67 datasets found
  1. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jul 31, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States increased to 4.20 percent in July from 4.10 percent in June of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. T

    United States Employment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Employment Rate [Dataset]. https://tradingeconomics.com/united-states/employment-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jul 31, 2025
    Area covered
    United States
    Description

    Employment Rate in the United States decreased to 59.60 percent in July from 59.70 percent in June of 2025. This dataset provides - United States Employment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. T

    United States Labor Force Participation Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Labor Force Participation Rate [Dataset]. https://tradingeconomics.com/united-states/labor-force-participation-rate
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jul 31, 2025
    Area covered
    United States
    Description

    Labor Force Participation Rate in the United States decreased to 62.20 percent in July from 62.30 percent in June of 2025. This dataset provides the latest reported value for - United States Labor Force Participation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  4. Job Offers Web Scraping Search

    • kaggle.com
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Job Offers Web Scraping Search [Dataset]. https://www.kaggle.com/datasets/thedevastator/job-offers-web-scraping-search
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 11, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Job Offers Web Scraping Search

    Targeted Results to Find the Optimal Work Solution

    By [source]

    About this dataset

    This dataset collects job offers from web scraping which are filtered according to specific keywords, locations and times. This data gives users rich and precise search capabilities to uncover the best working solution for them. With the information collected, users can explore options that match with their personal situation, skillset and preferences in terms of location and schedule. The columns provide detailed information around job titles, employer names, locations, time frames as well as other necessary parameters so you can make a smart choice for your next career opportunity

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset is a great resource for those looking to find an optimal work solution based on keywords, location and time parameters. With this information, users can quickly and easily search through job offers that best fit their needs. Here are some tips on how to use this dataset to its fullest potential:

    • Start by identifying what type of job offer you want to find. The keyword column will help you narrow down your search by allowing you to search for job postings that contain the word or phrase you are looking for.

    • Next, consider where the job is located – the Location column tells you where in the world each posting is from so make sure it’s somewhere that suits your needs!

    • Finally, consider when the position is available – look at the Time frame column which gives an indication of when each posting was made as well as if it’s a full-time/ part-time role or even if it’s a casual/temporary position from day one so make sure it meets your requirements first before applying!

    • Additionally, if details such as hours per week or further schedule information are important criteria then there is also info provided under Horari and Temps Oferta columns too! Now that all three criteria have been ticked off - key words, location and time frame - then take a look at Empresa (Company Name) and Nom_Oferta (Post Name) columns too in order to get an idea of who will be employing you should you land the gig!

      All these pieces of data put together should give any motivated individual all they need in order to seek out an optimal work solution - keep hunting good luck!

    Research Ideas

    • Machine learning can be used to groups job offers in order to facilitate the identification of similarities and differences between them. This could allow users to specifically target their search for a work solution.
    • The data can be used to compare job offerings across different areas or types of jobs, enabling users to make better informed decisions in terms of their career options and goals.
    • It may also provide an insight into the local job market, enabling companies and employers to identify where there is potential for new opportunities or possible trends that simply may have previously gone unnoticed

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: web_scraping_information_offers.csv | Column name | Description | |:-----------------|:------------------------------------| | Nom_Oferta | Name of the job offer. (String) | | Empresa | Company offering the job. (String) | | Ubicació | Location of the job offer. (String) | | Temps_Oferta | Time of the job offer. (String) | | Horari | Schedule of the job offer. (String) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit .

  5. u

    Labour Force Survey Two-Quarter Longitudinal Dataset, July - December, 2023

    • beta.ukdataservice.ac.uk
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2025). Labour Force Survey Two-Quarter Longitudinal Dataset, July - December, 2023 [Dataset]. http://doi.org/10.5255/ukda-sn-9301-2
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Office For National Statistics
    Description

    Background
    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    Longitudinal data
    The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.

    New reweighting policy
    Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.

    Additional data derived from the QLFS
    The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.

    Variables DISEA and LNGLST
    Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.

    An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.

    Occupation data for 2021 and 2022 data files

    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

    2022 Weighting

    The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.

    Latest edition information

    For the second edition (February 2025), the data file was resupplied with the 2024 weighting variable included (LGWT24).


  6. T

    United States Job Openings

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Job Openings [Dataset]. https://tradingeconomics.com/united-states/job-offers
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jul 29, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2000 - Jun 30, 2025
    Area covered
    United States
    Description

    Job Offers in the United States decreased to 7437 Thousand in June from 7712 Thousand in May of 2025. This dataset provides the latest reported value for - United States Job Openings - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  7. Indeed_Job_Posting_Index_Canada

    • kaggle.com
    Updated Aug 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    reetayan (2023). Indeed_Job_Posting_Index_Canada [Dataset]. https://www.kaggle.com/reet1992/indeed-job-posting-index-canada/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 29, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    reetayan
    Area covered
    Canada
    Description

    Introducing the Indeed Job Postings Index

    Hiring Lab's Job Postings Tracker is being re-released as the Indeed Job Postings Index. By Chris Glynn

    Indeed Hiring Lab is re-releasing our Job Postings Tracker as the Indeed Job Postings Index, a daily measure of labor market activity that is updated and will continue to be released weekly. Covering seven national markets in the US, Canada, United Kingdom, Ireland, France, Germany, and Australia, the Indeed Job Postings Index meets one of Hiring Lab’s primary goals: produce high quality and high frequency labor market metrics using Indeed’s proprietary data.

    The primary difference between the Indeed Job Postings Index and the legacy Job Postings Tracker is the level. The Indeed Job Postings Index is set to 100 on February 1, 2020, and this effectively provides a uniform level shift of 100 to the existing Job Postings Tracker across all time points.The Job Postings Tracker measured the percent change in postings from February 1st, 2020. For example, if the Job Postings Tracker were 40%, the corresponding Indeed Job Postings Index on the same date would be 140. Additionally, we are now including year-over-year and month-over-month percent changes in the Indeed Job Postings Index as part of our data portal on hiringlab.org/data and on our GitHub page. Month-over-month changes are calculated as 28 day (4 week) differences to control for day of week.

    As Covid-19 fades from the global labor market discussion, moving to an index better reflects current economic conditions. The Indeed Job Postings Index allows us to compare job postings more naturally across flexible date ranges as opposed to comparing to the pre-pandemic baseline. It also places Indeed’s job postings metric in a broader class of macroeconomic indexes such as the Case Shiller Index that measures house price appreciation and the Consumer Price Index that measures inflation.

    Data Schema Each market covered by a Hiring Lab economist has a folder in this repo. Each folder contains the following files:

    aggregate_job_postings_{country_code}.csv This file contains the % change in seasonally-adjusted postings since February 1, 2020 for total job postings and new jobs postings (on Indeed for 7 days or fewer) for that market, as well as non-seasonally adjusted postings since February 1, 2020 for total job postings.

    job_postings_by_sector_{country_code}.csv This file contains the % change in seasonally-adjusted postings since February 1, 2020 for occupational sectors for that market. We do not share sectoral data for Ireland.

    For certain markets, we also share subnational job postings trends. In the United States, we provide:

    metro_job_postings_us.csv This file contains the % change in seasonally-adjusted postings since February 1, 2020 for total job postings in US metropolitan areas with a population of at least 500,000 people.

    state_job_postings_us.csv This file contains the % change in seasonally-adjusted postings since February 1, 2020 for total job postings in the US states and the District of Columbia.

    In Canada, we provide:

    provincial_postings_ca.csv This file contains the % change in seasonally-adjusted postings since February 1, 2020 for total job postings in each Canadian provinces. In the United Kingdom, we provide:

    regional_postings_gb.csv This file contains the % change in seasonally-adjusted postings since February 1, 2020 for total job postings in each region in the UK.

    city_postings_gb.csv This file contains the % change in seasonally-adjusted postings since February 1, 2020 for total job postings in each city in the UK.

    Github link: https://github.com/hiring-lab/job_postings_tracker#data-schema Hiring Lab Link: https://www.hiringlab.org/2022/12/15/introducing-the-indeed-job-postings-index/

  8. Quarterly Labour Force Survey Household Dataset, January - March, 2022

    • beta.ukdataservice.ac.uk
    Updated 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2023). Quarterly Labour Force Survey Household Dataset, January - March, 2022 [Dataset]. http://doi.org/10.5255/ukda-sn-8966-3
    Explore at:
    Dataset updated
    2023
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office For National Statistics
    Description
    Background
    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    Household datasets
    Up to 2015, the LFS household datasets were produced twice a year (April-June and October-December) from the corresponding quarter's individual-level data. From January 2015 onwards, they are now produced each quarter alongside the main QLFS. The household datasets include all the usual variables found in the individual-level datasets, with the exception of those relating to income, and are intended to facilitate the analysis of the economic activity patterns of whole households. It is recommended that the existing individual-level LFS datasets continue to be used for any analysis at individual level, and that the LFS household datasets be used for analysis involving household or family-level data. From January 2011, a pseudonymised household identifier variable (HSERIALP) is also included in the main quarterly LFS dataset instead.

    Change to coding of missing values for household series
    From 1996-2013, all missing values in the household datasets were set to one '-10' category instead of the separate '-8' and '-9' categories. For that period, the ONS introduced a new imputation process for the LFS household datasets and it was necessary to code the missing values into one new combined category ('-10'), to avoid over-complication. This was also in line with the Annual Population Survey household series of the time. The change was applied to the back series during 2010 to ensure continuity for analytical purposes. From 2013 onwards, the -8 and -9 categories have been reinstated.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each volume alongside the appropriate questionnaire for the year concerned. However, LFS volumes are updated periodically by ONS, so users are advised to check the ONS
    LFS User Guidance page before commencing analysis.

    Additional data derived from the QLFS
    The Archive also holds further QLFS series: End User Licence (EUL) quarterly datasets; Secure Access datasets (see below); two-quarter and five-quarter longitudinal datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.

    End User Licence and Secure Access QLFS Household datasets
    Users should note that there are two discrete versions of the QLFS household datasets. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. Secure Access household datasets for the QLFS are available from 2009 onwards, and include additional, detailed variables not included in the standard EUL versions. Extra variables that typically can be found in the Secure Access versions but not in the EUL versions relate to: geography; date of birth, including day; education and training; household and family characteristics; employment; unemployment and job hunting; accidents at work and work-related health problems; nationality, national identity and country of birth; occurrence of learning difficulty or disability; and benefits. For full details of variables included, see data dictionary documentation. The Secure Access version (see SN 7674) has more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Changes to variables in QLFS Household EUL datasets
    In order to further protect respondent confidentiality, ONS have made some changes to variables available in the EUL datasets. From July-September 2015 onwards, 4-digit industry class is available for main job only, meaning that 3-digit industry group is the most detailed level available for second and last job.

    Review of imputation methods for LFS Household data - changes to missing values
    A review of the imputation methods used in LFS Household and Family analysis resulted in a change from the January-March 2015 quarter onwards. It was no longer considered appropriate to impute any personal characteristic variables (e.g. religion, ethnicity, country of birth, nationality, national identity, etc.) using the LFS donor imputation method. This method is primarily focused to ensure the 'economic status' of all individuals within a household is known, allowing analysis of the combined economic status of households. This means that from 2015 larger amounts of missing values ('-8'/-9') will be present in the data for these personal characteristic variables than before. Therefore if users need to carry out any time series analysis of households/families which also includes personal characteristic variables covering this time period, then it is advised to filter off 'ioutcome=3' cases from all periods to remove this inconsistent treatment of non-responders.

    Occupation data for 2021 and 2022 data files

    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

    Latest edition information

    For the third edition (September 2023), the variables NSECM20, NSECMJ20, SC2010M, SC20SMJ, SC20SMN and SOC20M have been replaced with new versions. Further information on the SOC revisions can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

  9. c

    Quarterly Labour Force Survey Household Dataset, October - December, 2024

    • datacatalogue.cessda.eu
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Quarterly Labour Force Survey Household Dataset, October - December, 2024 [Dataset]. http://doi.org/10.5255/UKDA-SN-9353-1
    Explore at:
    Dataset updated
    Mar 19, 2025
    Authors
    Office for National Statistics
    Time period covered
    Oct 1, 2024 - Dec 31, 2024
    Area covered
    United Kingdom
    Variables measured
    Families/households, National
    Measurement technique
    Compilation/Synthesis
    Description

    Abstract copyright UK Data Service and data collection copyright owner.

    Background
    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    Household datasets
    Up to 2015, the LFS household datasets were produced twice a year (April-June and October-December) from the corresponding quarter's individual-level data. From January 2015 onwards, they are now produced each quarter alongside the main QLFS. The household datasets include all the usual variables found in the individual-level datasets, with the exception of those relating to income, and are intended to facilitate the analysis of the economic activity patterns of whole households. It is recommended that the existing individual-level LFS datasets continue to be used for any analysis at individual level, and that the LFS household datasets be used for analysis involving household or family-level data. From January 2011, a pseudonymised household identifier variable (HSERIALP) is also included in the main quarterly LFS dataset instead.

    Change to coding of missing values for household series
    From 1996-2013, all missing values in the household datasets were set to one '-10' category instead of the separate '-8' and '-9' categories. For that period, the ONS introduced a new imputation process for the LFS household datasets and it was necessary to code the missing values into one new combined category ('-10'), to avoid over-complication. This was also in line with the Annual Population Survey household series of the time. The change was applied to the back series during 2010 to ensure continuity for analytical purposes. From 2013 onwards, the -8 and -9 categories have been reinstated.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each volume alongside the appropriate questionnaire for the year concerned. However, LFS volumes are updated periodically by ONS, so users are advised to check the ONS LFS User Guidance page before commencing analysis.

    Additional data derived from the QLFS
    The Archive also holds further QLFS series: End User Licence (EUL) quarterly datasets; Secure Access datasets (see below); two-quarter and five-quarter longitudinal datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.

    End User Licence and Secure Access QLFS Household datasets
    Users should note that there are two discrete versions of the QLFS household datasets. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. Secure Access household datasets for the QLFS are available from 2009 onwards, and include additional, detailed variables not included in the standard EUL versions. Extra variables that typically can be found in the Secure Access versions but not in the EUL versions relate to: geography; date of birth, including day; education and training; household and family characteristics; employment; unemployment and job hunting; accidents at work and work-related health problems; nationality, national identity and country of birth; occurrence of learning difficulty or disability; and benefits. For full details of variables included, see data dictionary documentation. The Secure Access version (see SN 7674) has more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of...

  10. Temporary Foreign Worker Program Labour Market Impact Assessment Statistics...

    • open.canada.ca
    csv, doc
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment and Social Development Canada (2025). Temporary Foreign Worker Program Labour Market Impact Assessment Statistics 2024Q1-2025Q1 [Dataset]. https://open.canada.ca/data/en/dataset/e8745429-21e7-4a73-b3f5-90a779b78d1e
    Explore at:
    csv, docAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    Ministry of Employment and Social Development of Canadahttp://esdc-edsc.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2024 - Mar 31, 2025
    Description

    Overview: Each quarter, the Temporary Foreign Worker Program (TFWP) publishes Labour Market Impact Assessment (LMIA) statistics on Open Government Data Portal, including quarterly and annual LMIA data related to, but not limited to, requested and approved TFW positions, employment location, employment occupations, sectors, TFWP stream and temporary foreign workers by country of origin. The TFWP does not collect data on the number of TFWs who are hired by an employer and have arrived in Canada. The decision to issue a work permit rests with Immigration, Refugees and Citizenship Canada (IRCC) and not all positions on a positive LMIA result in a work permit. For these reasons, data provided in the LMIA statistics cannot be used to calculate the number of TFWs that have entered or will enter Canada. IRCC publishes annual statistics on the number of foreign workers who are issued a work permit: https://open.canada.ca/data/en/dataset/360024f2-17e9-4558-bfc1-3616485d65b9. Please note that all quarterly tables have been updated to NOC 2021 (5 digit and training, education, experience and responsibilities (TEER) based). As such, Table 5, 8, 17, and 24 will no longer be updated but will remain as archived tables. Frequency of Publication: Quarterly LMIA statistics cover data for the four quarters of the previous calendar year and the quarter(s) of the current calendar year. Quarterly data is released within two to three months of the most recent quarter. The release dates for quarterly data are as follows: Q1 (January to March) will be published by early June of the current year; Q2 (April to June) will be published by early September of the current year; Q3 (July to September) will be published by early December of the current year; and Q4 (October to December) will be published by early March of the next year. Annual statistics cover eight consecutive years of LMIA data and are scheduled to be released in March of the next year. Published Data: As part of the quarterly release, the TFWP updates LMIA data for 28 tables broken down by: TFW positions: Tables 1 to 10, 12, 13, and 22 to 24; LMIA applications: Tables 14 to 18; Employers: Tables 11, and 19 to 21; and Seasonal Agricultural Worker Program (SAWP): Tables 25 to 28. In addition, the TFWP publishes 2 lists of employers who were issued a positive or negative LMIA: Employers who were issued a positive LMIA by Program Stream, NOC, and Business Location (https://open.canada.ca/data/en/dataset/90fed587-1364-4f33-a9ee-208181dc0b97/resource/b369ae20-0c7e-4d10-93ca-07c86c91e6fe); and Employers who were issued a negative LMIA by Program Stream, NOC, and Business Location (https://open.canada.ca/data/en/dataset/f82f66f2-a22b-4511-bccf-e1d74db39ae5/resource/94a0dbee-e9d9-4492-ab52-07f0f0fb255b). Things to Remember: 1. When data are presented on positive or negative LMIAs, the decision date is used to allocate which quarter the data falls into. However, when data are presented on when LMIAs are requested, it is based on the date when the LMIA is received by ESDC. 2. As of the publication of 2022Q1- 2023Q4 data (published in April 2024) and going forward, all LMIAs in support of 'Permanent Residence (PR) Only' are included in TFWP statistics, unless indicated otherwise. All quarterly data in this report includes PR Only LMIAs. Dual-intent LMIAs and corresponding positions are included under their respective TFWP stream (e.g., low-wage, high-wage, etc.) This may impact program reporting over time. 3. Attention should be given for data that are presented by ‘Unique Employers’ when it comes to manipulating the data within that specific table. One employer could be counted towards multiple groups if they have multiple positive LMIAs across categories such as program stream, province or territory, or economic region. For example, an employer could request TFWs for two different business locations, and this employer would be counted in the statistics of both economic regions. As such, the sum of the rows within these ‘Unique Employer’ tables will not add up to the aggregate total.

  11. EMP04: Employment by occupation

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated Sep 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2018). EMP04: Employment by occupation [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/datasets/employmentbyoccupationemp04
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 11, 2018
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This dataset has now been discontinued following a user consultation. However figures for employment by occupation, sourced from our Annual Population Survey are available on our NOMIS website.

  12. EMP13: Employment by industry

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). EMP13: Employment by industry [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/datasets/employmentbyindustryemp13
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Employment by industry and sex, UK, published quarterly, non-seasonally adjusted. Labour Force Survey. These are official statistics in development.

  13. Quarterly Labour Force Survey 2021, Quarter 2 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2021). Quarterly Labour Force Survey 2021, Quarter 2 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/4075
    Explore at:
    Dataset updated
    Oct 25, 2021
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2021
    Area covered
    South Africa
    Description

    Abstract

    The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (Stats SA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The QLFS sample covers the non-institutional population of South Africa with one exception. The only institutional subpopulation included in the QLFS sample are individuals in worker's hostels. Persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The QLFS uses a master sampling frame that is used by several household surveys conducted by Statistics South Africa. This wave of the QLFS is based on the 2013 master frame, which was created based on the 2011 census. There are 3324 PSUs in the master frame and roughly 33000 dwelling units.

    The sample for the QLFS is based on a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage.

    For each quarter of the QLFS, a quarter of the sampled dwellings are rotated out of the sample. These dwellings are replaced by new dwellings from the same PSU or the next PSU on the list. For more information see the statistical release.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The survey questionnaire consists of the following sections: - Biographical information (marital status, education, etc.) - Economic activities in the last week for persons aged 15 years and older - Unemployment and economic inactivity for persons aged 15 years and above - Main work activity in the last week for persons aged 15 years and above - Earnings in the main job for employees, employers and own-account workers aged 15 years and above

    From 2010 the income data collected by South Africa's Quarterly Labour Force Survey is no longer provided in the QLFS dataset (except for a brief return in QLFS 2010 Q3 which may be an error). Possibly because the data is unreliable at the level of the quarter, Statistics South Africa now provides the income data from the QLFS in an annualised dataset called Labour Market Dynamics in South Africa (LMDSA). The datasets for LMDSA are available from DataFirst's website.

  14. w

    Industrial Jobs Projections (City Area)

    • data.wfrc.org
    Updated Apr 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Industrial Jobs Projections (City Area) [Dataset]. https://data.wfrc.org/datasets/industrial-jobs-projections-city-area/explore
    Explore at:
    Dataset updated
    Apr 17, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  15. R

    Data from: The Age Twist in Employers' Gender Requests: Evidence from Four...

    • dataverse.iza.org
    • datasets.iza.org
    docx, zip
    Updated Nov 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter J. Kuhn; Shen, Kailing; Miguel Delgado Helleseter; Peter J. Kuhn; Shen, Kailing; Miguel Delgado Helleseter (2023). The Age Twist in Employers' Gender Requests: Evidence from Four Job Boards [Dataset]. http://doi.org/10.15185/izadp.9891.1
    Explore at:
    zip(66854), docx(44055), zip(1534971)Available download formats
    Dataset updated
    Nov 6, 2023
    Dataset provided by
    Research Data Center of IZA (IDSC)
    Authors
    Peter J. Kuhn; Shen, Kailing; Miguel Delgado Helleseter; Peter J. Kuhn; Shen, Kailing; Miguel Delgado Helleseter
    License

    https://www.iza.org/wc/dataverse/IIL-1.0.pdfhttps://www.iza.org/wc/dataverse/IIL-1.0.pdf

    Time period covered
    2008 - 2010
    Area covered
    China, Mexico
    Description

    When permitted by law, employers sometimes state the preferred age and gender of their employees in job ads. The researchers study the interaction of advertised requests for age and gender on one Mexican and three Chinese job boards, showing that firms’ explicit gender requests shift dramatically away from women and towards men when firms are seeking older (as opposed to younger) workers. This ‘age twist’ in advertised gender preferences occurs in all four of our datasets and survives controls for occupation, firm, and job title fixed effects. Chinese Data The two new Chinese data sources used are job boards serving the city of Xiamen. In part because Xiamen was one of the five economic zones established immediately after China’s 1979 economic reforms, it is highly modernized relative to other Chinese cities, with an economy based on electronics, machinery and chemical engineering. One of these job boards, XMZYJS (the Xia-Zhang-Quan city public job board) is operated directly by government employees of the local labor bureau. Like state-operated Job Centers in the U.S., XMZYJS has a history as a brick-and-mortar employment service. XMZYJS’s mandate is to serve the less-skilled portion of the area’s labor market, and operates purely as a jobposting service: workers cannot post resumes or apply to jobs on the site. In fact, while XMZYJS now posts all its job ads online, many of these ads are viewed in XMZYJS‘s offices by workers who visit in person. This is done both on individual computer terminals and on a large electronic wall display. Applications are made by calling the company that placed the ad or by coming to a specific window on XMZYJS’s premises that has been reserved by the employer at a posted date and time. The second Xiamen-based job board, XMRC , is a for-profit, privately-operated company that is sponsored by the local government. Its mandate is to serve the market for skilled workers in the Xiamen metropolitan area. XMRC operates like a typical U.S. job board: both job ads and resumes are posted online, workers can submit applications to specific jobs via the site, and firms can contact individual workers through the site as well. By design, XMZYJS aggregates job postings from all local and specialized job boards for less-skilled workers in the metropolitan area, and XMRC is the main job board for skilled workers in the area. While there is potentially some cross-posting of job ads across the two sites, descriptive statistics on the types of jobs on offer suggest the sites do, indeed, serve very different populations. Like all our data sets, XMZYJS and XMRC serve private sector employers almost exclusively. Recruiting for public sector jobs, and most recruiting for State-Owned-Enterprises (SOEs) takes place via a different process. The third Chinese database represents Zhaopin as the third-largest Internet job board in China; it operates nationally and serves workers who on average are considerably more skilled than even those on XMRC. This sample is based on all unique ads posted in four five-week observation periods in 2008-2010. In contrast to XMRC and XMZYJS where the data were supplied by the job boards, the Zhaopin data were collected by a web crawler. The sample is based on all unique ads posted in four five-week observation periods in 2008-2010. The Chinese data have 141,188, 39,727, and 1,051,038 ads in the XMZYJS, XMRC and Zhaopin samples respectively. Mexican Data The Mexican data allows to ascertain whether main results extend to a nation with different economic conditions, labor market institutions and culture. The Mexican data is a sample of job ads posted on Computrabajo. Of the new data sets explored, the Computrabajo data are most similar to Zhaopin in the sense that they come from a national online site that disproportionately serves highly skilled workers. To construct an analysis sample from the Computrabajo website, the authors collected advertisements daily for approximately 18 months between early 2011 and mid-2012 using a web crawler. Both the standardized fields and the open text portions of each ad were parsed to extract variables for the analysis. Computrabajo analysis sample contains 90,487 ads.

  16. Country

    • giscommons-countyplanning.opendata.arcgis.com
    • indianamap.org
    • +8more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Country [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/esri::country-11
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: May 2025 (preliminary values at the county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: July 18th, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  17. Labour force characteristics, monthly, seasonally adjusted and trend-cycle

    • www150.statcan.gc.ca
    • moropho.click
    • +2more
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Labour force characteristics, monthly, seasonally adjusted and trend-cycle [Dataset]. http://doi.org/10.25318/1410028701-eng
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of persons in the labour force (employment and unemployment), unemployment rate, participation rate and employment rate by data type (seasonally adjusted and trend-cycle), gender and age group. Data are also available for the standard error of the estimate, the standard error of the month-to-month change and the standard error of the year-over-year change.

  18. State

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +10more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). State [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/esri::bureau-of-labor-statistics-monthly-unemployment-latest-14-months?layer=1
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: May 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: July 2nd, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  19. e

    Labour Force Survey Five-Quarter Longitudinal Dataset, April 2022 - June...

    • b2find.eudat.eu
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Labour Force Survey Five-Quarter Longitudinal Dataset, April 2022 - June 2023 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/914879b6-819d-5145-b612-55680d40307c
    Explore at:
    Dataset updated
    Jun 15, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner.Background The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation. Longitudinal data The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary. LFS Documentation The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.Occupation data for 2021 and 2022 data filesThe ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.2022 WeightingThe population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust. Main Topics:The five-quarter longitudinal datasets include a subset of the most commonly used variables from the Quarterly Labour Force Survey (QLFS), covering the main areas of the survey. See documentation for details Compilation or synthesis of existing material the datasets were created from existing QLFS data. They do not contain all records, but only those of respondents of working age who have responded to the survey in all the periods being linked. The data therefore comprise approximately one third of all QLFS variables. Cases were linked using the QLFS panel design.

  20. e

    Quarterly Labour Force Survey, 1992-2023: Secure Access - Dataset - B2FIND

    • b2find.eudat.eu
    Updated May 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Quarterly Labour Force Survey, 1992-2023: Secure Access - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/ebb33ca5-aeed-51ba-90d1-709d86c94efe
    Explore at:
    Dataset updated
    May 4, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner. Background The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation. Secure Access QLFS data Secure Access datasets for the QLFS are available from the April-June 1992 quarter, and include additional, detailed variables not included in the standard 'End User Licence' (EUL) versions (see under GN 33246). Extra variables that typically can be found in the Secure Access versions but not in the EUL relate to:geography (see 'Spatial Units' below)date of birth, including dayeducation and training: including type of 'other qualifications', more detail regarding the number of O'levels/GCSE passes, type of qualification gained in last 12 months, class of first degree, type of degree held, UK country of highest degree, type of current educational institution, level of Welsh baccalaureate, activities to improve knowledge or skills in last 12 months, attendance at adult learning taught courses, attendance at leisure or educational classes, self-teaching, payment of job-related training feeshousehold and family characteristics: including number of family units (and extended family units) with dependent children only, and with non-dependent children only, total number of family units with more than one person, total number of eligible people, type of household, type of family unit, number of bedroomsemployment: including industry code of main job, whether working full-time or part-time, reason job is temporary, payment of own National Insurance and tax, when started working at previous job, whether paid or self-employed in previous job, contracts with employment agencyunemployment and job hunting: including main reason for not being employed prior to current job, reasons for leaving job (provision of care or other personal/family reasons), use of internet for job hunting, if and when will work in the futuretemporary leave from work: including proportion of salary received and duration of leaveaccidents at work and work-related health problemsnationality, national identity and country of birth: including whether lived continuously in UK, month of most recent arrival to UK, frequency of Welsh speakingoccurrence of learning difficulty or disabilitybenefits, including additional variables on type of benefits claimed and tax credit paymentsSecure Access versions of QLFS household datasets are available from 2009 under SN 7674. Prospective users of a Secure Access version of the QLFS will need to fulfil additional requirements, commencing with the completion of an extra application form to demonstrate to the data owners exactly why they need access to the extra, more detailed variables, in order to obtain permission to use that version. Secure Access users must also complete face-to-face training and agree to Secure Access' User Agreement (see 'Access' section below). Therefore, users are encouraged to download and inspect the EUL version of the data prior to ordering the Secure Access version. Well-Being variables are not included in the LFS Users should note that subjective well-being variables (Satis, Worth, Happy, Anxious and Sad) are not available on the LFS, despite being referenced in the questionnaire. Users who wish to analyse well-being variables should apply for the Annual Population Survey instead (see SNs 6721 and 7961). LFS Documentation The documentation available from the Archive to accompany LFS datasets largely consists of the relevant versions of each volume of the user guide. However, LFS volumes are updated periodically by ONS, so users are advised to check the ONS LFS User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.The study documentation presented in the Documentation section includes the most recent documentation for the LFS only, due to available space. Documentation for previous years is provided alongside the data for access and is also available upon request. Variables DISEA and LNGLST Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.Latest Edition InformationFor the thirty-eighth edition (October 2023), a new data file for April-June 2023 and a new 2023 variable catalogue have been added to the study. Main Topics: The QLFS questionnaire comprises a 'core' of questions which are included in every survey, together with some 'non-core' questions which vary from quarter to quarter. The questionnaire can be split into two main parts. The first part contains questions on the respondent's household, family structure, basic housing information and demographic details of household members. The second part contains questions covering economic activity, education and health, and also may include a few questions asked on behalf of other government departments (for example the Department for Work and Pensions and the Home Office). Until 1997, the questions on health focussed on problems that affect the respondent's work. Since then, the questions have covered all health problems. Detailed questions on income have also been included in each quarter since 1993. The basic questionnaire is revised each year, and a new version published, along with a transitional version that details changes from the previous year's questionnaire. Four sampling frames are used. See documentation for details.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate

United States Unemployment Rate

United States Unemployment Rate - Historical Dataset (1948-01-31/2025-07-31)

Explore at:
125 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, csv, jsonAvailable download formats
Dataset updated
Jul 3, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1948 - Jul 31, 2025
Area covered
United States
Description

Unemployment Rate in the United States increased to 4.20 percent in July from 4.10 percent in June of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu