Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of user, site, and network-centric approaches to web analytics data collection showing advantages, disadvantages, and examples of each approach at the time of the study.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Notice: You can check the new version 0.9.6 at the official page of Information Management Lab and at the Google Data Studio as well.
Now that the ICTs have matured, Information Organizations such as Libraries, Archives and Museums, also known as LAMs, proceed into the utilization of web technologies that are capable to expand the visibility and findability of their content. Within the current flourishing era of the semantic web, LAMs have voluminous amounts of web-based collections that are presented and digitally preserved through their websites. However, prior efforts indicate that LAMs suffer from fragmentation regarding the determination of well-informed strategies for improving the visibility and findability of their content on the Web (Vállez and Ventura, 2020; Krstić and Masliković, 2019; Voorbij, 2010). Several reasons related to this drawback. As such, administrators’ lack of data analytics competency in extracting and utilizing technical and behavioral datasets for improving visibility and awareness from analytics platforms; the difficulties in understanding web metrics that integrated into performance measurement systems; and hence the reduced capabilities in defining key performance indicators for greater usability, visibility, and awareness.
In this enriched and updated technical report, the authors proceed into an examination of 504 unique websites of Libraries, Archives and Museums from all over the world. It is noted that the current report has been expanded by up to 14,81% of the prior one Version 0.9.5 of 439 domains examinations. The report aims to visualize the performance of the websites in terms of technical aspects such as their adequacy to metadata description of their content and collections, their loading speed, and security. This constitutes an important stepping-stone for optimization, as the higher the alignment with the technical compliencies, the greater the users’ behavior and usability within the examined websites, and thus their findability and visibility level in search engines (Drivas et al. 2020; Mavridis and Symeonidis 2015; Agarwal et al. 2012).
One step further, within this version, we include behavioral analytics about users engagement with the content of the LAMs websites. More specifically, web analytics metrics are included such as Visit Duration, Pages per Visit, and Bounce Rates for 121 domains. We also include web analytics regarding the channels that these websites acquire their users, such as Direct traffic, Search Engines, Referral, Social Media, Email, and Display Advertising. SimilarWeb API was used to gather web data about the involved metrics.
In the first pages of this report, general information is presented regarding the names of the examined organizations. This also includes their type, their geographical location, information about the adopted Content Management Systems (CMSs), and web server software types of integration per website. Furthermore, several other data are visualized related to the size of the examined Information Organizations in terms of the number of unique webpages within a website, the number of images, internal and external links and so on.
Moreover, as a team, we proceed into the development of several factors that are capable to quantify the performance of websites. Reliability analysis takes place for measuring the internal consistency and discriminant validity of the proposed factors and their included variables. For testing the reliability, cohesion, and consistency of the included metrics, Cronbach’s Alpha (a), McDonald’s ω and Guttman λ-2 and λ-6 are used.
- For Cronbach’s, a range of .550 up to .750 indicates an acceptable level of reliability and .800 or higher a very good level (Ursachi, Horodnic, and Zait, 2015).
- McDonald’s ω indicator has the advantage to measure the strength of the association between the proposed variables. More specifically, the closer to .999 the higher the strength association between the variables and vice versa (Şimşek and Noyan, 2013).
- Gutman’s λ-2 and λ-6 work verifiably to Cronbach’s a as they estimate the trustworthiness of variance of the gathered web analytics metrics. Low values less than .450 indicate high bias among the harvested web metrics, while values higher than .600 and above increase the trustworthiness of the sample (Callender and Osburn, 1979).
-Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test of Sphericity indicators are used for measuring the cohesion of the involved metrics. KMO and Bartlett’s test indicates that the closer the value is to .999 amongst the involved items, the higher the cohesion and consistency of them for potential categorization (Dziuban and Shirkey, 1974).
Both descriptive statistics and reliability analyses were performed via JASP 0.14.1.0 software.
To this end, this report contributes to the knowledge expansion of all the interest parties and stakeholders related to the research topic of improving the visibility and findability of LAMs and their content on the Web. It constitutes a well-informed compass, that could be adopted by such organizations, in order to implement potential strategies that combine both domain knowledge and data-driven culture in terms of awareness optimization on the internet realm.
The whole project is managed and optimized on a weekly basis by a big young and smiley team of scientists (alphabetically referred in the next section). All of them are undergraduate students at the Department of Archival, Library and Information Studies of the University of West Attica.
They are responsible for the overall process of publishing the Technical Report which includes the initial organizations’ identification, and subsequently, websites testing, data gathering, curation and pre-processing, analysis, validation and visualization. Of course, the Team will continue to expand the capabilities of this report while involving new features, metrics, and further information regarding Libraries, Archives and Museums websites from all over the world.
Notice: includes a plurality of technical and behavioral factors and variables concerning the examined information organizations' websites. Potentially, more features will be included on the next versions.
Report Version 0.9.6 Correspondence: Ioannis C. Drivas (PhDc) idrivas@uniwa.gr | http://users.uniwa.gr/idrivas/ Research Lab of Information Management Department of Archival, Library Science and Information Studies University of West Attica.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Puff Bar, a disposable electronic nicotine delivery system (ENDS), was the ENDS brand most commonly used by U.S. youth in 2021. We explored whether Puff Bar’s rise in marketplace prominence was detectable through advertising, retail sales, social media, and web traffic data sources. We retrospectively documented potential signals of interest in and uptake of Puff Bar in the United States using metrics based on advertising (Numerator and Comperemedia), retail sales (NielsenIQ), social media (Twitter, via Sprinklr), and web traffic (Similarweb) data from January 2019 to June 2022. We selected metrics based on (1) data availability, (2) potential to graph metric longitudinally, and (3) variability in metric. We graphed metrics and assessed data patterns compared to data for Vuse, a comparator product, and in the context of regulatory events significant to Puff Bar. The number of Twitter posts that contained a Puff Bar term (social media), Puff Bar product sales measured in dollars (sales), and the number of visits to the Puff Bar website (web traffic) exhibited potential for surveilling Puff Bar due to ease of calculation, comprehensibility, and responsiveness to events. Advertising tracked through Numerator and Comperemedia did not appear to capture marketing from Puff Bar’s manufacturer or drive change in marketplace prominence. This study demonstrates how quantitative changes in metrics developed using advertising, retail sales, social media, and web traffic data sources detected changes in Puff Bar’s marketplace prominence. We conclude that low-effort, scalable, rapid signal detection capabilities can be an important part of a multi-component tobacco surveillance program.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of user, site, and network-centric approaches to web analytics data collection showing advantages, disadvantages, and examples of each approach at the time of the study.