30 datasets found
  1. Financial Accounts of the United States

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve System (2024). Financial Accounts of the United States [Dataset]. https://catalog.data.gov/dataset/financial-accounts-of-the-united-states
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Federal Reserve Board of Governors
    Area covered
    United States
    Description

    The Financial Accounts of the United States includes data on transactions and levels of financial assets and liabilities, by sector and financial instrument; full balance sheets, including net worth, for households and nonprofit organizations, nonfinancial corporate businesses, and nonfinancial noncorporate businesses; Integrated Macroeconomic Accounts; and additional supplemental detail. These data are typically released during the second week of March, June, September, and December.

  2. w

    Dataset of books about Wealth-Moral and ethical aspects-United States

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books about Wealth-Moral and ethical aspects-United States [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=j0-book_subject&fop0=%3D&fval0=Wealth-Moral+and+ethical+aspects-United+States&j=1&j0=book_subjects
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset is about books. It has 4 rows and is filtered where the book subjects is Wealth-Moral and ethical aspects-United States. It features 9 columns including author, publication date, language, and book publisher.

  3. T

    United States Personal Savings Rate

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Personal Savings Rate [Dataset]. https://tradingeconomics.com/united-states/personal-savings
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Aug 31, 2025
    Area covered
    United States
    Description

    Household Saving Rate in the United States decreased to 4.60 percent in August from 4.80 percent in July of 2025. This dataset provides - United States Personal Savings Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. A Dataset of Water Quality and Related Variables in U.S. Reservoirs

    • catalog.data.gov
    • gimi9.com
    Updated Jun 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2025). A Dataset of Water Quality and Related Variables in U.S. Reservoirs [Dataset]. https://catalog.data.gov/dataset/a-dataset-of-water-quality-and-related-variables-in-u-s-reservoirs
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    United States
    Description

    This dataset presents a rich collection of physicochemical parameters from 147 reservoirs distributed across the conterminous U.S. One hundred and eight of the reservoirs were selected using a statistical survey design and can provide unbiased inferences to the condition of all U.S. reservoirs. These data could be of interest to local water management specialists or those assessing the ecological condition of reservoirs at the national scale. These data have been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. This dataset is not publicly accessible because: It is too large. It can be accessed through the following means: https://portal-s.edirepository.org/nis/mapbrowse?scope=edi&identifier=2033&revision=1. Format: This dataset presents water quality and related variables for 147 reservoirs distributed across the U.S. Water quality parameters were measured during the summers of 2016, 2018, and 2020 – 2023. Measurements include nutrient concentration, algae abundance, dissolved oxygen concentration, and water temperature, among many others. Dataset includes links to other national and global scale data sets that provide additional variables.

  5. Death in the United States

    • kaggle.com
    zip
    Updated Aug 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2017). Death in the United States [Dataset]. https://www.kaggle.com/datasets/cdc/mortality
    Explore at:
    zip(766333584 bytes)Available download formats
    Dataset updated
    Aug 3, 2017
    Dataset authored and provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.

    It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.

    Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.

    Overview

    This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.

    A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.

    All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.

    Project ideas

    • The CDC's mortality data was the basis of a widely publicized paper, by Anne Case and Nobel prize winner Angus Deaton, arguing that middle-aged whites are dying at elevated rates. One of the criticisms against the paper is that it failed to properly account for the exact ages within the broad bins available through the CDC's WONDER tool. What do these results look like with exact/not-binned age data?
    • Similarly, how sensitive are the mortality trends being discussed in the news to the choice of bin-widths?
    • As noted above, the data preparation process could have introduced errors. Can you find any discrepancies compared to the aggregate metrics on WONDER? If so, please let me know in the forums!
    • WONDER is cited in numerous economics, sociology, and public health research papers. Can you find any papers whose conclusions would be altered if they used the exact data available here rather than binned data from Wonder?

    Differences from the first version of the dataset

    • This version of the dataset was prepared in a completely different many. This has allowed us to provide a much larger volume of data and ensure that codes are available for every field.
    • We've replaced the batch of sql files with a single JSON per year. Kaggle's platform currently offer's better support for JSON files, and this keeps the number of files manageable.
    • A tutorial kernel providing a quick introduction to the new format is available here.
    • Lastly, I apologize if the transition has interrupted anyone's work! If need be, you can still download v1.
  6. N

    Pennsylvania annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Pennsylvania annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a52f8961-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Pennsylvania. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Pennsylvania, the median income for all workers aged 15 years and older, regardless of work hours, was $48,918 for males and $31,608 for females.

    These income figures highlight a substantial gender-based income gap in Pennsylvania. Women, regardless of work hours, earn 65 cents for each dollar earned by men. This significant gender pay gap, approximately 35%, underscores concerning gender-based income inequality in the state of Pennsylvania.

    - Full-time workers, aged 15 years and older: In Pennsylvania, among full-time, year-round workers aged 15 years and older, males earned a median income of $70,071, while females earned $55,831, leading to a 20% gender pay gap among full-time workers. This illustrates that women earn 80 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Pennsylvania.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Pennsylvania median household income by race. You can refer the same here

  7. N

    cities in Rich County Ranked by Pacific Islander Population // 2025 Edition

    • neilsberg.com
    csv, json
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). cities in Rich County Ranked by Pacific Islander Population // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lists/cities-in-rich-county-ut-by-pacific-islander-population/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rich County, Utah
    Variables measured
    Pacific Islander Population, Pacific Islander Population as Percent of Total Population of cities in Rich County, UT, Pacific Islander Population as Percent of Total Pacific Islander Population of Rich County, UT
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the racial categories identified by the U.S. Census Bureau. Based on the required racial category classification, we calculated the rank. For geographies with no population reported for the chosen race, we did not assign a rank and excluded them from the list. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories and do not rely on any ethnicity classification, unless explicitly required.For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 4 cities in the Rich County, UT by Native Hawaiian and Other Pacific Islander (NHPI) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2018-2022 American Community Survey 5-Year Estimates
    • 2017-2021 American Community Survey 5-Year Estimates
    • 2016-2020 American Community Survey 5-Year Estimates
    • 2015-2019 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by Pacific Islander Population: This column displays the rank of cities in the Rich County, UT by their Native Hawaiian and Other Pacific Islander (NHPI) population, using the most recent ACS data available.
    • cities: The cities for which the rank is shown in the previous column.
    • Pacific Islander Population: The Pacific Islander population of the cities is shown in this column.
    • % of Total cities Population: This shows what percentage of the total cities population identifies as Pacific Islander. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total Rich County Pacific Islander Population: This tells us how much of the entire Rich County, UT Pacific Islander population lives in that cities. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: TThis column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  8. e

    CSB Social inequality and wealth distribution in the welfare state - Dataset...

    • b2find.eudat.eu
    Updated Apr 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CSB Social inequality and wealth distribution in the welfare state - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/8c6b5f0d-b71c-5463-858d-3e59cd74dd0a
    Explore at:
    Dataset updated
    Apr 7, 2024
    Description

    The CSB Minimum Income Protection Indicators database contains data on minimum income protection provisions for workers, people at working age not in work, and the elderly. Information on net disposable incomes is available since 1992 for 15 EU member states. From 2001 on, CSB-MIPI covers 27 countries, mostly EU member states. In addition, yearly time series on the evolution of gross benefit levels for the 1990s and 2000s are provided.

  9. T

    United States Government Revenues

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Government Revenues [Dataset]. https://tradingeconomics.com/united-states/government-revenues
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1980 - Aug 31, 2025
    Area covered
    United States
    Description

    Government Revenues in the United States increased to 344315 USD Million in August from 338492 USD Million in July of 2025. This dataset provides - United States Government Revenues- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  10. u

    Gridded Tree Mortality Area Data Set of the Western US and Oregon/Washington...

    • verso.uidaho.edu
    Updated Nov 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeffrey A Hicke (2024). Gridded Tree Mortality Area Data Set of the Western US and Oregon/Washington [Dataset]. https://verso.uidaho.edu/esploro/outputs/dataset/Gridded-Tree-Mortality-Area-Data-Set/996794512701851
    Explore at:
    Dataset updated
    Nov 5, 2024
    Dataset provided by
    University of Idaho
    Authors
    Jeffrey A Hicke
    Time period covered
    Nov 5, 2024
    Area covered
    Western United States, Oregon, United States
    Dataset funded by
    US Forest Service (United States, Washington) - USFS
    Description

    The USDA Forest Service has conducted aerial surveys annually to produce a rich geospatial data set that includes damage severity, year and location of damage, damage agent, and tree species. We used the data from the western United States (1997-2023) and from Washington and Oregon (1947-2023) to produce Version 4.1 of a gridded mortality area data set. Mortality area is the canopy area of killed trees. We converted the polygons of damage into 1-km resolution annual rasters by damage agent-host tree species combinations. The methods are described in Andrus et al., Forest Ecology and Management, 2025.

  11. T

    United States GDP Growth Contribution Exports

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +11more
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States GDP Growth Contribution Exports [Dataset]. https://tradingeconomics.com/united-states/gdp-growth-contribution-exports
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1947 - Jun 30, 2025
    Area covered
    United States
    Description

    GDP Growth Contribution Exports in the United States decreased to -0.20 percentage points in the second quarter of 2025 from 0.02 percentage points in the first quarter of 2025. This dataset includes a chart with historical data for the United States GDP Growth Contribution Exports.

  12. N

    cities in Rich County Ranked by Native American Population // 2025 Edition

    • neilsberg.com
    csv, json
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). cities in Rich County Ranked by Native American Population // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lists/cities-in-rich-county-ut-by-native-american-population/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rich County, Utah
    Variables measured
    Native American Population, Native American Population as Percent of Total Population of cities in Rich County, UT, Native American Population as Percent of Total Native American Population of Rich County, UT
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the racial categories identified by the U.S. Census Bureau. Based on the required racial category classification, we calculated the rank. For geographies with no population reported for the chosen race, we did not assign a rank and excluded them from the list. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories and do not rely on any ethnicity classification, unless explicitly required.For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 4 cities in the Rich County, UT by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2018-2022 American Community Survey 5-Year Estimates
    • 2017-2021 American Community Survey 5-Year Estimates
    • 2016-2020 American Community Survey 5-Year Estimates
    • 2015-2019 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by Native American Population: This column displays the rank of cities in the Rich County, UT by their American Indian and Alaska Native (AIAN) population, using the most recent ACS data available.
    • cities: The cities for which the rank is shown in the previous column.
    • Native American Population: The Native American population of the cities is shown in this column.
    • % of Total cities Population: This shows what percentage of the total cities population identifies as Native American. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total Rich County Native American Population: This tells us how much of the entire Rich County, UT Native American population lives in that cities. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: TThis column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  13. Q

    Data for: The Pandemic Journaling Project, Phase One (PJP-1)

    • data.qdr.syr.edu
    3gp +22
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah S. Willen; Sarah S. Willen; Katherine A. Mason; Katherine A. Mason (2024). Data for: The Pandemic Journaling Project, Phase One (PJP-1) [Dataset]. http://doi.org/10.5064/F6PXS9ZK
    Explore at:
    jpeg(-1), jpeg(64787), png(-1), jpeg(2635904), jpeg(2809706), jpeg(3128025), jpeg(3522579), mp4a(609792), jpeg(2715246), jpeg(564843), mp4a(1607020), jpeg(29277), jpeg(411392), jpeg(3219184), html(64045635), jpeg(1455187), jpeg(3953592), jpeg(445647), jpeg(3079564), png(858132), jpeg(3262275), jpeg(5268315), jpeg(1173279), mp4a(4746585), mp4a(506955), jpeg(2228793), jpeg(2399356), jpeg(1847185), png(1487656), mp4a(3329780), mp4a(1503462), bin(-1), jpeg(3226310), mp4a(2843558), jpeg(3161075), jpeg(2535033), jpeg(1814204), mp4a(1403036), jpeg(6831581), jpeg(3500892), jpeg(2063706), jpeg(2867362), jpeg(36303), mp4a(608702), jpeg(2174907), jpeg(2775382), mpga(3119325), pdf(-1), html(28046914), jpeg(2571274), qt(642282), gif(-1), bin(1475326), jpeg(1669679), jpeg(288031), mp4(16611275), jpeg(3758294), mp4a(1316029), mp4a(2192000), jpeg(51905), mpga(3284435), jpeg(47621), jpeg(806714), jpeg(3720630), mp4a(2496251), jpeg(2320221), jpeg(4266931), jpeg(3779944), jpeg(2036741), jpeg(73283), jpeg(460192), jpeg(81002), jpeg(1794407), jpeg(843851), jpeg(134732), bin(1324105), mp4(-1), html(3785552), bin(446182), jpeg(126557), jpeg(112141), jpeg(99013), jpeg(2763037), jpeg(2904103), mp4a(3455446), jpeg(2690540), mpga(3655410), jpeg(2348580), mp4a(8043573), jpeg(4103780), mp4a(2090318), jpeg(3309302), xlsx(34600), jpeg(3101557), qt(-1), jpeg(2597912), jpeg(197952), jpeg(528533), jpeg(2484777), jpeg(17026260), jpeg(31091), jpeg(1143472), jpeg(2705547), jpeg(4634609), mp4a(2427794), mp4a(865561), qt(6530289), jpeg(2750981), mp4a(431473), jpeg(4477949), jpeg(5588285), mp4a(1258547), jpeg(44679), jpeg(5718836), jpeg(2169748), mp4a(4727052), jpeg(4410466), jpeg(359020), jpeg(319878), jpeg(3348421), jpeg(2742034), jpeg(479908), jpeg(2871901), jpeg(754914), mpga(3369080), audio/vnd.dlna.adts(2291450), bin(925606), mp4a(1468479), mp4a(3505956), mp4a(934968), jpeg(94576), mp4a(954136), png(1217841), png(259675), jpeg(2768465), jpeg(7435869), mp4a(558160), jpeg(452676), jpeg(2614435), jpeg(2295874), jpeg(2985176), jpeg(2382774), jpeg(1836889), mp4a(714107), jpeg(3058184), png(4809397), png(291188), jpeg(476581), bin(315174), mp4a(963668), mp4a(1691796), jpeg(305566), jpeg(2340053), mp4a(1416194), jpeg(2187251), mp4a(1480696), jpeg(1224621), jpeg(799339), jpeg(2106618), mp4a(2234556), html(59903646), jpeg(1502693), jpeg(496111), mp4a(710717), pdf(791867), jpeg(2320307), mp4a(2723319), jpeg(2588596), qt(6524117), jpeg(706630), jpeg(1797399), jpeg(3578041), png(34340), jpeg(413917), jpeg(2018007), mp4a(1822023), mp4a(546214), jpeg(104863), png(505848), jpeg(3999644), jpeg(2202086), jpeg(1779668), webm(2501579), jpeg(3644901), mpga(61021), xlsx(19458121), jpeg(3678114), jpeg(3195259), mp4a(5998805), mp4a(1089264), mpga(1223745), png(79931), ogv(921344), mp4a(5290770), mp4a(537339), mp4a(2522582), mp4a(2757638), mp4a(902919), mp4a(3664250), jpeg(293524), jpeg(1611225), jpeg(78426), audio/vnd.dlna.adts(3577011), jpeg(1425684), jpeg(2114989), png(2239184), jpeg(3532208), jpeg(2599799), jpeg(4051592), mp4a(766677), bin(1140735), mp4a(1950073), jpeg(2482637), mp4a(9461846), mp4a(886225), mp4a(2275458), jpeg(3964175), png(7323654), mp4a(3407172), jpeg(1662239), jpeg(2738720), jpeg(2680408), jpeg(875989), mp4a(1135778), jpeg(3063173), mp4a(1044083), mp4a(3068302), jpeg(4586435), jpeg(944028), jpeg(65604), jpeg(803886), mp4a(3207845), jpeg(9303719), jpeg(1178560), mpga(1096992), mp4a(273265), jpeg(37593), jpeg(148529), jpeg(516395), html(799294), mp4a(1064123), jpeg(647105), jpeg(3412037), bin(3742158), jpeg(2343745), jpeg(2242087), jpeg(1153242), mp4a(700840), mp4a(614290), png(674974), mp4a(462181), mp4a(3341713), mp4a(5455315), bin(1700382), png(7882498), jpeg(3098020), jpeg(2781328), mp4a(3763168), jpeg(4431416), mp4a(1614389), jpeg(287296), jpeg(2681973), jpeg(2107304), pdf(332485), jpeg(2635452), audio/vnd.dlna.adts(3058005), mp4a(2448226), mp4a(1805349), mp4a(4150285), mp4a(204164), jpeg(2606693), jpeg(2626157), mp4a(1459294), jpeg(566696), jpeg(2543785), mp4a(369050), mp4(30391500), jpeg(4579297), jpeg(5172226), jpeg(1548860), mp4a(944403), html(640739), jpeg(147544), jpeg(3964519), jpeg(1776724), mp4a(2984325), bin(1595391), jpeg(320684), bin(48838), jpeg(4079596), jpeg(2144716), mp4a(1642287), bin(616420), jpeg(4110243), html(799551), png(1792687), mp4a(962844), jpeg(2625613), jpeg(2666985), jpeg(2722455), jpeg(36852), jpeg(40164), jpeg(111950), mp4a(1235641), mp4a(101692), mp4a(489606), mp4a(1202077), mp4a(4721088), jpeg(63112), jpeg(3627878), mp4a(2368173), jpeg(6463999), mp4a(558864), jpeg(2818575), jpeg(950258), jpeg(4870478), jpeg(4661936), mp4a(828006), png(135414), jpeg(1511423), mpga(2579649), mpga(6283555), jpeg(39553), pdf(141529), bin(1084358), jpeg(379064), jpeg(1305368), mpga(625262), jpeg(4847317), bin(116966), wav(3184824), png(166019), jpeg(804562), jpeg(443742), jpeg(2216857), jpeg(539445), jpeg(2166243), png(1796101), jpeg(1875257), png(1640881), jpeg(2545361), png(441607), jpeg(2890369), mp4a(441334), jpeg(3591325), jpeg(130755), png(170479), mp4a(2620611), mp4a(4518524), mp4a(6386348), jpeg(2467582), mp4a(1084240), jpeg(95788), jpeg(2619585), mp4(8919033), jpeg(4410537), bin(1049901), jpeg(4145168), jpeg(1015520), png(108417), jpeg(11074031), mp4a(1034473), html(479151), jpeg(2543166), jpeg(1867990), jpeg(1688053), html(640918), jpeg(3761476), mp4a(2043016), mp4a(1327650), bin(443069), mp4a(8236358), jpeg(3333029), mp4a(4192934), jpeg(1964105), jpeg(3303164), jpeg(7390050), jpeg(3982230), jpeg(3033149), mp4a(705651), jpeg(45398), jpeg(1013777), jpeg(3386166), jpeg(3610339), jpeg(79582), jpeg(2749667), jpeg(3103944), jpeg(197437), jpeg(1240130), mp4a(3140356), mp4a(2218267), jpeg(5765324), jpeg(103691), jpeg(83984), jpeg(4445333), mp4a(634555), png(2280208), jpeg(3823557), jpeg(704279), mp4a(1632575), jpeg(2986691), bin(481830), jpeg(2921224), docx(-1), mp4a(5352815), ogv(650885), jpeg(421521), jpeg(3832698), html(3025837), audio/vnd.dlna.adts(3763036), bin(161414), jpeg(3634921), jpeg(175071), png(156532), jpeg(38705), jpeg(2969378), png(1059022), mp4a(1110381), bin(1812775), jpeg(1434922), bin(1048366), audio/vnd.dlna.adts(1787003), mp4a(795300), jpeg(2146419), jpeg(3113325), png(2690433), jpeg(2955817), jpeg(1950597), jpeg(180961), jpeg(2921263), png(1187248), jpeg(3661093), bin(1638526), mp4a(3258141), mp4a(2299616), audio/vnd.dlna.adts(6828390), png(4625953), jpeg(1806678), mp4a(1442751), jpeg(3484297), mp4a(581212), jpeg(2358438), jpeg(5251366), mp4a(856519), jpeg(895955), mp4a(225192), jpeg(1857109), png(396961), jpeg(6504102), jpeg(3550057), bin(642950), bin(726730), jpeg(2937002), jpeg(2241215), jpeg(2848793), jpeg(114301), jpeg(6851150), jpeg(5412996), jpeg(5099807), jpeg(2352338), mp4a(1108249), jpeg(59955), jpeg(597941), png(822965), png(279993), mp4a(649729), jpeg(5327907), html(41982439), jpeg(3926818), jpeg(3811126), mpga(3150075), mp4a(851987), jpeg(2161975), jpeg(3049221), mp4(14723059), mp4a(1166746), jpeg(3929963), jpeg(32386), bin(647846), jpeg(943529), png(3558483), mp4a(496459), jpeg(554775), jpeg(673727), jpeg(1234744), mp4a(1614229), bin(1077286), jpeg(2321955), mp4(15102498), jpeg(1138223), jpeg(2821667), mp4a(4957829), jpeg(5267053), jpeg(3746852), xlsx(66430625), png(1781350), mp4(13377154), jpeg(2521556), jpeg(4363031), jpeg(38838), jpeg(1177161), jpeg(5648135), jpeg(3860593), jpeg(3191081), jpeg(4074964), jpeg(2592942), jpeg(70743), jpeg(47092), jpeg(17155), mp4a(5461865), jpeg(317565), jpeg(154225), jpeg(2641570), jpeg(1432979), jpeg(2996468), jpeg(2537158), jpeg(2126839), mp4a(3445663), jpeg(524301), jpeg(2577631), mp4a(999933), jpeg(212728), jpeg(3050628), jpeg(67402), jpeg(4528980), jpeg(48108), jpeg(2849620), mp4a(799189), jpeg(977868), mp4a(1114948), mp4a(1538194), jpeg(3539999), jpeg(732964), mp4a(1159815), jpeg(177432), png(5221994), mp4a(120084), jpeg(4880331), jpeg(2634063), jpeg(1018097), webp(-1), bin(878982), jpeg(5596898), png(356862), jpeg(33015), mp4a(1665024), jpeg(1110786), xlsx(27165), jpeg(2034603), jpeg(2410690), mp4a(2172212), jpeg(287142), jpeg(865631), jpeg(4371438), mp4a(505909), bin(2410811), mp4a(416617), qt(5205385), jpeg(1642459), jpeg(1864894), mp4a(1275342), jpeg(4389684), mp4a(1216743), jpeg(1645086), mp4a(1917929), jpeg(2202466), jpeg(3415224), mp4a(2687040), jpeg(4168896), jpeg(3608610), mp4a(847604), jpeg(2952649), jpeg(1632186), jpeg(482523), jpeg(3260717), wav(2205734), ogv(332111), mp4a(3028452), jpeg(5449171), jpeg(2190017), html(646595), jpeg(2046616), jpeg(363257), bin(2539604), audio/vnd.dlna.adts(13530010), html(8779436), mp4a(3988517), html(710893), bin(2108773), mp4a(938780), mp4a(1632058), mp4a(1781328), jpeg(6006498), mp4a(2011577), png(1867628), jpeg(3578276), qt(1377580), bin(498661), jpeg(3959637), jpeg(3553188), mp4a(1566800), html(9536819), jpeg(1795067), bin(593638), jpeg(68405), jpeg(937156), jpeg(4183531), mpga(1488238), jpeg(864405), jpeg(1365686), docx(12339), jpeg(578317), xlsx(52077), html(523486), jpeg(7547441), mp4a(1930783), jpeg(58628), mp4a(1145760), jpeg(3167708), mp4(31660079), jpeg(2489302), mp4a(1666611), xlsx(82776), jpeg(1827086), jpeg(1844434), jpeg(4555773), jpeg(3299756), mp4a(1140725), mp4a(531377), mp4a(3139464), mp4(24994984), ogv(408137), jpeg(2440831), png(497108), xlsx(88927), jpeg(859100), jpeg(3121852), png(3396851), mp4a(337657), jpeg(1938676), mpga(3748682), jpeg(3010539), png(618010), jpeg(120170), mp4a(691616), jpeg(4782980), jpeg(1882397), mp4a(847950), mp4a(579012), jpeg(3477933), jpeg(3332206), jpeg(1777340), jpeg(1779300), jpeg(3324446), bin(2111272), jpeg(134273), jpeg(2327041), mp4a(2112621), jpeg(2028706), jpeg(2253098), jpeg(87256), jpeg(4748410), jpeg(2262473), mp4a(3061773), jpeg(3853660), jpeg(489701), jpeg(2016316), mp4(48601545), jpeg(4110324), mp4a(750884), mp4a(1666390), jpeg(2729939), jpeg(887373), pdf(122363), mp4a(760877), jpeg(5047594), jpeg(3513429), mp4a(701592), mp4a(24233), jpeg(3878593), jpeg(955964), jpeg(1959028), mp4a(573738), jpeg(1607988), jpeg(121889), mp4a(1115213), bin(1173798), jpeg(6732180), jpeg(1945789), jpeg(5423032), jpeg(252261), jpeg(3546392), jpeg(1587693), jpeg(1303230), jpeg(1050632), mp4a(2957441), mp4a(2682346), bin(564582), jpeg(117534), jpeg(417971), jpeg(3639631), jpeg(3283728), bin(234118), png(2037576), jpeg(3095107), png(1185912), jpeg(3003672), mp4a(1307438), jpeg(142223), jpeg(6401219), bin(2429287), jpeg(3129315), jpeg(111760), jpeg(749493), mpga(5172750), jpeg(67155), mp4a(1303543), audio/vnd.dlna.adts(4340557), jpeg(3978187), jpeg(2696452), mp4a(1505002), jpeg(1750030), jpeg(7505927), jpeg(2638934), jpeg(3812323), bin(818310), jpeg(571235), jpeg(3256481), mp4a(1374945), png(357625), jpeg(5542820), mp4a(1981377), mp4a(2469218), jpeg(4044906), jpeg(37019), jpeg(1134103), bin(632006), jpeg(85234), mp4(11623573), bin(1030438), audio/vnd.dlna.adts(11278413), mp4a(6956199), xlsx(48995), mp4a(10021109), xlsx(224948556), jpeg(41894), jpeg(85137), bin(3540340), jpeg(1280936), xlsx(189425), bin(546822), html(1075544), png(1790553), mp4a(8341651), mp4a(1347344), jpeg(1837571), qt(2398526), jpeg(488375), png(652644), bin(709318), mp4a(512559), jpeg(1660933), mp4a(903487), jpeg(2355965), jpeg(3175474), mp4a(3235128), pdf(213974), jpeg(3105125), mp4a(1264503), jpeg(817070), jpeg(2858948), bin(1019282), jpeg(3172013), jpeg(2118129), png(856929), jpeg(3172905), mp4a(2083812), jpeg(3950185), 3gp(4189257), webp(13654), jpeg(3985986), jpeg(22928), html(496815), jpeg(2221272), jpeg(4526887), jpeg(3917797), jpeg(1579597), jpeg(4260674), jpeg(3155291), jpeg(939502), jpeg(3169133), jpeg(68283), jpeg(145275), audio/vnd.dlna.adts(4820134), mp4a(1195465), html(1694054), jpeg(155887), mp4a(3274925), mp4a(4613589), mpga(2386117), jpeg(41185), mp4a(1086359), mp4a(1151555), bin(1960531), jpeg(2149916), jpeg(2564893), wmv(50197262), mp4(26601787), jpeg(1997912), jpeg(2729245), mp4a(729599), mpga(3484030), jpeg(4728142), jpeg(5043578), mp4a(873556), mp4a(660082), jpeg(13696858), mp4a(1555980), jpeg(45747), jpeg(3178887), qt(28706733), jpeg(4509448), bin(381126), mp4a(661507), jpeg(495339), jpeg(138394), jpeg(85114), mpga(1449626), mp4a(3615513), jpeg(6130051), mp4a(13214859), mp4a(1702996), mp4a(562777), jpeg(2551565), mp4a(1176775), jpeg(16753), mpga(1784266), jpeg(377428), jpeg(3136525), mp4a(1115669), jpeg(64481), mp4a(2548754), jpeg(32021), bin(3983879), jpeg(1629680), pdf(121390), jpeg(2243229), jpeg(3134307), html(38240607), jpeg(8644181), jpeg(4566822), mpga(379781), mp4a(2068903), jpeg(599871), mp4a(8995283), jpeg(2507441), bin(1544294), jpeg(254462), jpeg(1915392), jpeg(1595555), mp4a(1073809), jpeg(40514), jpeg(535219), mp4a(1617110), xlsx(20756300), bin(1869989), jpeg(2381586), jpeg(35883), mpga(4061915), jpeg(917468), jpeg(3052078), mp4a(1901851), jpeg(131612), jpeg(1507898), jpeg(130590), jpeg(133876), jpeg(180752), jpeg(3552912), jpeg(172352), mp4a(2419697), mp4a(331293), jpeg(1583799), jpeg(840041), mp4a(1611680), bin(328166), jpeg(219612), jpeg(1656656), jpeg(4653342), mp4a(5608105), jpeg(2201474), wav(2818960), mp4a(936086), pdf(91460), mp4a(1601130), jpeg(659500), jpeg(100391), jpeg(2812452), mp4a(5629529), jpeg(1816312), jpeg(71716), pdf(295280), jpeg(2911219), jpeg(2471054), docx(31188), jpeg(4659509), png(105272), mp4a(959231), mp4a(1516084), mpga(5970561), jpeg(3668632), mp4a(1739564), jpeg(2058883), jpeg(1901789), mp4a(3134928), mp4a(1152026), jpeg(3523727), mp4a(760909), mp4a(1248111), mp4a(984328), audio/vnd.dlna.adts(934543), jpeg(2193720), jpeg(1401200), bin(919270), jpeg(529647), mp4a(1608171), mp4a(5154628), jpeg(1040846), mp4a(2360919), mp4a(1273706), jpeg(1766662), mp4a(291843), jpeg(3199783), jpeg(4440461), mp4a(2354743), html(983166), jpeg(4653818), jpeg(3216327), jpeg(12340), png(24722), jpeg(68398), audio/vnd.dlna.adts(9495356), mp4a(1911363), jpeg(363586), jpeg(3277514), jpeg(2684588), png(795810), mp4a(1244456), jpeg(59161), jpeg(1603743), mp4a(611153), jpeg(2500101), jpeg(3468457), mp4a(843462), jpeg(4005962), mp4a(912224), 3gp(5920182), jpeg(1714504), jpeg(2280388), mpga(4640203), jpeg(3332571), mp4a(1269110), jpeg(1788844), mp4a(4350631), mp4a(1496135), bin(1772535), mpga(371534), jpeg(4221720), mp4a(1486515), mp4a(3758180), jpeg(3413660), jpeg(3451347), mp4(6993330), bin(152038), jpeg(3535829), jpeg(3234324), tiff(-1), jpeg(2251269), jpeg(2600986), bin(1606725), bin(1615540), jpeg(629961), mp4a(1364069), jpeg(849628), jpeg(2384630), jpeg(854035), jpeg(1059910), mp4a(432261), jpeg(6803436), qt(2010499), mp4a(1222788), png(252350), mp4a(561403), mp4a(1301355), jpeg(78430), jpeg(153294), jpeg(3111015), jpeg(3506560), mp4a(1614765), mp4a(4359255), mp4a(1609908), jpeg(3129756), jpeg(1440858), jpeg(24096), mpga(6606764), mp4a(219517), wav(16120364), mp4a(1071439), jpeg(3293381), jpeg(112899), jpeg(2875869), jpeg(4948125), mp4a(1615299), png(3496115), mp4a(1986411), png(586680), jpeg(1897709), jpeg(2273020), jpeg(4022260), jpeg(377213), mp4a(1702687), html(4191543), jpeg(1398077), jpeg(2079488), jpeg(31946), jpeg(1243971), jpeg(2389859), qt(574596), mp4a(532776), jpeg(2730221), mp4a(510562), jpeg(2968414), mp4a(2145487), jpeg(496123), jpeg(4274950), png(548620), jpeg(2124741), png(5709270), jpeg(5322032), mp4a(304846), jpeg(2969836), jpeg(5084546), jpeg(173417), mpga(2814171), pdf(308146), png(7879), png(2155793), jpeg(1568444), jpeg(107669), jpeg(3844552), jpeg(5050854), mp4(59931145), jpeg(26777), bin(3681626), mp4a(1124596), txt(186920), jpeg(520311), bin(416102), mp4a(7284061), jpeg(40281), jpeg(657555), png(1437413), jpeg(2534845), jpeg(445866), jpeg(1237900), jpeg(4250838), bin(156966), tsv(733), qt(3177780), bin(864966), jpeg(11690), mp4a(3045602), mp4a(2449349), bin(748148), jpeg(1825738), jpeg(1990482), mpga(1190436), mp4a(5845364), mp4a(1448064), jpeg(3171202), bin(2501650), jpeg(2273265), mp4a(619603), jpeg(951877), jpeg(63914), mp4a(1271334), jpeg(1976245), mpga(4817983), jpeg(331201), jpeg(129869), jpeg(7445743), jpeg(5717518), jpeg(2968114), mp4a(693312), mp4a(264471), jpeg(5399866), jpeg(71431), jpeg(1519243), jpeg(1593696), mp4(4106014), mp4a(705329), mp4a(1148157), jpeg(6046515), mp4a(916096), jpeg(333207), jpeg(3138702), jpeg(417572), mpga(5269701), jpeg(145637), mp4a(802505), png(1017305), jpeg(17907), jpeg(3598845), jpeg(1155643), jpeg(2638302), mp4a(822545), bin(1493618), bin(906790), jpeg(154930), jpeg(953837), zip(11659935), mp4a(1214837), mp4a(1016151), mp4a(3515351), mp4a(3839771), mp4a(1256085), jpeg(4031381), mpga(3309399), jpeg(290224), png(459262), jpeg(48326), jpeg(4736590), jpeg(1964763), jpeg(2042850), jpeg(14911972), jpeg(981139), mp4(8726495), jpeg(455010), mp4a(2202351), jpeg(72668), mpga(970535), jpeg(12825578), mp4a(1931894), jpeg(1726579), jpeg(3996799), jpeg(2413680), jpeg(2299059), png(1038072), mp4a(1467032), jpeg(732955), jpeg(145129), jpeg(4057705), jpeg(1575841), mpga(4266613), jpeg(3444896), mp4a(1095447), jpeg(2423812), 3gp(11381321), png(477408), mp4a(1358807), pdf(155079), jpeg(822164), mp4a(3978276), png(316363), jpeg(3336796), bin(1495558), jpeg(874390), jpeg(278529), jpeg(942247), pdf(129862), jpeg(4954268), jpeg(2572775), jpeg(3062482), qt(89399945), jpeg(2128499), jpeg(2849921), png(1019045), mp4a(3170368), mpga(4747435), jpeg(1371393), jpeg(3550211), mp4a(942819), jpeg(2313418), jpeg(4887470), jpeg(91125), mp4a(2439271), jpeg(2764753), mp4a(3002959), bin(729766), jpeg(798303), bin(2204684)Available download formats
    Dataset updated
    Feb 15, 2024
    Dataset provided by
    Qualitative Data Repository
    Authors
    Sarah S. Willen; Sarah S. Willen; Katherine A. Mason; Katherine A. Mason
    License

    https://qdr.syr.edu/policies/qdr-restricted-access-conditionshttps://qdr.syr.edu/policies/qdr-restricted-access-conditions

    Time period covered
    May 29, 2020 - May 31, 2022
    Area covered
    Europe, Canada, United States, Central America, Mexico
    Description

    Project Summary This dataset contains all qualitative and quantitative data collected in the first phase of the Pandemic Journaling Project (PJP). PJP is a combined journaling platform and interdisciplinary, mixed-methods research study developed by two anthropologists, with support from a team of colleagues and students across the social sciences, humanities, and health fields. PJP launched in Spring 2020 as the COVID-19 pandemic was emerging in the United States. PJP was created in order to “pre-design an archive” of COVID-19 narratives and experiences open to anyone around the world. The project is rooted in a commitment to democratizing knowledge production, in the spirit of “archival activism” and using methods of “grassroots collaborative ethnography” (Willen et al. 2022; Wurtz et al. 2022; Zhang et al 2020; see also Carney 2021). The motto on the PJP website encapsulates these commitments: “Usually, history is written only by the powerful. When the history of COVID-19 is written, let’s make sure that doesn’t happen.” (A version of this Project Summary with links to the PJP website and other relevant sites is included in the public documentation of the project at QDR.) In PJP’s first phase (PJP-1), the project provided a digital space where participants could create weekly journals of their COVID-19 experiences using a smartphone or computer. The platform was designed to be accessible to as wide a range of potential participants as possible. Anyone aged 15 or older, living anywhere in the world, could create journal entries using their choice of text, images, and/or audio recordings. The interface was accessible in English and Spanish, but participants could submit text and audio in any language. PJP-1 ran on a weekly basis from May 2020 to May 2022. Data Overview This Qualitative Data Repository (QDR) project contains all journal entries and closed-ended survey responses submitted during PJP-1, along with accompanying descriptive and explanatory materials. The dataset includes individual journal entries and accompanying quantitative survey responses from more than 1,800 participants in 55 countries. Of nearly 27,000 journal entries in total, over 2,700 included images and over 300 are audio files. All data were collected via the Qualtrics survey platform. PJP-1 was approved as a research study by the Institutional Review Board (IRB) at the University of Connecticut. Participants were introduced to the project in a variety of ways, including through the PJP website as well as professional networks, PJP’s social media accounts (on Facebook, Instagram, and Twitter) , and media coverage of the project. Participants provided a single piece of contact information — an email address or mobile phone number — which was used to distribute weekly invitations to participate. This contact information has been stripped from the dataset and will not be accessible to researchers. PJP uses a mixed-methods research approach and a dynamic cohort design. After enrolling in PJP-1 via the project’s website, participants received weekly invitations to contribute to their journals via their choice of email or SMS (text message). Each weekly invitation included a link to that week’s journaling prompts and accompanying survey questions. Participants could join at any point, and they could stop participating at any point as well. They also could stop participating and later restart. Retention was encouraged with a monthly raffle of three $100 gift cards. All individuals who had contributed that month were eligible. Regardless of when they joined, all participants received the project’s narrative prompts and accompanying survey questions in the same order. In Week 1, before contributing their first journal entries, participants were presented with a baseline survey that collected demographic information, including political leanings, as well as self-reported data about COVID-19 exposure and physical and mental health status. Some of these survey questions were repeated at periodic intervals in subsequent weeks, providing quantitative measures of change over time that can be analyzed in conjunction with participants' qualitative entries. Surveys employed validated questions where possible. The core of PJP-1 involved two weekly opportunities to create journal entries in the format of their choice (text, image, and/or audio). Each week, journalers received a link with an invitation to create one entry in response to a recurring narrative prompt (“How has the COVID-19 pandemic affected your life in the past week?”) and a second journal entry in response to their choice of two more tightly focused prompts. Typically the pair of prompts included one focusing on subjective experience (e.g., the impact of the pandemic on relationships, sense of social connectedness, or mental health) and another with an external focus (e.g., key sources of scientific information, trust in government, or COVID-19’s economic impact). Each week,...

  14. United States COVID-19 Community Levels by County

    • healthdata.gov
    • odgavaprod.ogopendata.com
    • +1more
    application/rdfxml +5
    Updated Mar 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2022). United States COVID-19 Community Levels by County [Dataset]. https://healthdata.gov/CDC/United-States-COVID-19-Community-Levels-by-County/nn5b-j5u9
    Explore at:
    csv, application/rdfxml, application/rssxml, json, xml, tsvAvailable download formats
    Dataset updated
    Mar 8, 2022
    Dataset provided by
    data.cdc.gov
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials t

  15. w

    Dataset of artists who created First state of The Large Glass (supplementary...

    • workwithdata.com
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of artists who created First state of The Large Glass (supplementary suite, plate 1) from The Large Glass and Related Works, Vol. 1 [Dataset]. https://www.workwithdata.com/datasets/artists?f=1&fcol0=j0-artwork&fop0=%3D&fval0=First+state+of+The+Large+Glass+%28supplementary+suite%2C+plate+1%29+from+The+Large+Glass+and+Related+Works%2C+Vol.+1&j=1&j0=artworks
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about artists. It has 1 row and is filtered where the artworks is First state of The Large Glass (supplementary suite, plate 1) from The Large Glass and Related Works, Vol. 1. It features 9 columns including birth date, death date, country, and gender.

  16. d

    US Building Footprints | 43M+ Locations in the United States | Customise...

    • datarade.ai
    Updated Feb 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). US Building Footprints | 43M+ Locations in the United States | Customise your dataset [Dataset]. https://datarade.ai/data-products/us-building-footprints-43m-locations-in-the-united-states-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 13, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    United States
    Description

    Access 43M+ high-precision building footprints across the United States of America, enabling advanced mapping, location analysis, and strategic decision-making. With 30+ years of data expertise, we provide clean, validated, and enriched datasets to power businesses worldwide.

    • Expand market reach with global-scale, high-precision data.
    • Enhance mapping, navigation, and spatial analysis.
    • Optimize site selection, urban planning, and infrastructure development.
    • Improve logistics, delivery routes, and network optimization.
    • Assess property values, competitor landscapes, and demographic trends.
    • Strengthen disaster management and risk assessment with reliable insights.
    • Leverage AI-driven enrichment for deeper, data-driven decision-making.

    Our use cases demonstrate how our data has been beneficial and helped our customers in several key areas:

    1. Gain a Competitive Edge with Smarter Mapping: Use building footprint data to analyse competitors, identify high-traffic areas, and optimize locations for maximum market impact.
    2. Enhance Navigation & Last-Mile Efficiency: Improve customer experiences with precise building entrances, parking areas, and optimized routes for seamless navigation and delivery.
    3. Find the Perfect Site for Growth: Leverage building footprint data to select prime locations, maximize foot traffic, and drive higher sales.
    4. Optimize Energy & Infrastructure Planning: Assess rooftop solar potential, utility networks, and energy distribution for smarter, more efficient urban development.
    5. Improve Risk Assessment & Security: Use precise building data for insurance underwriting, security planning, and crime prevention strategies.
  17. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Sep 28, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 8:11 PM EASTERN ON SEPT. 30

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  18. T

    United States Imports of Vegetables and Fruits Sitc

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States Imports of Vegetables and Fruits Sitc [Dataset]. https://tradingeconomics.com/united-states/imports-of-vegetables-and-fruits-sitc
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1996 - Feb 29, 2024
    Area covered
    United States
    Description

    Imports of Vegetables and Fruits Sitc in the United States decreased to 4983 USD Million in February from 5105 USD Million in January of 2024. This dataset includes a chart with historical data for the United States Imports of Vegetables And Fruits Sitc.

  19. N

    Worth County, GA Median Household Income Trends (2010-2023, in 2023...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Worth County, GA Median Household Income Trends (2010-2023, in 2023 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/research/datasets/171a6dc3-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Worth County, Georgia
    Variables measured
    Median Household Income, Median Household Income Year on Year Change, Median Household Income Year on Year Percent Change
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It presents the median household income from the years 2010 to 2023 following an initial analysis and categorization of the census data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset illustrates the median household income in Worth County, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.

    Key observations:

    From 2010 to 2023, the median household income for Worth County increased by $2,872 (5.29%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.

    Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 7 years and declined for 6 years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Years for which data is available:

    • 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 0223

    Variables / Data Columns

    • Year: This column presents the data year from 2010 to 2023
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific year
    • YOY Change($): Change in median household income between the current and the previous year, in 2023 inflation-adjusted dollars
    • YOY Change(%): Percent change in median household income between current and the previous year

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Worth County median household income. You can refer the same here

  20. T

    United States Non Farm Payrolls

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Non Farm Payrolls [Dataset]. https://tradingeconomics.com/united-states/non-farm-payrolls
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Sep 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1939 - Aug 31, 2025
    Area covered
    United States
    Description

    Non Farm Payrolls in the United States increased by 22 thousand in August of 2025. This dataset provides the latest reported value for - United States Non Farm Payrolls - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Board of Governors of the Federal Reserve System (2024). Financial Accounts of the United States [Dataset]. https://catalog.data.gov/dataset/financial-accounts-of-the-united-states
Organization logoOrganization logo

Financial Accounts of the United States

Explore at:
Dataset updated
Dec 18, 2024
Dataset provided by
Federal Reserve Systemhttp://www.federalreserve.gov/
Federal Reserve Board of Governors
Area covered
United States
Description

The Financial Accounts of the United States includes data on transactions and levels of financial assets and liabilities, by sector and financial instrument; full balance sheets, including net worth, for households and nonprofit organizations, nonfinancial corporate businesses, and nonfinancial noncorporate businesses; Integrated Macroeconomic Accounts; and additional supplemental detail. These data are typically released during the second week of March, June, September, and December.

Search
Clear search
Close search
Google apps
Main menu