https://brightdata.com/licensehttps://brightdata.com/license
Use our YouTube profiles dataset to extract both business and non-business information from public channels and filter by channel name, views, creation date, or subscribers. Datapoints include URL, handle, banner image, profile image, name, subscribers, description, video count, create date, views, details, and more. You may purchase the entire dataset or a customized subset, depending on your needs. Popular use cases for this dataset include sentiment analysis, brand monitoring, influencer marketing, and more.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
YouTube maintains a list of the top trending videos on the platform. According to Variety magazine, “To determine the year’s top-trending videos, YouTube uses a combination of factors including measuring users interactions (number of views, shares, comments and likes). Note that they’re not the most-viewed videos overall for the calendar year”.
Note that this dataset is a structurally improved version of this dataset.
This dataset includes several months (and counting) of data on daily trending YouTube videos. Data is included for the IN, US, GB, DE, CA, FR, RU, BR, MX, KR, and JP regions (India, USA, Great Britain, Germany, Canada, France, Russia, Brazil, Mexico, South Korea, and, Japan respectively), with up to 200 listed trending videos per day.
Each region’s data is in a separate file. Data includes the video title, channel title, publish time, tags, views, likes and dislikes, description, and comment count.
The data also includes a category_id field, which varies between regions. To retrieve the categories for a specific video, find it in the associated JSON. One such file is included for each of the 11 regions in the dataset.
For more information on specific columns in the dataset refer to the column metadata.
This dataset was collected using the YouTube API. This dataset is the updated version of Trending YouTube Video Statistics.
Possible uses for this dataset could include: - Sentiment analysis in a variety of forms - Categorizing YouTube videos based on their comments and statistics. - Training ML algorithms like RNNs to generate their own YouTube comments. - Analyzing what factors affect how popular a YouTube video will be. - Statistical analysis over time.
For further inspiration, see the kernels on this dataset!
By VISHWANATH SESHAGIRI [source]
This dataset contains YouTube video and channel metadata to analyze the statistical relation between videos and form a topic tree. With 9 direct features, 13 more indirect features, it has all that you need to build a deep understanding of how videos are related – including information like total views per unit time, channel views, likes/subscribers ratio, comments/views ratio, dislikes/subscribers ratio etc. This data provides us with a unique opportunity to gain insights on topics such as subscriber count trends over time or calculating the impact of trends on subscriber engagement. We can develop powerful models that show us how different types of content drive viewership and identify the most popular styles or topics within YouTube's vast catalogue. Additionally this data offers an intriguing look into consumer behaviour as we can explore what drives people to watch specific videos at certain times or appreciate certain channels more than others - by analyzing things like likes per subscribers and dislikes per views ratios for example! Finally this dataset is completely open source with an easy-to-understand Github repo making it an invaluable resource for anyone looking to gain better insights into how their audience interacts with their content and how they might improve it in the future
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use This Dataset
In general, it is important to understand each parameter in the data set before proceeding with analysis. The parameters included are totalviews/channelelapsedtime, channelViewCount, likes/subscriber, views/subscribers, subscriberCounts, dislikes/views comments/subscriberchannelCommentCounts,, likes/dislikes comments/views dislikes/ subscribers totviewes /totsubsvews /elapsedtime.
To use this dataset for your own analysis:1) Review each parameter’s meaning and purpose in our dataset; 2) Get familiar with basic descriptive statistics such as mean median mode range; 3) Create visualizations or tables based on subsets of our data; 4) Understand correlations between different sets of variables or parameters; 5) Generate meaningful conclusions about specific channels or topics based on organized graph hierarchies or tables.; 6) Analyze trends over time for individual parameters as well as an aggregate reaction from all users when videos are released
Predicting the Relative Popularity of Videos: This dataset can be used to build a statistical model that can predict the relative popularity of videos based on various factors such as total views, channel viewers, likes/dislikes ratio, and comments/views ratio. This model could then be used to make recommendations and predict which videos are likely to become popular or go viral.
Creating Topic Trees: The dataset can also be used to create topic trees or taxonomies by analyzing the content of videos and looking at what topics they cover. For example, one could analyze the most popular YouTube channels in a specific subject area, group together those that discuss similar topics, and then build an organized tree structure around those topics in order to better understand viewer interests in that area.
Viewer Engagement Analysis: This dataset could also be used for viewer engagement analysis purposes by analyzing factors such as subscriber count, average time spent watching a video per user (elapsed time), comments made per view etc., so as to gain insights into how engaged viewers are with specific content or channels on YouTube. From this information it would be possible to optimize content strategy accordingly in order improve overall engagement rates across various types of video content and channel types
If you use this dataset in your research, please credit the original authors.
License
Unknown License - Please check the dataset description for more information.
File: YouTubeDataset_withChannelElapsed.csv | Column name | Description | |:----------------------------------|:-------------------------------------------------------| | totalviews/channelelapsedtime | Ratio of total views to channel elapsed time. (Ratio) | | channelViewCount | Total number of views for the channel. (Integer) | | likes/subscriber ...
https://brightdata.com/licensehttps://brightdata.com/license
Use our YouTube Videos dataset to extract detailed information from public videos and filter by video title, views, upload date, or likes. Data points include video URL, title, description, thumbnail, upload date, view count, like count, comment count, tags, and more. You can purchase the entire dataset or a customized subset, tailored to your needs. Popular use cases for this dataset include trend analysis, content performance tracking, brand monitoring, and influencer campaign optimization.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
YouTube was launched in 2005. It was founded by three PayPal employees: Chad Hurley, Steve Chen, and Jawed Karim, who ran the company from an office above a small restaurant in San Mateo. The first...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
📺 YouTube-Commons 📺
YouTube-Commons is a collection of audio transcripts of 2,063,066 videos shared on YouTube under a CC-By license.
Content
The collection comprises 22,709,724 original and automatically translated transcripts from 3,156,703 videos (721,136 individual channels). In total, this represents nearly 45 billion words (44,811,518,375). All the videos where shared on YouTube with a CC-BY license: the dataset provide all the necessary provenance information… See the full description on the dataset page: https://huggingface.co/datasets/PleIAs/YouTube-Commons.
The global number of Youtube users in was forecast to continuously increase between 2024 and 2029 by in total ***** million users (+***** percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach *** billion users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Africa and South America.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Study how YouTube videos become viral or, more in general, how they evolve in terms of views, likes and subscriptions is a topic of interest in many disciplines. With this dataset you can study such phenomena, with statistics about 1 million YouTube videos. The information was collected in 2013 when YouTube was exposing the data publicly: they removed this functionality in the years and now it's possible to have such statistics only to the owner of the video. This makes this dataset unique.
This Dataset has been generated with YOUStatAnalyzer, a tool developed by myself (Mattia Zeni) when I was working for CREATE-NET (www.create-net.org) within the framework of the CONGAS FP7 project (http://www.congas-project.eu). For the project we needed to collect and analyse the dynamics of YouTube videos popularity. The dataset contains statistics of more than 1 million Youtube videos, chosen accordingly to random keywords extracted from the WordNet library (http://wordnet.princeton.edu).
The motivation that led us to the development of the YOUStatAnalyser data collection tool and the creation of this dataset is that there's an active research community working on the interplay among user individual preferences, social dynamics, advertising mechanisms and a common problem is the lack of open large-scale datasets. At the same time, no tool was present at that time. Today, YouTube removed the possibility to visualize these data on each video's page, making this dataset unique.
When using our dataset for research purposes, please cite it as:
@INPROCEEDINGS{YOUStatAnalyzer,
author={Mattia Zeni and Daniele Miorandi and Francesco {De Pellegrini}},
title = {{YOUStatAnalyzer}: a Tool for Analysing the Dynamics of {YouTube} Content Popularity},
booktitle = {Proc. 7th International Conference on Performance Evaluation Methodologies and Tools
(Valuetools, Torino, Italy, December 2013)},
address = {Torino, Italy},
year = {2013}
}
The dataset contains statistics and metadata of 1 million YouTube videos, collected in 2013. The videos have been chosen accordingly to random keywords extracted from the WordNet library (http://wordnet.princeton.edu).
The structure of a dataset is the following:
{
u'_id': u'9eToPjUnwmU',
u'title': u'Traitor Compilation # 1 (Trouble ...',
u'description': u'A traitor compilation by one are ...',
u'category': u'Games',
u'commentsNumber': u'6',
u'publishedDate': u'2012-10-09T23:42:12.000Z',
u'author': u'ServilityGaming',
u'duration': u'208',
u'type': u'video/3gpp',
u'relatedVideos': [u'acjHy7oPmls', u'EhW2LbCjm7c', u'UUKigFAQLMA', ...],
u'accessControl': {
u'comment': {u'permission': u'allowed'},
u'list': {u'permission': u'allowed'},
u'videoRespond': {u'permission': u'moderated'},
u'rate': {u'permission': u'allowed'},
u'syndicate': {u'permission': u'allowed'},
u'embed': {u'permission': u'allowed'},
u'commentVote': {u'permission': u'allowed'},
u'autoPlay': {u'permission': u'allowed'}
},
u'views': {
u'cumulative': {
u'data': [15.0, 25.0, 26.0, 26.0, ...]
},
u'daily': {
u'data': [15.0, 10.0, 1.0, 0.0, ..]
}
},
u'shares': {
u'cumulative': {
u'data': [0.0, 0.0, 0.0, 0.0, ...]
},
u'daily': {
u'data': [0.0, 0.0, 0.0, 0.0, ...]
}
},
u'watchtime': {
u'cumulative': {
u'data': [22.5666666667, 36.5166666667, 36.7, 36.7, ...]
},
u'daily': {
u'data': [22.5666666667, 13.95, 0.166666666667, 0.0, ...]
}
},
u'subscribers': {
u'cumulative': {
u'data': [0.0, 0.0, 0.0, 0.0, ...]
},
u'daily': {
u'data': [-1.0, 0.0, 0.0, 0.0, ...]
}
},
u'day': {
u'data': [1349740800000.0, 1349827200000.0, 1349913600000.0, 1350000000000.0, ...]
}
}
From the structure above is possible to see which fields an entry in the dataset has. It is possible to divide them into 2 sections:
1) Video Information.
_id -> Corresponding to the video ID and to the unique identifier of an entry in the database.
title -> Te video's title.
description -> The video's description.
category -> The YouTube category the video is inserted in.
commentsNumber -> The number of comments posted by users.
publishedDate -> The date the video has been published.
author -> The author of the video.
duration -> The video duration in seconds.
type -> The encoding type of the video.
relatedVideos -> A list of related videos.
accessControl -> A list of access policies for different aspects related to the video.
2) Video Statistics.
Each video can have 4 different statistics variables: views, shares, subscribers and watchtime. Recent videos have all of them while older video can have only the 'views' variable. Each variable has 2 dimensions, daily and cumulative.
`views -> number of views collected by the vi...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Over the past few years YouTube has became a popular site for video broadcasting and earning money by publishing various different skills in the form of videos. For some people it has become a main source to earn money. Getting the videos trending among the viewers is one of the major tasks which each and every content creator wants. Popularity of any video and its reach to the audience is completely based on YouTube's Recommendation algorithm. This document is a dataset descriptor for the dataset collected over the time span of about 45 days during the Israel-Hamas War
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associative Tag Recommendation Exploiting Multiple Textual FeaturesFabiano Belem, Eder Martins, Jussara M. Almeida Marcos Goncalves In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, July. 2011AbstractThis work addresses the task of recommending relevant tags to a target object by jointly exploiting three dimen- sions of the problem: (i) term co-occurrence with tags preassigned to the target object, (ii) terms extracted from mul- tiple textual features, and (iii) several metrics of tag relevance. In particular, we propose several new heuristic meth- ods, which extend previous, highly effective and efficient, state-of-the-art strategies by including new metrics that try to capture how accurately a candidate term describes the object’s content. We also exploit two learning to rank techniques, namely RankSVM and Genetic Programming, for the task of generating ranking functions that combine multiple metrics to accurately estimate the relevance of a tag to a given object. We evaluate all proposed methods in various scenarios for three popular Web 2.0 applications, namely, LastFM, YouTube and YahooVideo. We found that our new heuristics greatly outperform the methods on which they are based, producing gains in precision of up to 181%, as well as another state-of-the-art technique, with improvements in precision of up to 40% over the best baseline in any scenario. Some further improvements can also be achieved, in some scenarios, with the new learning-to-rank based strategies, which have the additional advantage of being quite flexible and easily extensible to exploit other aspects of the tag recommendation problem.Bibtex Citation@inproceedings{belem@sigir11, author = {Fabiano Bel\'em and Eder Martins and Jussara Almeida and Marcos Gon\c{c}alves}, title = {Associative Tag Recommendation Exploiting Multiple Textual Features}, booktitle = {{Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (SIGIR'11)}}, month = {{July}}, year = {2011} }
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains two files for analyzing the relationship between the popularity of a certain video and the most relevant/liked comments of said video.
videos-stats.csv
:
This file contains some basic information about each video, such as the title, likes, views, keyword, and comment count.
comments.csv
:
For each video in videos-stats.csv
, comments.csv
contains the top ten most relevant comments as well as said comments' sentiments and likes.
videos-stats.csv
:
- Title
: Video Title.
- Video ID
: The Video Identifier.
- Published At
: The date the video was published in YYYY-MM-DD
.
- Keyword
: The keyword associated with the video.
- Likes
: The number of likes the video received. If this value is -1, the likes are not publicly visible.
- Comments
: The number of comments the video has. If this value is -1, the video creator has disabled comments.
- Views
: The number of views the video got.
comments.csv
:
- Video ID
: The Video Identifier.
- Comment
: The comment text.
- Likes
: The number of likes the comment received.
- Sentiment
: The sentiment of the comment. A value of 0 represents a negative sentiment, while values of 1 or 2 represent neutral and positive sentiments respectively.
Creative Commons YouTube
Description
YouTube is large-scale video-sharing platform where users have the option of uploading content under a CC BY license. To collect high-quality speech-based textual content and combat the rampant license laundering on YouTube, we manually curated a set of over 2,000 YouTube channels that consistently release original openly licensed content containing speech. The resulting collection spans a wide range of genres, including lectures… See the full description on the dataset page: https://huggingface.co/datasets/common-pile/youtube.
By dskl [source]
Moreover it also reveals various engagement metrics such as the number of views the video has received, likes and dislikes it has garnered from viewership. Additionally information related to comment count on particular videos enables analysis regarding viewer interaction and response. Furthermore this dataset describes whether comments or ratings are disabled for a particular video allowing examination into how these factors impact engagement.
By exploring this dataset in-depth marketers can gain valuable insights into identifying trends in content popularity across different countries while taking into account timing considerations based on published day of week. It also opens up avenues for analyzing public sentiment towards specific videos based on likes vs dislikes ratios and comment count which further aids in devising suitable marketing strategies.
Overall,this informative dataset serves as an invaluable asset for researchers,data analysts,and marketers alike who strive to gain deeper understanding about trending video patterns,relevant metrics influencing content virality,factors dictating viewer sentiments,and exploring new possibilities within digital marketing space leveraging YouTube's wide reach
How to Use This Dataset: A Guide
In this guide, we will walk you through the different columns in the dataset and provide insights on how you can explore the popularity and engagement of these trending videos. Let's dive in!
Column Descriptions:
- title: The title of the video.
- channel_title: The title of the YouTube channel that published the video.
- publish_date: The date when the video was published on YouTube.
- time_frame: The duration of time (e.g., 1 day, 6 hours) that the video has been trending on YouTube.
- published_day_of_week: The day of week (e.g., Monday) when the video was published.
- publish_country: The country where the video was published.
- tags: The tags or keywords associated with the video.
- views: The number of views received by a particular video
- likes: Number o likes received per each videos
- dislike: Number dislikes receives per an individual vidoe 11.comment_count: number of comments
Popular Video Insights:
To gain insights into popular videos based on this dataset, you can focus your analysis using these columns:
title, channel_title, publish_date, time_frame, and** publish_country**.
By analyzing these attributes together with other engagement metrics such as views ,likes,**dislikes,**comments),comment_count you can identify trends in what type content is most popular both globally or within specific countries.
For instance: - You could analyze which channels are consistently publishing trending videos - Explore whether certain types of titles or tags are more likely to attract views and engagement. - Determine if certain days of the week or time frames have a higher likelihood of trending videos being published.
Engagement Insights:
To explore user engagement with the trending videos, you can focus your analysis on these columns:
likes, dislikes, comment_count
By analyzing these attributes you can get insights into how users are interacting with the content. For example: - You could compare the like and dislike ratios to identify positively received videos versus those that are more controversial. - Analyze comment counts to understand how users are engaging with the content and whether comments being disabled affects overall
- Analyzing the popularity and engagement of trending videos: By analyzing the number of views, likes, dislikes, and comments, we can understand which types of videos are popular among YouTube users. We can also examine factors such as comment count and ratings disabled to see how viewers engage with trending videos.
- Understanding video trends across different countries: By examining the publish country column, we can compare the popularity of trending videos in different countries. This can help content creators or marketers understand regional preferences and tailor their content strategy accordingly.
- Studying the impact of video attributes on engagement: By exploring the relationship between video attributes (such as title, tags, publish day) and engagement metrics (views, likes), we can identify patterns or trends that influence a video's success on YouTube. This information can be...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We publish a data set for YouTube's mobile streaming client, which follows the popular Dynamic Adaptive Streaming over HTTP (DASH) standard. The data was measured over 4 months, at 2 separate locations in Europe, at the network, transport and application layer for DASH.
In 2021, YouTube's user base in the United States amounts to approximately ****** million users. The number of YouTube users in the United States is projected to reach ****** million users by 2025. User figures have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Dataset for paper: Disturbed YouTube for Kids: Characterizing and Detecting Inappropriate Videos Targeting Young Children The dataset consists of five files: 1. groundtruth_videos.json: This is the ground truth dataset. We have 4797 manually annotated videos (1513 suitable, 929 disturbing, 419 restricted, and 1936 irrelevant). You can distinguish among the different labels by observing the 'classification_label' field. 2. elsagate_related_videos.json: Contains the data for 233K elsagate-related YouTube videos (1K seed and 232K recommended) that were obtained as described in the paper. 3. other_child_related_videos.json: Contains the data for 155K other child-related YouTube videos (2K seed and 153K recommended) that were obtained as described in the paper. 4. random_videos.json: Contains the data for 482K random YouTube videos (8K seed and 474K recommended) that were obtained as described in the paper. 5. popular_videos.json: Contains the data for 11K popular YouTube videos (500 seed and 10.5K recommended) that were obtained between November 18 and November 21, 2018, as described in the paper. For each video in all sets, you can check the predicted label of our classifier by observing the 'prediction' field.
By VISHWANATH SESHAGIRI [source]
The YouTube Video and Channel Metadata dataset is a comprehensive collection of data related to YouTube videos and channels. It consists of various features and statistics that provide insights into the performance and engagement of videos, as well as the overall popularity and success of channels.
The dataset includes both direct features, such as total views, channel elapsed time, channel ID, video category ID, channel view count, likes per subscriber, dislikes per subscriber, comments per subscriber, and more. Additionally, there are indirect features derived from YouTube's API that provide additional metrics for analysis.
One important aspect covered in this dataset is the ratio between certain metrics. For example: - The totalviews/channelelapsedtime ratio represents the average number of views a video has received relative to the elapsed time since the channel was created. - The likes/dislikes ratio indicates the proportion of likes on a video compared to dislikes. - The views/subscribers ratio showcases how engaged subscribers are by measuring the number of views relative to the number of subscribers.
Other metrics explored in this dataset include comments/views ratio (representing viewer engagement), dislikes/views ratio (measuring viewer sentiment), comments/subscriber ratio (indicating community participation), likes/subscriber ratio (reflecting audience loyalty), dislikes/subscriber ratio (highlighting dissatisfaction levels), total number of subscribers for a channel (subscriberCount), total views on a channel (channelViewCount), total number of comments on a channel (channelCommentCount), among others.
By analyzing these features and statistics within this dataset, researchers or data analysts can gain valuable insights into various aspects related to YouTube videos and channels. Furthermore, it may be possible to build statistical relationships between videos based on their performance characteristics or even develop topic trees based on similarities between different content categories. This dataset serves as an excellent resource for studying YouTube's ecosystem comprehensively.
For accessing additional resources related to this dataset or exploring code repositories associated with it, users can refer to the provided GitHub repository
Introduction:
Step 1: Understanding the Dataset Start by familiarizing yourself with the columns in the dataset. Here are some key features to pay attention to:
- totalviews/channelelapsedtime: The ratio of total views of a video to the elapsed time of the channel.
- channelViewCount: The total number of views on the channel.
- likes/subscriber: The ratio of likes on a video to the number of subscribers of the channel.
- views/subscribers: The ratio of views on a video to the number of subscribers of the channel.
- subscriberCount: The total number of subscribers for a channel.
- dislikes/views: The ratio of dislikes on a video to its total views.
- comments/subscriber: The ratio comments on a video receive per subscriber count.
Step 2: Determining Data Analysis Objectives Define your objectives or research questions before diving into data analysis using this dataset. For example, you may want to explore relationships between viewership, engagement metrics, and various attributes such as category ID or elapsed time.
Step 3: Analyzing Relationships between Variables Use statistical techniques like correlation analysis or visualization tools like scatter plots, bar graphs, or heatmaps to understand relationships between variables in this dataset.
For example: - Plotting totalviews/channelelapsedtime against channelViewCount can help identify patterns between overall video popularity and channels' view count growth over time. - Comparing likes/dislikes with comments/views can give insights into viewer engagement levels across different videos.
Step 4: Building Machine Learning Models (Optional) If your objective includes predictive analysis or building machine learning models, select relevant features as predictors and the target variable (e.g., totalviews/channelelapsedtime) for training and evaluation.
You can use various algorithms such as linear regression, decision trees, or neural networks to predict video performance or channel growth based on available attributes.
Step 5: Evaluating Model Performance Assess the predictive model's performance using appropriate evaluation metrics like mean square...
This comprehensive YouTube Video Analytics Dataset provides valuable insights into the performance of a wide range of videos on the popular platform. Spanning various genres, the dataset encompasses essential information such as - 1.Genre 2.video titles, 3.publish times, 4.view counts, 5.watch time (in hours), 6.subscriber counts, 7.average view durations, 8.impressions, and 9.impressions click-through rates (%).
By leveraging this dataset, researchers, analysts, and data enthusiasts can delve into the factors that influence video success on YouTube. Analyze the correlation between genre and view counts, investigate the impact of subscriber counts on watch time, or explore how average view durations and click-through rates affect video impressions.
Whether you're interested in exploring video trends, identifying patterns in user behavior, or developing machine learning models, this dataset serves as a valuable resource. Gain actionable insights into YouTube video performance and contribute to the ever-growing field of online content analysis. LICENCE NOTE - This is the dataset of my own channel.
As of February 2025, India was the country with the largest YouTube audience by far, with approximately 491 million users engaging with the popular social video platform. The United States followed, with around 253 million YouTube viewers. Brazil came in third, with 144 million users watching content on YouTube. The United Kingdom saw around 54.8 million internet users engaging with the platform in the examined period. What country has the highest percentage of YouTube users? In July 2024, the United Arab Emirates was the country with the highest YouTube penetration worldwide, as around 94 percent of the country's digital population engaged with the service. In 2024, YouTube counted around 100 million paid subscribers for its YouTube Music and YouTube Premium services. YouTube mobile markets In 2024, YouTube was among the most popular social media platforms worldwide. In terms of revenues, the YouTube app generated approximately 28 million U.S. dollars in revenues in the United States in January 2024, as well as 19 million U.S. dollars in Japan.
YouTube is an American online video-sharing platform headquartered in San Bruno, California. The service, created in February 2005 by three former PayPal employees—Chad Hurley, Steve Chen, and Jawed Karim—was bought by Google in November 2006 for US$1.65 billion and now operates as one of the company's subsidiaries. YouTube is the second most-visited website after Google Search, according to Alexa Internet rankings.
YouTube allows users to upload, view, rate, share, add to playlists, report, comment on videos, and subscribe to other users. Available content includes video clips, TV show clips, music videos, short and documentary films, audio recordings, movie trailers, live streams, video blogging, short original videos, and educational videos.
YouTube (the world-famous video sharing website) maintains a list of the top trending videos on the platform. According to Variety magazine, “To determine the year’s top-trending videos, YouTube uses a combination of factors including measuring users interactions (number of views, shares, comments, and likes). Note that they’re not the most-viewed videos overall for the calendar year”. Top performers on the YouTube trending list are music videos (such as the famously virile “Gangam Style”), celebrity and/or reality TV performances, and the random dude-with-a-camera viral videos that YouTube is well-known for.
This dataset is a daily record of the top trending YouTube videos.
Note that this dataset is a structurally improved version of this dataset.
This dataset was collected using the YouTube API. This Description is cited in Wikipedia.
https://brightdata.com/licensehttps://brightdata.com/license
Use our YouTube profiles dataset to extract both business and non-business information from public channels and filter by channel name, views, creation date, or subscribers. Datapoints include URL, handle, banner image, profile image, name, subscribers, description, video count, create date, views, details, and more. You may purchase the entire dataset or a customized subset, depending on your needs. Popular use cases for this dataset include sentiment analysis, brand monitoring, influencer marketing, and more.