Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for AVERAGE HOUSE PRICES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" class="govuk-link">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The April 2025 release includes:
As we will be adding to the April data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset includes the listing prices for the sale of properties (mostly houses) in Ontario. They are obtained for a short period of time in July 2016 and include the following fields: - Price in dollars - Address of the property - Latitude and Longitude of the address obtained by using Google Geocoding service - Area Name of the property obtained by using Google Geocoding service
This dataset will provide a good starting point for analyzing the inflated housing market in Canada although it does not include time related information. Initially, it is intended to draw an enhanced interactive heatmap of the house prices for different neighborhoods (areas)
However, if there is enough interest, there will be more information added as newer versions to this dataset. Some of those information will include more details on the property as well as time related information on the price (changes).
This is a somehow related articles about the real estate prices in Ontario: http://www.canadianbusiness.com/blogs-and-comment/check-out-this-heat-map-of-toronto-real-estate-prices/
I am also inspired by this dataset which was provided for King County https://www.kaggle.com/harlfoxem/housesalesprediction
https://brightdata.com/licensehttps://brightdata.com/license
The Zoopla Dataset provides a detailed repository of information covering property listings available on the Zoopla platform. Tailored to support businesses, researchers, and analysts in the real estate sector, this dataset delivers valuable insights into market trends, property valuations, and consumer preferences within the real estate market.
With key attributes such as property details, pricing data, location information, and listing history, users can conduct thorough analyses to refine property investment strategies, assess market demand, and identify emerging trends.
Whether you're a real estate agent seeking to enhance your property listings, a researcher investigating trends in the housing market, or an analyst aiming to refine investment strategies, the Zoopla Dataset serves as an essential resource for unlocking opportunities and driving success in the competitive landscape of real estate
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset Overview This dataset provides a snapshot of real estate transactions in London for 2024. It includes key property details such as the number of bedrooms, bathrooms, living space size, lot size, and transaction price. Additionally, it incorporates information about property features like waterfront views, renovation history, and construction quality. Designed for educational and research purposes, the dataset offers insights into London's real estate market trends and serves as a valuable resource for data analysis and machine learning applications.
Data Science Applications This dataset is ideal for students, researchers, and professionals seeking to apply data science techniques to real-world real estate data. Potential applications include:
Exploratory Data Analysis (EDA): Investigate price trends, property characteristics, and geographical distribution of transactions. Price Prediction Models: Develop machine learning models to predict property prices based on features like size, location, and condition. Trend Analysis: Analyze historical and geographical trends in property prices and features. Geospatial Analysis: Map properties based on latitude and longitude to identify hotspots or underserved areas.
Column Descriptions
Column Name | Description |
---|---|
id | Unique identifier for the property listing. |
date | Transaction date in YYYYMMDDT000000 format. |
price | Sale price of the property in GBP (£). |
bedrooms | Number of bedrooms in the property. |
bathrooms | Number of bathrooms in the property. |
sqft_living | Living area size in square feet. |
sqft_lot | Lot size in square feet. |
floors | Number of floors in the property. |
waterfront | Indicates if the property has a waterfront view (1: Yes, 0: No). |
view | Property view rating (scale of 0–4). |
condition | Property condition rating (scale of 1–5, 5 being best). |
grade | Property construction and design rating (scale of 1–13, higher is better). |
sqft_above | Square footage of the property above ground level. |
sqft_basement | Square footage of the basement area. |
yr_built | Year the property was built. |
yr_renovated | Year the property was last renovated (0 if never renovated). |
zipcode | Zip code of the property's location. |
lat | Latitude coordinate of the property. |
long | Longitude coordinate of the property. |
sqft_living15 | Average living area square footage of 15 nearby properties. |
sqft_lot15 | Average lot size square footage of 15 nearby properties. |
Ethically Mined Data This dataset was ethically sourced from publicly available property listings. It does not include any Personally Identifiable Information (PII) or data that could infringe on individual privacy. All information represents public details about properties for sale in London.
Acknowledgements
Data Source: Real estate data provided from publicly accessible resources. Image Credit: Unsplash for real estate-themed visuals. Use this dataset responsibly for educational and analytical purposes!
Zillow Properties Listing dataset to access detailed real estate listings, including property prices, locations, and features. Popular use cases include market analysis, property valuation, and investment decision-making in the real estate sector.
Use our Zillow Properties Listing Information dataset to access detailed real estate listings, including property features, pricing trends, and location insights. This dataset is perfect for real estate agents, investors, market analysts, and property developers looking to analyze housing markets, identify investment opportunities, and assess property values.
Leverage this dataset to track pricing patterns, compare property features, and forecast market trends across different regions. Whether you're evaluating investment prospects or optimizing property listings, the Zillow Properties dataset offers essential information for making data-driven real estate decisions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average House Prices in Canada decreased to 689200 CAD in April from 697600 CAD in March of 2025. This dataset includes a chart with historical data for Canada Average House Prices.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Residential property values by type of property for Canada, provinces and territories, annual data from 2005 to today.
In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding 981,000 U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under 167,000 U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded nine percent in 2023.
What Makes Our Data Unique?
Inmuebles24’s Mexico Real Estate Listings Data offers an unparalleled level of detail and accuracy in the real estate sector. With over 100,000 meticulously curated property listings, this dataset is designed to provide users with the most comprehensive view of the Mexican real estate market. Each listing includes detailed metadata such as property type, location, pricing, and contact information, along with additional attributes like the number of bedrooms, bathrooms, and available amenities. Our data is enriched with precise geolocation coordinates, allowing for advanced spatial analysis and mapping applications.
Our dataset stands out for its up-to-date nature, with listings scraped and refreshed regularly to ensure that buyers and analysts always have access to the latest market trends. This dynamic approach to data curation means that users can trust the data for making informed decisions, whether they are monitoring market trends, conducting investment research, or developing real estate strategies.
How Is the Data Generally Sourced?
The data is sourced directly from Inmuebles24, one of Mexico's leading real estate marketplaces. We employ a robust web scraping infrastructure that captures the full breadth of listings available on the platform. Our scraping technology is designed to extract data efficiently, ensuring that we capture every relevant detail from the listings, including images, descriptions, pricing, and metadata. Each entry is validated and cleaned to remove any duplicates or outdated information, ensuring that the dataset is both comprehensive and reliable.
Primary Use-Cases and Verticals
This Data Product is particularly valuable across several key verticals:
Real Estate Investment Analysis: Investors can leverage this dataset to identify lucrative opportunities by analyzing property prices, location attributes, and market trends.
Market Research and Trends: Researchers can use the data to track the evolution of the real estate market in Mexico, identifying shifts in pricing, demand, and supply across various regions.
Property Development: Developers can assess the market landscape, understanding where new developments might meet the most demand based on the attributes and locations of current listings.
Urban Planning: Government and city planners can utilize the geolocation data to analyze urban sprawl, housing density, and other critical metrics for sustainable development.
Real Estate Marketing: Marketers and real estate agents can tailor their strategies based on detailed insights into the types of properties available, pricing trends, and consumer preferences.
How Does This Data Product Fit into Our Broader Data Offering?
This Mexico Real Estate Listings Data Product is part of our broader commitment to providing high-quality, actionable data across various sectors and geographies. Inmuebles24’s real estate data complements our extensive portfolio of data products that cater to industries such as financial services, marketing, and location-based services. By integrating this dataset with other data offerings, users can derive even deeper insights. For example, combining real estate data with consumer behavior data could unlock new dimensions of market research, enabling a more holistic approach to understanding market dynamics.
Our broader data offering is built around the principle of providing end-to-end data solutions that empower businesses to make data-driven decisions with confidence. Whether you’re a real estate investor, a market researcher, or a developer, our data products are designed to meet your needs with precision and reliability
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Property Prices Index By City 2009 to 2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jolenech/property-prices-index-by-city-2009-to-2021 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I wanted to see how affordable housing is across countries and wanted to compare the price of housing. But I could not find a properly documented and easily downloaded dataset hence I created one with the help of web-scraping with Python and Pandas.
I spent a lot of time searching for a source for the information I wanted in order to compare affordability. I stumbled upon a great website which was exactly what I was looking for Numbeo The website has a lot of details like affordability index, prime to income ratio, price to rent ratios in and out of city centre and more!
Now I had the data, I needed to download it. Since I couldn't get the raw form of the data, I did web scraping in order to get details in the table for 2009 to 2021 using a for loop to go through all links and create csv files for every year.
Details of columns Note: There are a few null values in the 2009 dataset (mortgage and Affordability Index columns.
Check out the code I used on Github.
I couldn't have gotten the data without Numbeo!
I was working on a project trying to see if Price of Housing in Singapore can be justified and wanted more data that's global instead of just from Singapore. Let me know if you have any questions!
--- Original source retains full ownership of the source dataset ---
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Average house prices are derived from data supplied by the mortgage lending agencies on loans approved by them rather than loans paid. In comparing house prices figures from one period to another, account should be taken of the fact that changes in the mix of houses (incl apartments) will affect the average figures. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. Measured in €
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Lucknow is capital of Indian State Uttar Pradesh. Lucknow is one of the most populous city in India with diverse working sectors. Learn More about Lucknow.
I collected prices of houses and its features on sale in different parts of Lucknow from online sources using web scrapping.
See Lucknow Housing Project on GitHub
This Project completed in 3 parts : - Data Collection using web scarping. - Data cleaning of raw file using Google Sheets and preparing it for analysis - Data analysis. See notebook here :
Note : NA Values in carpet area means value is 0. Image by Gino Crescoli from Pixabay
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Licensed under: Creative Commons Attribution 4.0
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Prior to 1974 the data was based on surveys of existing house sales in Dublin carried out by the Valuation Office on behalf of the D. O. E. Since 1974 the data has been based on information supplied by all lending agencies on the average price of mortgage financed existing house transactions. Average house prices are derived from data supplied by the mortgage lending agencies on loans approved by them rather than loans paid. In comparing house prices figures from one period to another, account should be taken of the fact that changes in the mix of houses (incl apartments) will affect the average figures. Data for 1969/1970 is not available for Cork, Limerick, Galway, Waterford and Other areas The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. National and Other Areas figure changed for 2015 on 27/6/15 as revised data received from Local Authorities Prices includes houses and apartments measured in €
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Croatia increased to 205.01 points in the fourth quarter of 2024 from 202.19 points in the third quarter of 2024. This dataset provides - Croatia Housing Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.
House prices in the second most populous state in the United States, Texas, have increased more than two-fold since 2011. In 2023, the median house price reached 335,100 U.S. dollars, a decrease of 1.4 percent from the previous year. Texas is one of the more affordable states for buying a home with house prices below the national average.
Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
License information was derived automatically
This dataset describes the evolution of the price per m2 in the department of Landes all types of housing and municipalities combined. It is made available through the portal immobilier Landes Les Clés du Midi. It is based on the sales transactions recorded at M-1 that the chart on price changes was set up. It allows, among other things, local real estate agencies as well as buyers to have a history of 7 years of prices per m2 on the Landes sector. This also allows them to have a quick overview of the market at a moment T. Every beginning of the month, the chart and its price curve in the department of Landes are updated to monitor the rises and falls of the market. It is also possible to consult the variations per m2 over time and by type of housing.
The UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_16_02_22" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
Google Chrome is blocking downloads of our UK HPI data files (Chrome 88 onwards). Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_16_02_22" class="govuk-link">Average price (CSV, 9.3MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_16_02_22" class="govuk-link">Average price by property type (CSV, 28.1MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_16_02_22" class="govuk-link">Sales (CSV, 4.7MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_16_02_22" class="govuk-link">Cash mortgage sales (CSV, 6.38MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_16_02_22" class="govuk-link">First time buyer and former owner occupier (CSV, 6.1MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_16_02_22" class="govuk-link">New build and existing resold property (CSV, 17MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_16_02_22" class="govuk-link">Index (CSV, 5.96MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_16_02_22" class="govuk-link">Index seasonally adjusted (CSV, 196KB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2021-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_16_02_22" class="govuk-link">Average price seasonally adjus
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth