These combinations include dwelling types, sources of tap water, sanitation facilities, lighting sources, access to radio, television, and telephone, as well as information regarding meal skipping, healthcare access, and employment status. The dataset also includes socio-demographic characteristics that were considered in the study. These characteristics include sex, age, education level, employment income, household head, type of dwelling, waste distribution, and source of energy.
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
The Nigerian Journal of Economic and Social Studies,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Poverty Headcount Ratio at National Poverty Lines: Rural: % of Rural Population data was reported at 52.800 % in 2009. This records a decrease from the previous number of 56.600 % for 2003. Nigeria NG: Poverty Headcount Ratio at National Poverty Lines: Rural: % of Rural Population data is updated yearly, averaging 54.700 % from Dec 2003 (Median) to 2009, with 2 observations. The data reached an all-time high of 56.600 % in 2003 and a record low of 52.800 % in 2009. Nigeria NG: Poverty Headcount Ratio at National Poverty Lines: Rural: % of Rural Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank: Poverty. Rural poverty headcount ratio is the percentage of the rural population living below the national poverty lines.; ; World Bank, Global Poverty Working Group. Data are compiled from official government sources or are computed by World Bank staff using national (i.e. country–specific) poverty lines.; ; This series only includes estimates that to the best of our knowledge are reasonably comparable over time for a country. Due to differences in estimation methodologies and poverty lines, estimates should not be compared across countries.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is created based on a Nigeria's 1km Poverty map provided by worldpop.org. Data have been aggregated to local government areas level.
In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.
DATASET: Alpha version 2010-11 estimates of proportion of people per grid square living in poverty, as defined by 1.25adayand1.25adayand2 a day thresholds, and associated uncertainty metrics. REGION: Africa SPATIAL RESOLUTION: 0.00833333 decimal degrees (approx 1km at the equator) PROJECTION: Geographic, WGS84 UNITS: Proportion of residents living on 1.25and1.25and2 a day (poverty dataset); 95% credible interval (uncertainty dataset) MAPPING APPROACH: Bayesian model-based geostatistics in combination with high resolution gridded spatial covariates applied to GPS-located household survey data on poverty from the LSMS program. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Examples - nga10povcons125.tif = Nigeria (nga) consumption-based poverty map for 2010 showing proportion of residents living on less than $1.25 a day. nga10povcons125-uncert.tif = uncertainty dataset showing 95% credible intervals. DATE OF PRODUCTION: Nov 2013 CITATION: Tatem AJ, Gething PW, Bhatt S, Weiss D and Pezzulo C (2013) Pilot high resolution poverty maps, University of Southampton/Oxford
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 43.000 % in 2009. This records an increase from the previous number of 40.100 % for 2003. Nigeria NG: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 43.000 % from Dec 1985 (Median) to 2009, with 5 observations. The data reached an all-time high of 51.900 % in 1996 and a record low of 38.700 % in 1985. Nigeria NG: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal covering the following topics which also exist as individual datasets on HDX: Agriculture and Rural Development, Aid Effectiveness, Economy and Growth, Education, Energy and Mining, Environment, Financial Sector, Health, Infrastructure, Social Protection and Labor, Poverty, Private Sector, Public Sector, Science and Technology, Social Development, Urban Development, Gender, Millenium development goals, Climate Change, External Debt, Trade.
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
Proceedings of the Nigerian Economic Society Annual Conference on Poverty Alleviation in Nigeria Kaduna
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Income Share Held by Lowest 20% data was reported at 5.400 % in 2009. This records a decrease from the previous number of 5.700 % for 2003. Nigeria NG: Income Share Held by Lowest 20% data is updated yearly, averaging 5.400 % from Dec 1985 (Median) to 2009, with 5 observations. The data reached an all-time high of 6.000 % in 1985 and a record low of 3.700 % in 1996. Nigeria NG: Income Share Held by Lowest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
Nigerian Economic Society. Ibadan.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Poverty Headcount Ratio at National Poverty Lines: % of Population data was reported at 46.000 % in 2009. This records a decrease from the previous number of 48.400 % for 2003. Nigeria NG: Poverty Headcount Ratio at National Poverty Lines: % of Population data is updated yearly, averaging 47.200 % from Dec 2003 (Median) to 2009, with 2 observations. The data reached an all-time high of 48.400 % in 2003 and a record low of 46.000 % in 2009. Nigeria NG: Poverty Headcount Ratio at National Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Poverty. National poverty headcount ratio is the percentage of the population living below the national poverty lines. National estimates are based on population-weighted subgroup estimates from household surveys.; ; World Bank, Global Poverty Working Group. Data are compiled from official government sources or are computed by World Bank staff using national (i.e. country–specific) poverty lines.; ; This series only includes estimates that to the best of our knowledge are reasonably comparable over time for a country. Due to differences in estimation methodologies and poverty lines, estimates should not be compared across countries.
The main objectives of the 2018/19 NLSS are: i) to provide critical information for production of a wide range of socio-economic and demographic indicators, including for benchmarking and monitoring of SDGs; ii) to monitor progress in population’s welfare; iii) to provide statistical evidence and measure the impact on households of current and anticipated government policies. In addition, the 2018/19 NLSS could be utilized to improve other non-survey statistical information, e.g. to determine and calibrate the contribution of final consumption expenditures of households to GDP; to update the weights and determine the basket for the national Consumer Price Index (CPI); to improve the methodology and dissemination of micro-economic and welfare statistics in Nigeria.
The 2018/19 NLSS collected a comprehensive and diverse set of socio-economic and demographic data pertaining to the basic needs and conditions under which households live on a day to day basis. The 2018/19 NLSS questionnaire includes wide-ranging modules, covering demographic indicators, education, health, labour, expenditures on food and non-food goods, non-farm enterprises, household assets and durables, access to safety nets, housing conditions, economic shocks, exposure to crime and farm production indicators.
National coverage
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
The 2018/19 NLSS sample is designed to provide representative estimates for the 36 states and the Federal Capital Territory (FCT), Abuja. By extension. The sample is also representative at the national and zonal levels. Although the sample is not explicitly stratified by urban and rural areas, it is possible to obtain urban and rural estimates from the NLSS data at the national level. At all stages, the relative proportion of urban and rural EAs as has been maintained.
Before designing the sample for the 2018/19 NLSS, the results from the 2009/10 HNLSS were analysed to extract the sampling properties (variance, design effect, etc.) and estimate the required sample size to reach a desired precision for poverty estimates in the 2018/19 NLSS.
EA SELECTION: The sampling frame for the 2018/19 NLSS was based on the national master sample developed by the NBS, referred to as the NISH2 (Nigeria Integrated Survey of Households 2). This master sample was based on the enumeration areas (EAs) defined for the 2006 Nigeria Census Housing and Population conducted by National Population Commission (NPopC). The NISH2 was developed by the NBS to use as a frame for surveys with state-level domains. NISH2 EAs were drawn from another master sample that NBS developed for surveys with LGA-level domains (referred to as the “LGA master sample”). The NISH2 contains 200 EAs per state composed of 20 replicates of 10 sample EAs for each state, selected systematically from the full LGA master sample. Since the 2018/19 NLSS required domains at the state-level, the NISH2 served as the sampling frame for the survey.
Since the NISH2 is composed of state-level replicates of 10 sample EAs, a total of 6 replicates were selected from the NISH2 for each state to provide a total sample of 60 EAs per state. The 6 replicates selected for the 2018/19 NLSS in each state were selected using random systematic sampling. This sampling procedure provides a similar distribution of the sample EAs within each state as if one systematic sample of 60 EAs had been selected directly from the census frame of EAs.
A fresh listing of households was conducted in the EAs selected for the 2018/19 NLSS. Throughout the course of the listing, 139 of the selected EAs (or about 6%) were not able to be listed by the field teams. The primary reason the teams were not able to conduct the listing in these EAs was due to security issues in the country. The fieldwork period of the 2018/19 NLSS saw events related to the insurgency in the north east of the country, clashes between farmers and herdsman, and roving groups of bandits. These events made it impossible for the interviewers to visit the EAs in the villages and areas affected by these conflict events. In addition to security issues, some EAs had been demolished or abandoned since the 2006 census was conducted. In order to not compromise the sample size and thus the statistical power of the estimates, it was decided to replace these 139 EAs. Additional EAs from the same state and sector were randomly selected from the remaining NISH2 EAs to replace each EA that could not be listed by the field teams. This necessary exclusion of conflict affected areas implies that the sample is representative of areas of Nigeria that were accessible during the 2018/19 NLSS fieldwork period. The sample will not reflect conditions in areas that were undergoing conflict at that time. This compromise was necessary to ensure the safety of interviewers.
HOUSEHOLD SELECTION: Following the listing, the 10 households to be interviewed were selected from the listed households. These households were selected systemically after sorting by the order in which the households were listed. This systematic sampling helped to ensure that the selected households were well dispersed across the EA and thereby limit the potential for clustering of the selected households within an EA.
Occasionally, interviewers would encounter selected households that were not able to be interviewed (e.g. due to migration, refusal, etc.). In order to preserve the sample size and statistical power, households that could not be interviewed were replaced with an additional randomly selected household from the EA. Replacement households had to be requested by the field teams on a case-by-case basis and the replacement household was sent by the CAPI managers from NBS headquarters. Interviewers were required to submit a record for each household that was replaced, and justification given for their replacement. These replaced households are included in the disseminated data. However, replacements were relatively rare with only 2% of sampled households not able to be interviewed and replaced.
Although a sample was initially drawn for Borno state, the ongoing insurgency in the state presented severe challenges in conducting the survey there. The situation in the state made it impossible for the field teams to reach large areas of the state without compromising their safety. Given this limitation it was clear that a representative sample for Borno was not possible. However, it was decided to proceed with conducting the survey in areas that the teams could access in order to collect some information on the parts of the state that were accessible.
The limited area that field staff could safely operate in in Borno necessitated an alternative sample selection process from the other states. The EA selection occurred in several stages. Initially, an attempt was made to limit the frame to selected LGAs that were considered accessible. However, after selection of the EAs from the identified LGAs, it was reported by the NBS listing teams that a large share of the selected EAs were not safe for them to visit. Therefore, an alternative approach was adopted that would better ensure the safety of the field team but compromise further the representativeness of the sample. First, the list of 788 EAs in the LGA master sample for Borno were reviewed by NBS staff in Borno and the EAs they deemed accessible were identified. The team identified 359 EAs (46%) that were accessible. These 359 EAs served as the frame for the Borno sample and 60 EAs were randomly selected from this frame. However, throughout the course of the NLSS fieldwork, additional insurgency related events occurred which resulted in 7 of the 60 EAs being inaccessible when they were to be visited. Unlike for the main sample, these EAs were not replaced. Therefore, 53 EAs were ultimately covered from the Borno sample. The listing and household selection process that followed was the same as for the rest of the states.
Computer Assisted Personal Interview [capi]
Two sets of questionnaires – household and community – were used to collect information in the NLSS2018/19. The Household Questionnaire was administered to all households in the sample. The Community Questionnaire was administered to the community to collect information on the socio-economic indicators of the enumeration areas where the sample households reside.
Household Questionnaire: The Household Questionnaire provides information on demographics; education; health; labour; food and non-food expenditure; household nonfarm income-generating activities; food security and shocks; safety nets; housing conditions; assets; information and communication technology; agriculture and land tenure; and other sources of household income.
Community Questionnaire: The Community Questionnaire solicits information on access to transported and infrastructure; community organizations; resource management; changes in the community; key events; community needs, actions and achievements; and local retail price information.
CAPI: The 2018/19 NLSS was conducted using the Survey Solutions Computer Assisted Person Interview (CAPI) platform. The Survey Solutions software was developed and maintained by the Development Economics Data Group (DECDG) at the World Bank. Each interviewer and supervisor was given a tablet
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data was reported at 92.100 % in 2009. This records a decrease from the previous number of 94.100 % for 2003. Nigeria NG: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data is updated yearly, averaging 92.800 % from Dec 1985 (Median) to 2009, with 5 observations. The data reached an all-time high of 94.100 % in 2003 and a record low of 92.100 % in 2009. Nigeria NG: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Poverty. Poverty headcount ratio at $5.50 a day is the percentage of the population living on less than $5.50 a day at 2011 international prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. The aggregated numbers for low- and middle-income countries correspond to the totals of 6 regions in PovcalNet, which include low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia). See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
African Educational Research Network and the African Symposium. (USA).
This project developed data, information and knowledge on the spatial distribution of poverty in eight developing countries. The eight case studies included poverty and food security maps, the data sets, preprints of journal articles for a special issue of Food Policy, standardized geospatial metadata and a browse graphic showing key maps. The different case studies use cutting-edge poverty mapping techniques such as small area estimation. The countries included in the project were Bangladesh, Ecuador, Kenya, Malawi, Mexico, Nigeria, Sri Lanka and Vietnam. The data set also includes data for Honduras. The case studies were published here: https://www.sciencedirect.com/journal/food-policy/vol/30/issue/5
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset measures food availability and access for 76 low- and middle-income countries. The dataset includes annual country-level data on area, yield, production, nonfood use, trade, and consumption for grains and root and tuber crops (combined as R&T in the documentation tables), food aid, total value of imports and exports, gross domestic product, and population compiled from a variety of sources. This dataset is the basis for the International Food Security Assessment 2015-2025 released in June 2015. This annual ERS report projects food availability and access for 76 low- and middle-income countries over a 10-year period. Countries (Spatial Description, continued): Democratic Republic of the Congo, Ecuador, Egypt, El Salvador, Eritrea, Ethiopia, Gambia, Georgia, Ghana, Guatemala, Guinea, Guinea-Bissau, Haiti, Honduras, India, Indonesia, Jamaica, Kenya, Kyrgyzstan, Laos, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Moldova, Mongolia, Morocco, Mozambique, Namibia, Nepal, Nicaragua, Niger, Nigeria, North Korea, Pakistan, Peru, Philippines, Rwanda, Senegal, Sierra Leone, Somalia, Sri Lanka, Sudan, Swaziland, Tajikistan, Tanzania, Togo, Tunisia, Turkmenistan, Uganda, Uzbekistan, Vietnam, Yemen, Zambia, and Zimbabwe. Resources in this dataset:Resource Title: CSV File for all years and all countries. File Name: gfa25.csvResource Title: International Food Security country data. File Name: GrainDemandProduction.xlsxResource Description: Excel files of individual country data. Please note that these files provide the data in a different layout from the CSV file. This version of the data files was updated 9-2-2021
More up-to-date files may be found at: https://www.ers.usda.gov/data-products/international-food-security.aspx
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
Mbuk Mboho and Herbert Batta (Eds.). The Companion to Communication and Development Issues: Essays in Honour of Prof. Des Wilson. Uyo: Department of Communication Arts, University of Uyo
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
Journal of Research in Education and Society.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing Nigeria poverty rate by year from 1985 to 2018.