Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.
This data about nola.gov provides a window into how people are interacting with the the City of New Orleans online. The data comes from a unified Google Analytics account for New Orleans. We do not track individuals and we anonymize the IP addresses of all visitors.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The data collected is about the 100 most popular K-Dramas in MyDramaList, the most popular website for K-Dramas worldwide, at 01/30/2025. This dataset is for educational purposes only.
The columns include the drama name, the year, the rating and the watchers at the website, the genres, the tags and the main actors. I hope this dataset helps other people who share the love for K-Dramas to have fun while learning about data analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
Motivation: creating challenging dataset for testing Named-Entity
Linking. The Namesakes dataset consists of three closely related datasets: Entities, News and Backlinks. Entities were collected as Wikipedia text chunks corresponding to highly ambiguous entity names. The News were collected as random news text chunks, containing mentions that either belong to the Entities dataset or can be easily confused with them. Backlinks were obtained from Wikipedia dump data with intention to have mentions linked to the entities of the Entity dataset. The Entities and News are human-labeled, resolving the mentions of the entities.Methods
Entities were collected as Wikipedia
text chunks corresponding to highly ambiguous entity names: the most popular people names, the most popular locations, and organizations with name ambiguity. In each Entities text chunk, the named entities with the name similar to the chunk Wikipedia page name are labeled. For labeling, these entities were suggested to human annotators (odetta.ai) to tag as "Same" (same as the page entity) or "Other". The labeling was done by 6 experienced annotators that passed through a preliminary trial task. The only accepted tags are the tags assigned in agreement by not less than 5 annotators, and then passed through reconciliation with an experienced reconciliator.
The News were collected as random news text chunks, containing mentions which either belong to the Entities dataset or can be easily confused with them. In each News text chunk one mention was selected for labeling, and 3-10 Wikipedia pages from Entities were suggested as the labels for an annotator to choose from. The labeling was done by 3 experienced annotators (odetta.ai), after the annotators passed a preliminary trial task. The results were reconciled by an experienced reconciliator. All the labeling was done using Lighttag (lighttag.io).
Backlinks were obtained from Wikipedia dump data (dumps.wikimedia.org/enwiki/20210701) with intention to have mentions linked to the entities of the Entity dataset. The backlinks were filtered to leave only mentions in a good quality text; each text was cut 1000 characters after the last mention.
Usage NotesEntities:
File: Namesakes_entities.jsonl The Entities dataset consists of 4148 Wikipedia text chunks containing human-tagged mentions of entities. Each mention is tagged either as "Same" (meaning that the mention is of this Wikipedia page entity), or "Other" (meaning that the mention is of some other entity, just having the same or similar name). The Entities dataset is a jsonl list, each item is a dictionary with the following keys and values: Key: ‘pagename’: page name of the Wikipedia page. Key ‘pageid’: page id of the Wikipedia page. Key ‘title’: title of the Wikipedia page. Key ‘url’: URL of the Wikipedia page. Key ‘text’: The text chunk from the Wikipedia page. Key ‘entities’: list of the mentions in the page text, each entity is represented by a dictionary with the keys: Key 'text': the mention as a string from the page text. Key ‘start’: start character position of the entity in the text. Key ‘end’: end (one-past-last) character position of the entity in the text. Key ‘tag’: annotation tag given as a string - either ‘Same’ or ‘Other’.
News: File: Namesakes_news.jsonl The News dataset consists of 1000 news text chunks, each one with a single annotated entity mention. The annotation either points to the corresponding entity from the Entities dataset (if the mention is of that entity), or indicates that the mentioned entity does not belong to the Entities dataset. The News dataset is a jsonl list, each item is a dictionary with the following keys and values: Key ‘id_text’: Id of the sample. Key ‘text’: The text chunk. Key ‘urls’: List of URLs of wikipedia entities suggested to labelers for identification of the entity mentioned in the text. Key ‘entity’: a dictionary describing the annotated entity mention in the text: Key 'text': the mention as a string found by an NER model in the text. Key ‘start’: start character position of the mention in the text. Key ‘end’: end (one-past-last) character position of the mention in the text. Key 'tag': This key exists only if the mentioned entity is annotated as belonging to the Entities dataset - if so, the value is a dictionary identifying the Wikipedia page assigned by annotators to the mentioned entity: Key ‘pageid’: Wikipedia page id. Key ‘pagetitle’: page title. Key 'url': page URL.
Backlinks dataset: The Backlinks dataset consists of two parts: dictionary Entity-to-Backlinks and Backlinks documents. The dictionary points to backlinks for each entity of the Entity dataset (if any backlinks exist for the entity). The Backlinks documents are the backlinks Wikipedia text chunks with identified mentions of the entities from the Entities dataset.
Each mention is identified by surrounded double square brackets, e.g. "Muir built a small cabin along [[Yosemite Creek]].". However, if the mention differs from the exact entity name, the double square brackets wrap both the exact name and, separated by '|', the mention string to the right, for example: "Muir also spent time with photographer [[Carleton E. Watkins | Carleton Watkins]] and studied his photographs of Yosemite.".
The Entity-to-Backlinks is a jsonl with 1527 items. File: Namesakes_backlinks_entities.jsonl Each item is a tuple: Entity name. Entity Wikipedia page id. Backlinks ids: a list of pageids of backlink documents.
The Backlinks documents is a jsonl with 26903 items. File: Namesakes_backlinks_texts.jsonl Each item is a dictionary: Key ‘pageid’: Id of the Wikipedia page. Key ‘title’: Title of the Wikipedia page. Key 'content': Text chunk from the Wikipedia page, with all mentions in the double brackets; the text is cut 1000 characters after the last mention, the cut is denoted as '...[CUT]'. Key 'mentions': List of the mentions from the text, for convenience. Each mention is a tuple: Entity name. Entity Wikipedia page id. Sorted list of all character indexes at which the mention occurrences start in the text.
https://qdr.syr.edu/policies/qdr-standard-access-conditionshttps://qdr.syr.edu/policies/qdr-standard-access-conditions
This is an Annotation for Transparent Inquiry (ATI) data project. The annotated article can be viewed on the Publisher's Website. Data Generation The research project engages a story about perceptions of fairness in criminal justice decisions. The specific focus involves a debate between ProPublica, a news organization, and Northpointe, the owner of a popular risk tool called COMPAS. ProPublica wrote that COMPAS was racist against blacks, while Northpointe posted online a reply rejecting such a finding. These two documents were the obvious foci of the qualitative analysis because of the further media attention they attracted, the confusion their competing conclusions caused readers, and the power both companies wield in public circles. There were no barriers to retrieval as both documents have been publicly available on their corporate websites. This public access was one of the motivators for choosing them as it meant that they were also easily attainable by the general public, thus extending the documents’ reach and impact. Additional materials from ProPublica relating to the main debate were also freely downloadable from its website and a third party, open source platform. Access to secondary source materials comprising additional writings from Northpointe representatives that could assist in understanding Northpointe’s main document, though, was more limited. Because of a claim of trade secrets on its tool and the underlying algorithm, it was more difficult to reach Northpointe’s other reports. Nonetheless, largely because its clients are governmental bodies with transparency and accountability obligations, some of Northpointe-associated reports were retrievable from third parties who had obtained them, largely through Freedom of Information Act queries. Together, the primary and (retrievable) secondary sources allowed for a triangulation of themes, arguments, and conclusions. The quantitative component uses a dataset of over 7,000 individuals with information that was collected and compiled by ProPublica and made available to the public on github. ProPublica’s gathering the data directly from criminal justice officials via Freedom of Information Act requests rendered the dataset in the public domain, and thus no confidentiality issues are present. The dataset was loaded into SPSS v. 25 for data analysis. Data Analysis The qualitative enquiry used critical discourse analysis, which investigates ways in which parties in their communications attempt to create, legitimate, rationalize, and control mutual understandings of important issues. Each of the two main discourse documents was parsed on its own merit. Yet the project was also intertextual in studying how the discourses correspond with each other and to other relevant writings by the same authors. Several more specific types of discursive strategies were of interest in attracting further critical examination: Testing claims and rationalizations that appear to serve the speaker’s self-interest Examining conclusions and determining whether sufficient evidence supported them Revealing contradictions and/or inconsistencies within the same text and intertextually Assessing strategies underlying justifications and rationalizations used to promote a party’s assertions and arguments Noticing strategic deployment of lexical phrasings, syntax, and rhetoric Judging sincerity of voice and the objective consideration of alternative perspectives Of equal importance in a critical discourse analysis is consideration of what is not addressed, that is to uncover facts and/or topics missing from the communication. For this project, this included parsing issues that were either briefly mentioned and then neglected, asserted yet the significance left unstated, or not suggested at all. This task required understanding common practices in the algorithmic data science literature. The paper could have been completed with just the critical discourse analysis. However, because one of the salient findings from it highlighted that the discourses overlooked numerous definitions of algorithmic fairness, the call to fill this gap seemed obvious. Then, the availability of the same dataset used by the parties in conflict, made this opportunity more appealing. Calculating additional algorithmic equity equations would not thereby be troubled by irregularities because of diverse sample sets. New variables were created as relevant to calculate algorithmic fairness equations. In addition to using various SPSS Analyze functions (e.g., regression, crosstabs, means), online statistical calculators were useful to compute z-test comparisons of proportions and t-test comparisons of means. Logic of Annotation Annotations were employed to fulfil a variety of functions, including supplementing the main text with context, observations, counter-points, analysis, and source attributions. These fall under a few categories. Space considerations. Critical discourse analysis offers a rich method...
Point of Interest (POI) is defined as an entity (such as a business) at a ground location (point) which may be (of interest). We provide high-quality POI data that is fresh, consistent, customizable, easy to use and with high-density coverage for all countries of the world.
This is our process flow:
Our machine learning systems continuously crawl for new POI data
Our geoparsing and geocoding calculates their geo locations
Our categorization systems cleanup and standardize the datasets
Our data pipeline API publishes the datasets on our data store
A new POI comes into existence. It could be a bar, a stadium, a museum, a restaurant, a cinema, or store, etc.. In today's interconnected world its information will appear very quickly in social media, pictures, websites, press releases. Soon after that, our systems will pick it up.
POI Data is in constant flux. Every minute worldwide over 200 businesses will move, over 600 new businesses will open their doors and over 400 businesses will cease to exist. And over 94% of all businesses have a public online presence of some kind tracking such changes. When a business changes, their website and social media presence will change too. We'll then extract and merge the new information, thus creating the most accurate and up-to-date business information dataset across the globe.
We offer our customers perpetual data licenses for any dataset representing this ever changing information, downloaded at any given point in time. This makes our company's licensing model unique in the current Data as a Service - DaaS Industry. Our customers don't have to delete our data after the expiration of a certain "Term", regardless of whether the data was purchased as a one time snapshot, or via our data update pipeline.
Customers requiring regularly updated datasets may subscribe to our Annual subscription plans. Our data is continuously being refreshed, therefore subscription plans are recommended for those who need the most up to date data. The main differentiators between us vs the competition are our flexible licensing terms and our data freshness.
Data samples may be downloaded at https://store.poidata.xyz/us
A. SUMMARY This dataset contains the underlying data for the Vision Zero Benchmarking website. Vision Zero is the collaborative, citywide effort to end traffic fatalities in San Francisco. The goal of this benchmarking effort is to provide context to San Francisco’s work and progress on key Vision Zero metrics alongside its peers. The Controller's Office City Performance team collaborated with the San Francisco Municipal Transportation Agency, the San Francisco Department of Public Health, the San Francisco Police Department, and other stakeholders on this project. B. HOW THE DATASET IS CREATED The Vision Zero Benchmarking website has seven major metrics. The City Performance team collected the data for each metric separately, cleaned it, and visualized it on the website. This dataset has all seven metrics and some additional underlying data. The majority of the data is available through public sources, but a few data points came from the peer cities themselves. C. UPDATE PROCESS This dataset is for historical purposes only and will not be updated. To explore more recent data, visit the source website for the relevant metrics. D. HOW TO USE THIS DATASET This dataset contains all of the Vision Zero Benchmarking metrics. Filter for the metric of interest, then explore the data. Where applicable, datasets already include a total. For example, under the Fatalities metric, the "Total Fatalities" category within the metric shows the total fatalities in that city. Any calculations should be reviewed to not double-count data with this total. E. RELATED DATASETS N/A
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Website Screenshots
dataset is a synthetically generated dataset composed of screenshots from over 1000 of the world's top websites. They have been automatically annotated to label the following classes:
:fa-spacer:
* button
- navigation links, tabs, etc.
* heading
- text that was enclosed in <h1>
to <h6>
tags.
* link
- inline, textual <a>
tags.
* label
- text labeling form fields.
* text
- all other text.
* image
- <img>
, <svg>
, or <video>
tags, and icons.
* iframe
- ads and 3rd party content.
This is an example image and annotation from the dataset:
https://i.imgur.com/mOG3u3Z.png" alt="WIkipedia Screenshot">
Annotated screenshots are very useful in Robotic Process Automation. But they can be expensive to label. This dataset would cost over $4000 for humans to label on popular labeling services. We hope this dataset provides a good starting point for your project. Try it with a model from our model library.
The dataset contains 1689 train data, 243 test data and 483 valid data.
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
https://qdr.syr.edu/policies/qdr-restricted-access-conditionshttps://qdr.syr.edu/policies/qdr-restricted-access-conditions
Project Summary This dataset contains all qualitative and quantitative data collected in the first phase of the Pandemic Journaling Project (PJP). PJP is a combined journaling platform and interdisciplinary, mixed-methods research study developed by two anthropologists, with support from a team of colleagues and students across the social sciences, humanities, and health fields. PJP launched in Spring 2020 as the COVID-19 pandemic was emerging in the United States. PJP was created in order to “pre-design an archive” of COVID-19 narratives and experiences open to anyone around the world. The project is rooted in a commitment to democratizing knowledge production, in the spirit of “archival activism” and using methods of “grassroots collaborative ethnography” (Willen et al. 2022; Wurtz et al. 2022; Zhang et al 2020; see also Carney 2021). The motto on the PJP website encapsulates these commitments: “Usually, history is written only by the powerful. When the history of COVID-19 is written, let’s make sure that doesn’t happen.” (A version of this Project Summary with links to the PJP website and other relevant sites is included in the public documentation of the project at QDR.) In PJP’s first phase (PJP-1), the project provided a digital space where participants could create weekly journals of their COVID-19 experiences using a smartphone or computer. The platform was designed to be accessible to as wide a range of potential participants as possible. Anyone aged 15 or older, living anywhere in the world, could create journal entries using their choice of text, images, and/or audio recordings. The interface was accessible in English and Spanish, but participants could submit text and audio in any language. PJP-1 ran on a weekly basis from May 2020 to May 2022. Data Overview This Qualitative Data Repository (QDR) project contains all journal entries and closed-ended survey responses submitted during PJP-1, along with accompanying descriptive and explanatory materials. The dataset includes individual journal entries and accompanying quantitative survey responses from more than 1,800 participants in 55 countries. Of nearly 27,000 journal entries in total, over 2,700 included images and over 300 are audio files. All data were collected via the Qualtrics survey platform. PJP-1 was approved as a research study by the Institutional Review Board (IRB) at the University of Connecticut. Participants were introduced to the project in a variety of ways, including through the PJP website as well as professional networks, PJP’s social media accounts (on Facebook, Instagram, and Twitter) , and media coverage of the project. Participants provided a single piece of contact information — an email address or mobile phone number — which was used to distribute weekly invitations to participate. This contact information has been stripped from the dataset and will not be accessible to researchers. PJP uses a mixed-methods research approach and a dynamic cohort design. After enrolling in PJP-1 via the project’s website, participants received weekly invitations to contribute to their journals via their choice of email or SMS (text message). Each weekly invitation included a link to that week’s journaling prompts and accompanying survey questions. Participants could join at any point, and they could stop participating at any point as well. They also could stop participating and later restart. Retention was encouraged with a monthly raffle of three $100 gift cards. All individuals who had contributed that month were eligible. Regardless of when they joined, all participants received the project’s narrative prompts and accompanying survey questions in the same order. In Week 1, before contributing their first journal entries, participants were presented with a baseline survey that collected demographic information, including political leanings, as well as self-reported data about COVID-19 exposure and physical and mental health status. Some of these survey questions were repeated at periodic intervals in subsequent weeks, providing quantitative measures of change over time that can be analyzed in conjunction with participants' qualitative entries. Surveys employed validated questions where possible. The core of PJP-1 involved two weekly opportunities to create journal entries in the format of their choice (text, image, and/or audio). Each week, journalers received a link with an invitation to create one entry in response to a recurring narrative prompt (“How has the COVID-19 pandemic affected your life in the past week?”) and a second journal entry in response to their choice of two more tightly focused prompts. Typically the pair of prompts included one focusing on subjective experience (e.g., the impact of the pandemic on relationships, sense of social connectedness, or mental health) and another with an external focus (e.g., key sources of scientific information, trust in government, or COVID-19’s economic impact). Each week,...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a dataset used for the online stats training website (https://www.rensvandeschoot.com/tutorials/) and is based on the data used by van de Schoot, van der Velden, Boom, and Brugman (2010).
The dataset is based on a study that investigates an association between popularity status and antisocial behavior from at-risk adolescents (n = 1491), where gender and ethnic background are moderators under the association. The study distinguished subgroups within the popular status group in terms of overt and covert antisocial behavior.For more information on the sample, instruments, methodology, and research context, we refer the interested readers to van de Schoot, van der Velden, Boom, and Brugman (2010).
Variable name Description
Respnr = Respondents’ number
Dutch = Respondents’ ethnic background (0 = Dutch origin, 1 = non-Dutch origin)
gender = Respondents’ gender (0 = boys, 1 = girls)
sd = Adolescents’ socially desirable answering patterns
covert = Covert antisocial behavior
overt = Overt antisocial behavior
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A dataset for recommendations collected from ted.com which contains metadata fields for TED talks and user profiles with rating and commenting transactions.
The TED dataset contains all the audio-video recordings of the TED talks downloaded from the official TED website, http://www.ted.com, on April 27th 2012 (first version) and on September 10th 2012 (second version). No processing has been done on any of the metadata fields. The metadata was obtained by crawling the HTML source of the list of talks and users, as well as talk and user webpages using scripts written by Nikolaos Pappas at the Idiap Research Institute, Martigny, Switzerland. The dataset is shared under the Creative Commons license (the same as the content of the TED talks) which is stored in the COPYRIGHT file. The dataset is shared for research purposes which are explained in detail in the following papers. The dataset can be used to benchmark systems that perform two tasks, namely personalized recommendations and generic recommendations. Please check the CBMI 2013 paper for a detailed description of each task.
If you use the TED dataset for your research please cite one of the above papers (specifically the 1st paper for the April 2012 version and the 2nd paper for the September 2012 version of the dataset).
TED website
The TED website is a popular online repository of audiovisual recordings of public lectures given by prominent speakers, under a Creative Commons non-commercial license (see www.ted.com). The site provides extended metadata and user-contributed material. The speakers are scientists, writers, journalists, artists, and businesspeople from all over the world who are generally given a maximum of 18 minutes to present their ideas. The talks are given in English and are usually transcribed and then translated into several other languages by volunteer users. The quality of the talks has made TED one of the most popular online lecture repositories, as each talk was viewed on average almost 500,000 times.
Metadata
The dataset contains two main entry types: talks and users. The talks have the following data fields: identifier, title, description, speaker name, TED event at which they were given, transcript, publication date, filming date, number of views. Each talk has a variable number of user comments, organized in threads. In addition, three fields were assigned by TED editorial staff: related tags, related themes, and related talks. Each talk generally has three related talks and 95% of them have a high- quality transcript available. The dataset includes 1,149 talks from 960 speakers and 69,023 registered users that have made about 100,000 favorites and 200,000 comments.
https://brightdata.com/licensehttps://brightdata.com/license
Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features
Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.
Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases
Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.
Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Meetnetten.be - ABV Common breeding birds in Flanders, Belgium (post 2016) is a sampling event dataset published by the Research Institute of Nature and Forest (INBO). It is part of the Meetnetten.be suite of monitoring networks for priority species in Flanders, in which data are collected at fixed locations using a standardized protocol (https://meetnetten.be). This dataset contains counts for bird species breeding in Flanders . Here it is published as a standardized Darwin Core Archive (DwC-A) and includes for each sampling event an eventID, date, location, samplingEffort and sampling protocol (in the event core) and for each occurrence an occurrenceID, the number of recorded individuals, status (present/absent) and scientific name (in the occurrence extension). Additional Ecological Inventories vocabulary includes siteCount, siteNestingDescription and other terms (in the Humboldt extension) to report detailed information about the standardized point counts per km square. The Humboldt extension is not yet indexed but those eco terms are retrievable in DwC-A download of this dataset. Issues with the dataset can be reported at https://github.com/inbo/meetnetten-occurrences/issues
The breeding birds project is a joint initiative of the Institute for Nature and Forest Research (INBO) and the Vlaamse Vogelwerkgroep of Natuurpunt, in collaboration with Natuurpunt Study.
The data is collected to discover trends in long and short term breeding bird occurrences in Flanders and is used for the EU reporting on trends, distribution and future prospects of the species listed in the Annex 2 and 4 of the Habitats Directive.
We have released this dataset to the public domain under a Creative Commons Zero waiver. We would appreciate it if you follow the INBO norms for data use (https://www.inbo.be/en/norms-data-use) when using the data. If you have any questions regarding this dataset, don't hesitate to contact us via the contact information provided in the metadata or via opendata@inbo.be.
For all published Meetnetten.be datasets, see https://www.gbif.org/dataset/search?project_id=meetnetten.be
For all published ABV (Common breeding birds) datasets, see https://www.gbif.org/dataset/search?q=ABV&publishing_org=1cd669d0-80ea-11de-a9d0-f1765f95f18b
The dataset collection in question is a compilation of related data tables sourced from the website of Tilastokeskus (Statistics Finland) in Finland. The data present in the collection is organized in a tabular format comprising of rows and columns, each holding related data. The collection includes several tables, each of which represents different years, providing a temporal view of the data. The description provided by the data source, Tilastokeskuksen palvelurajapinta (Statistics Finland's service interface), suggests that the data is likely to be statistical in nature and could be related to regional statistics, given the nature of the source. This dataset is licensed under CC BY 4.0 (Creative Commons Attribution 4.0, https://creativecommons.org/licenses/by/4.0/deed.fi).
The review corpus used here consists of a collection of Goodreads book reviews obtained from the Kaggle website. Originally, it consists of around 10,000 reviews written towards top 100 science fiction books (ranked based on Goodreads ratings). However, upon examination, we find that a significant number of reviews comprise various types of issues, including missing values for the review text and like count, as well as duplicate sentences. We remove duplicate sentences from the reviews and exclude problematic reviews with missing fields. After clean-up, the corpus consists of 2259 popular and 2555 non-popular reviews.
Common Corpus
Full data paper
Common Corpus is the largest open and permissible licensed text dataset, comprising 2 trillion tokens (1,998,647,168,282 tokens). It is a diverse dataset, consisting of books, newspapers, scientific articles, government and legal documents, code, and more. Common Corpus has been created by Pleias in association with several partners and contributed in-kind to Current AI initiative. Common Corpus differs from existing open datasets in that it is:… See the full description on the dataset page: https://huggingface.co/datasets/PleIAs/common_corpus.
https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/
Dataset Card for CC-News
Dataset Summary
CC-News dataset contains news articles from news sites all over the world. The data is available on AWS S3 in the Common Crawl bucket at /crawl-data/CC-NEWS/. This version of the dataset has been prepared using news-please - an integrated web crawler and information extractor for news.It contains 708241 English language news articles published between Jan 2017 and December 2019. It represents a small portion of the English… See the full description on the dataset page: https://huggingface.co/datasets/vblagoje/cc_news.
This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:
More reviews:
New reviews:
Metadata: - We have added transaction metadata for each review shown on the review page.
If you publish articles based on this dataset, please cite the following paper:
The dataset collection consists of multiple tables that contain related data. These tables are organized in a format of rows and columns. They are sourced from the website of Lantmäteriet (The Land Survey) in Sweden. Each table within the collection shares a common theme, yet they each provide unique insights and data points. The structure and organization of the collection allows for comprehensive analysis and versatile usage of the data.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.