100+ datasets found
  1. z

    GAPs Data Repository on Return: Guideline, Data Samples and Codebook

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zeynep Sahin Mencutek; Zeynep Sahin Mencutek; Fatma Yılmaz-Elmas; Fatma Yılmaz-Elmas (2025). GAPs Data Repository on Return: Guideline, Data Samples and Codebook [Dataset]. http://doi.org/10.5281/zenodo.14862490
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    RedCAP
    Authors
    Zeynep Sahin Mencutek; Zeynep Sahin Mencutek; Fatma Yılmaz-Elmas; Fatma Yılmaz-Elmas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The GAPs Data Repository provides a comprehensive overview of available qualitative and quantitative data on national return regimes, now accessible through an advanced web interface at https://data.returnmigration.eu/.

    This updated guideline outlines the complete process, starting from the initial data collection for the return migration data repository to the development of a comprehensive web-based platform. Through iterative development, participatory approaches, and rigorous quality checks, we have ensured a systematic representation of return migration data at both national and comparative levels.

    The Repository organizes data into five main categories, covering diverse aspects and offering a holistic view of return regimes: country profiles, legislation, infrastructure, international cooperation, and descriptive statistics. These categories, further divided into subcategories, are based on insights from a literature review, existing datasets, and empirical data collection from 14 countries. The selection of categories prioritizes relevance for understanding return and readmission policies and practices, data accessibility, reliability, clarity, and comparability. Raw data is meticulously collected by the national experts.

    The transition to a web-based interface builds upon the Repository’s original structure, which was initially developed using REDCap (Research Electronic Data Capture). It is a secure web application for building and managing online surveys and databases.The REDCAP ensures systematic data entries and store them on Uppsala University’s servers while significantly improving accessibility and usability as well as data security. It also enables users to export any or all data from the Project when granted full data export privileges. Data can be exported in various ways and formats, including Microsoft Excel, SAS, Stata, R, or SPSS for analysis. At this stage, the Data Repository design team also converted tailored records of available data into public reports accessible to anyone with a unique URL, without the need to log in to REDCap or obtain permission to access the GAPs Project Data Repository. Public reports can be used to share information with stakeholders or external partners without granting them access to the Project or requiring them to set up a personal account. Currently, all public report links inserted in this report are also available on the Repository’s webpage, allowing users to export original data.

    This report also includes a detailed codebook to help users understand the structure, variables, and methodologies used in data collection and organization. This addition ensures transparency and provides a comprehensive framework for researchers and practitioners to effectively interpret the data.

    The GAPs Data Repository is committed to providing accessible, well-organized, and reliable data by moving to a centralized web platform and incorporating advanced visuals. This Repository aims to contribute inputs for research, policy analysis, and evidence-based decision-making in the return and readmission field.

    Explore the GAPs Data Repository at https://data.returnmigration.eu/.

  2. a

    External Evaluation of the In Their Hands Programme - Kenya., Round 2 -...

    • microdataportal.aphrc.org
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damazo Kadengye, PhD (2022). External Evaluation of the In Their Hands Programme - Kenya., Round 2 - Kenya [Dataset]. https://microdataportal.aphrc.org/index.php/catalog/128
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset provided by
    Damazo Kadengye, PhD
    Yohannes Dibaba Wado, PhD
    Time period covered
    2019
    Area covered
    Kenya
    Description

    Abstract

    Abstract

    Background: Adolescent girls in Kenya are disproportionately affected by early and unintended pregnancies, unsafe abortion and HIV infection. The In Their Hands (ITH) programme in Kenya aims to increase adolescents' use of high-quality sexual and reproductive health (SRH) services through targeted interventions. ITH Programme aims to promote use of contraception and testing for sexually transmitted infections (STIs) including HIV or pregnancy, for sexually active adolescent girls, 2) provide information, products and services on the adolescent girl's terms; and 3) promote communities support for girls and boys to access SRH services.

    Objectives: The objectives of the evaluation are to assess: a) to what extent and how the new Adolescent Reproductive Health (ARH) partnership model and integrated system of delivery is working to meet its intended objectives and the needs of adolescents; b) adolescent user experiences across key quality dimensions and outcomes; c) how ITH programme has influenced adolescent voice, decision-making autonomy, power dynamics and provider accountability; d) how community support for adolescent reproductive and sexual health initiatives has changed as a result of this programme.

    Methodology ITH programme is being implemented in two phases, a formative planning and experimentation in the first year from April 2017 to March 2018, and a national roll out and implementation from April 2018 to March 2020. This second phase is informed by an Annual Programme Review and thorough benchmarking and assessment which informed critical changes to performance and capacity so that ITH is fit for scale. It is expected that ITH will cover approximately 250,000 adolescent girls aged 15-19 in Kenya by April 2020. The programme is implemented by a consortium of Marie Stopes Kenya (MSK), Well Told Story, and Triggerise. ITH's key implementation strategies seek to increase adolescent motivation for service use, create a user-defined ecosystem and platform to provide girls with a network of accessible subsidized and discreet SRH services; and launch and sustain a national discourse campaign around adolescent sexuality and rights. The 3-year study will employ a mixed-methods approach with multiple data sources including secondary data, and qualitative and quantitative primary data with various stakeholders to explore their perceptions and attitudes towards adolescents SRH services. Quantitative data analysis will be done using STATA to provide descriptive statistics and statistical associations / correlations on key variables. All qualitative data will be analyzed using NVIVO software.

    Study Duration: 36 months - between 2018 and 2020.

    Geographic coverage

    Homabay,Kakamega,Nakuru and Nairobi counties

    Analysis unit

    Private health facilities that provide T-safe services under the In Their Hands(ITH) Program.

    Universe

    1.Adolescent girls aged 15-19 who enrolled on the T-safe platform and received services and those who enrolled but did not receive services from the ITH facilities. 2.Service providers incharge of provision of T-safe services in the ITH facilities. 3.Mobilisers incharge of adolescent girls aged 15-19 recruitment into the T-safe program.

    Sampling procedure

    Qualitative Sampling

    IDI participants were selected purposively from ITH intervention areas and facilities located in the four ITH intervention counties; Homa Bay, Nakuru, Kakamega and Nairobi respectively which were selected for the midline survey. Study participants were identified from selected intervention facilities. We interviewed one service provider of adolescent friendly ITH services per facility. Additionally, we conducted IDI's with adolescent girls' who were enrolled and using/had used the ITH platform to access reproductive health services or enrolled but may not have accessed the services for other reasons.

    Sample coverage We successfully conducted a total of 122 In-depth Interviews with 54 adolescents enrolled on the T-Safe platform, including those who received services and those who were enrolled but did not receive services, 39 IDIS with service providers and 29 IDIs with mobilizers. The distribution per county included 51 IDI's in Nairobi City County (24 with adolescent girls, 17 with service providers and 10 with mobilisers), 15 IDI's in Nakuru County (2 with adolescent girls,8 with service providers and 5 with mobilisers), 34 IDI's in Homa Bay County (18 with adolescent girls,8 with service providers and 8 with mobilisers) and 22 IDI's in Kakamega County (10 with adolescent girls,6 with service providers and another 6 with mobilisers.)

    Sampling deviation

    N/A

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The midline evaluation included qualitative in-depth interviews with adolescent T-Safe users, adolescents enrolled in the platform but did not use the services, providers and mobilizers to assess the adolescent user experience and quality of services as well as provider accountability under the T-Safe program. Generally,the aim of the qualitative study was to assess adolescents' T-Safe users experience across quality dimensions as well as provider's experiences and accountability. The dimensions assessed include adolescent's journey with the platforms, experience with the platform, perceptions of quality of services and how the ITH platforms changed provider behavior and accountability.

    Adolescent in-depth interview included:Adolescent journey,Barriers to adolescents access to SRH services,Community attitudes towards adolescent use of contraceptives,Decision making,Factors influencing decision to visit a clinic,Motivating factors for girls to join ITH,Notable changes since the introduction of ITH,Parental support ,and Perceptions about T-Safe.

    Service providers in-depth interview included;Personal and professional background,Provider's experience with ITH/T-safe platform,Notable changes/influences since the introduction of ITH/T-safe,Influence/Impact on the preference of adolescent service users and health care providers as a result of the program,Impact/influence of ITH on quality of care,Facilitators and barriers for adolescents to access SRH services,Mechanisms to address the barriers,Challenges related to the facility,Feedback about facility from adolescents,Types of support needed to improve SRH services provided to adolescents Scenarios of different clients accessing SRH services,and Free node.

    Mobilisers in-depth interview included;Mobilizer responsibilities and designation,Job description,Motivation for joining ITH,Personal and professional background,Training,Mobilizer roles in ITH,Mobilization process ,Experience with ITH platform,Key messages shared with adolescent about ITH/ Tsafe during enrollment,Motivating factors for adolescents to join ITH/Tsafe,Community's attitude towards ITH/Tsafe,Challenges faced by mobilizers when mobilizing adolescents for Tsafe,Adolescents view regarding platform,Addressing the challenges ,andFree node

    Cleaning operations

    Qualitative interviews were audio-recorded and the audio recordings were transmitted to APHRC study team by uploading the audios to google drive which was only accessible to the team. Related interview notes, participant's description forms and Informed consent forms were transported to APHRC offices in Nairobi at the end of data collection where the data transcription and coding was conducted. Audio recordings from qualitative interviews were transcribed and saved in MS Word format. The transcripts were stored electronically in password protected computers and were only accessible to the evaluation team working on the project. A qualitative software analysis program (NVIVO) was used to assist in coding and analyzing the data. A “thematic analysis” approach was used to organize and analyze the data, and to assist in the development of a codebook and coding scheme. Data was analyzed by first reading the full IDI transcripts, becoming familiar with the data and noting the themes and concepts that emerged. A thematic framework was developed from the identified themes and sub-themes and this was then used to create codes and code the raw data.

    Response rate

    N/A

    Sampling error estimates

    N/A

  3. n

    Substance Abuse and Mental Health Data Archive

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Substance Abuse and Mental Health Data Archive [Dataset]. http://identifiers.org/RRID:SCR_007002
    Explore at:
    Dataset updated
    Sep 10, 2024
    Description

    Database of the nation''s substance abuse and mental health research data providing public use data files, file documentation, and access to restricted-use data files to support a better understanding of this critical area of public health. The goal is to increase the use of the data to most accurately understand and assess substance abuse and mental health problems and the impact of related treatment systems. The data include the U.S. general and special populations, annual series, and designs that produce nationally representative estimates. Some of the data acquired and archived have never before been publicly distributed. Each collection includes survey instruments (when provided), a bibliography of related literature, and related Web site links. All data may be downloaded free of charge in SPSS, SAS, STATA, and ASCII formats and most studies are available for use with the online data analysis system. This system allows users to conduct analyses ranging from cross-tabulation to regression without downloading data or relying on other software. Another feature, Quick Tables, provides the ability to select variables from drop down menus to produce cross-tabulations and graphs that may be customized and cut and pasted into documents. Documentation files, such as codebooks and questionnaires, can be downloaded and viewed online.

  4. Stata code for analysis

    • catalog.data.gov
    • datasets.ai
    Updated Jan 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2021). Stata code for analysis [Dataset]. https://catalog.data.gov/dataset/stata-code-for-analysis
    Explore at:
    Dataset updated
    Jan 19, 2021
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This is STATA software code for analysis on publicly available NHANES data

  5. d

    Download statistics GESIS Data Archive

    • da-ra.de
    Updated Apr 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS - Data Archive for the Social Sciences (2018). Download statistics GESIS Data Archive [Dataset]. http://doi.org/10.4232/1.12979
    Explore at:
    Dataset updated
    Apr 27, 2018
    Dataset provided by
    GESIS Data Archive
    da|ra
    Authors
    GESIS - Data Archive for the Social Sciences
    Time period covered
    Jan 1, 2004 - Dec 31, 2017
    Description

    General information: The data sets contain information on how often materials of studies available through GESIS: Data Archive for the Social Sciences were downloaded and/or ordered through one of the archive´s plattforms/services between 2004 and 2017.

    Sources and plattforms: Study materials are accessible through various GESIS plattforms and services: Data Catalogue (DBK), histat, datorium, data service (and others).

    Years available: - Data Catalogue: 2012-2017 - data service: 2006-2017 - datorium: 2014-2017 - histat: 2004-2017

    Data sets: Data set ZA6899_Datasets_only_all_sources contains information on how often data files such as those with dta- (Stata) or sav- (SPSS) extension have been downloaded. Identification of data files is handled semi-automatically (depending on the plattform/serice). Multiple downloads of one file by the same user (identified through IP-address or username for registered users) on the same days are only counted as one download.

    Data set ZA6899_Doc_and_Data_all_sources contains information on how often study materials have been downloaded. Multiple downloads of any file of the same study by the same user (identified through IP-address or username for registered users) on the same days are only counted as one download.

    Both data sets are available in three formats: csv (quoted, semicolon-separated), dta (Stata v13, labeled) and sav (SPSS, labeled). All formats contain identical information.

    Variables: Variables/columns in both data sets are identical. za_nr ´Archive study number´ version ´GESIS Archiv Version´ doi ´Digital Object Identifier´ StudyNo ´Study number of respective study´ Title ´English study title´ Title_DE ´German study title´ Access ´Access category (0, A, B, C, D, E)´ PubYear ´Publication year of last version of the study´ inZACAT ´Study is currently also available via ZACAT´ inHISTAT ´Study is currently also available via HISTAT´ inDownloads ´There are currently data files available for download for this study in DBK or datorium´ Total ´All downloads combined´ downloads_2004 ´downloads/orders from all sources combined in 2004´ [up to ...] downloads_2017 ´downloads/orders from all sources combined in 2017´ d_2004_dbk ´downloads from source dbk in 2004´ [up to ...] d_2017_dbk ´downloads from source dbk in 2017´ d_2004_histat ´downloads from source histat in 2004´ [up to ...] d_2017_histat ´downloads from source histat in 2017´ d_2004_dataservice ´downloads/orders from source dataservice in 2004´ [up to ...] d_2017_dataservice ´downloads/orders from source dataservice in 2017´

    More information is available within the codebook.

  6. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  7. h

    NATCOOP dataset

    • heidata.uni-heidelberg.de
    csv, docx, pdf, tsv +1
    Updated Jan 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Diekert; Florian Diekert; Robbert-Jan Schaap; Robbert-Jan Schaap; Tillmann Eymess; Tillmann Eymess (2022). NATCOOP dataset [Dataset]. http://doi.org/10.11588/DATA/GV8NBL
    Explore at:
    docx(90179), pdf(432619), csv(3441765), docx(499022), tsv(86553), pdf(473493), pdf(856157), pdf(467245), docx(101203), pdf(351653), pdf(576588), pdf(200225), pdf(124038), type/x-r-syntax(14339), pdf(345323), pdf(69467), docx(43108), pdf(268168), docx(493800), docx(25110), docx(43036), pdf(270379), pdf(77960), pdf(464499), pdf(392748), docx(42158), pdf(374488), docx(498354), pdf(282466), pdf(482954), pdf(302513), pdf(513748), pdf(126342), docx(33772), tsv(2313475), pdf(441389), pdf(92836), pdf(392718)Available download formats
    Dataset updated
    Jan 27, 2022
    Dataset provided by
    heiDATA
    Authors
    Florian Diekert; Florian Diekert; Robbert-Jan Schaap; Robbert-Jan Schaap; Tillmann Eymess; Tillmann Eymess
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBLhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBL

    Time period covered
    Jan 1, 2017 - Jan 1, 2021
    Dataset funded by
    European Commission
    Description

    The NATCOOP project set out to study how nature shapes the preferences and incentives of economic agents and how this in turn affects common-pool resource management. Imagine a group of fishermen targeting a species that requires a lot of teamwork to harvest. Do these fishers become more social over time compared to fishers that work in a more solitary manner? If so, does this have implications for how the fishery should be managed? To study this, the NATCOOP team travelled to Chile and Tanzania and collected data using surveys and economic experiments. These two very different countries have a large population of small-scale fishermen, and both host several distinct types of fisheries. Over the course of five field trips, the project team surveyed more than 2500 fishermen with each field trip contributing to the main research question by measuring fishermen’s preferences for cooperation and risk. Additionally, each fieldtrip aimed to answer another smaller research question that was either focused on risk taking or cooperation behavior in the fisheries. The data from both surveys and experiments are now publicly available and can be freely studied by other researchers, resource managers, or interested citizens. Overall, the NATCOOP dataset contains participants’ responses to a plethora of survey questions and their actions during incentivized economic experiments. It is available in both the .dta and .csv format, and its use is recommended with statistical software such as R or Stata. For those unaccustomed with statistical analysis, we included a video tutorial on how to use the data set in the open-source program R.

  8. o

    Data from: Disproportionate impacts of COVID-19 on marginalized and...

    • openicpsr.org
    Updated Jun 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hannah M. Douglas (2022). Disproportionate impacts of COVID-19 on marginalized and minoritized early-career academic scientists [Dataset]. http://doi.org/10.3886/E172961V1
    Explore at:
    Dataset updated
    Jun 19, 2022
    Dataset provided by
    University of Michigan
    Authors
    Hannah M. Douglas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 2021 - May 2021
    Area covered
    United States
    Description

    Project summary: The CLIMBS-UP survey examined experiences of early-career scholars in economics, biology, physics, and psychology. In the paper associated with these data, we examined the differential negative impacts that marginalized early career scholars experienced due to the COVID-19 pandemic compared to more privileged groups. Participants were doctoral students (n = 2,687), postdoctoral scholars (n = 335), and assistant professors (n = 221) who completed an online survey administered in April and May 2021 (note, responses shared in the data file are only from those who completed at least 94% of the survey, there were an additional 323 respondents who did not complete the full survey). Participants were recruited from four STEM fields (biology, economics, physics, and psychology) at 124 different departments in the United States that were randomly selected and stratified by prestige based on the 2011 National Research Council S-rankings. We divided all departments in the four fields into terciles reflecting top, middle, and bottom tier rankings and randomly selected 10 departments per field/tercile. We oversampled Minority Serving Institutions (MSIs) to ensure at least one MSI was represented in each tier. The STATA data file contains information only for the outcome variables (COVID impacts and job outcomes) for the associated paper (Douglas, Settles, Cech, et al., under review) and does not include any identifiable demographic information other than field and career stage (COV19outcomes.dta). This project also includes a copy of the questionnaire only containing survey items used for the associated paper (COV19survey.pdf).Method: We asked participants to rate the amount of change they have experienced in their research progress, workload, concern about career advancement, and support from mentor(s). They were also asked about their disruptions to work due to life challenges including physical health problems, mental health problems, and additional caretaking responsibilities. We compared these impacts across seven socio-demographic statuses (ie., gender, race, caregiving status, disability status, sexual identity, first generation undergraduate status, and career stage). As the analyses use multiple demographic characteristics that can be used to identify participants, the data file here is limited to career stage, field, and all reported outcome variables including COVID-19 impacts, job satisfaction, professional role confidence, turnover intentions, and burnout. Below is a description of each variable in the downloadable Stata data file (COV19outcomes.dta).

  9. d

    Data from: A Cluster Randomized Controlled Trial of the Safe Public Spaces...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). A Cluster Randomized Controlled Trial of the Safe Public Spaces in Schools Program, New York City, 2016-2018 [Dataset]. https://catalog.data.gov/dataset/a-cluster-randomized-controlled-trial-of-the-safe-public-spaces-in-schools-program-ne-2016-f67d7
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    New York
    Description

    This study tests the efficacy of an intervention--Safe Public Spaces (SPS) -- focused on improving the safety of public spaces in schools, such as hallways, cafeterias, and stairwells. Twenty-four schools with middle grades in a large urban area were recruited for participation and were pair-matched and then assigned to either treatment or control. The study comprises four components: an implementation evaluation, a cost study, an impact study, and a community crime study. Community-crime-study: The community crime study used the arrest of juveniles from the NYPD (New York Police Department) data. The data can be found at (https://data.cityofnewyork.us/Public-Safety/NYPD-Arrests-Data-Historic-/8h9b-rp9u). Data include all arrest for the juvenile crime during the life of the intervention. The 12 matched schools were identified and geo-mapped using Quantum GIS (QGIS) 3.8 software. Block groups in the 2010 US Census in which the schools reside and neighboring block groups were mapped into micro-areas. This resulted in twelve experimental school blocks and 11 control blocks which the schools reside (two of the control schools existed in the same census block group). Additionally, neighboring blocks using were geo-mapped into 70 experimental and 77 control adjacent block groups (see map). Finally, juvenile arrests were mapped into experimental and control areas. Using the ARIMA time-series method in Stata 15 statistical software package, arrest data were analyzed to compare the change in juvenile arrests in the experimental and control sites. Cost-study: For the cost study, information from the implementing organization (Engaging Schools) was combined with data from phone conversations and follow-up communications with staff in school sites to populate a Resource Cost Model. The Resource Cost Model Excel file will be provided for archiving. This file contains details on the staff time and materials allocated to the intervention, as well as the NYC prices in 2018 US dollars associated with each element. Prices were gathered from multiple sources, including actual NYC DOE data on salaries for position types for which these data were available and district salary schedules for the other staff types. Census data were used to calculate benefits. Impact-evaluation: The impact evaluation was conducted using data from the Research Alliance for New York City Schools. Among the core functions of the Research Alliance is maintaining a unique archive of longitudinal data on NYC schools to support ongoing research. The Research Alliance builds and maintains an archive of longitudinal data about NYC schools. Their agreement with the New York City Department of Education (NYC DOE) outlines the data they receive, the process they use to obtain it, and the security measures to keep it safe. Implementation-study: The implementation study comprises the baseline survey and observation data. Interview transcripts are not archived.

  10. H

    TRF-GIS Stata Package

    • dataverse.harvard.edu
    Updated Nov 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Victor Gay (2021). TRF-GIS Stata Package [Dataset]. http://doi.org/10.7910/DVN/XRMIVP
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 30, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Victor Gay
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/5.0/customlicense?persistentId=doi:10.7910/DVN/XRMIVPhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/5.0/customlicense?persistentId=doi:10.7910/DVN/XRMIVP

    Time period covered
    Sep 4, 1870 - Jul 10, 1940
    Dataset funded by
    ANR
    Description

    This dataset contains the files used to run the trfgis Stata package, which gives an integrated access to data of the TRF-GIS Dataverse. This is the alpha version of the trfgis Stata package.

  11. z

    Galvanising the Open Access Community: A Study on the Impact of Plan S -...

    • zenodo.org
    bin, csv
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    W. Benedikt Schmal; W. Benedikt Schmal (2024). Galvanising the Open Access Community: A Study on the Impact of Plan S - Data and Code [Dataset]. http://doi.org/10.5281/zenodo.12523229
    Explore at:
    csv, binAvailable download formats
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    Scidecode
    Authors
    W. Benedikt Schmal; W. Benedikt Schmal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the datasets and code underpinning Chapter 3 "Counterfactual Impact Evaluation of Plan S" of the report "Galvanising the Open Access Community: A Study on the Impact of Plan S" commissioned by the cOAlition S to scidecode science consulting.

    Two categories of files are part of this repository:

    1. Datasets

    The 21 CSV source files contain the subsets of publications funded by the funding agencies that are part of this study. These files have been provided by OA.Works, with whom scidecode has collaborated for the data collection process. Data sources and collection and processing workflows applied by OA.Works are described on their website and specifically at https://about.oa.report/docs/data.

    The file "plan_s.dta" is the aggregated data file stored in the format ".dta", which can be accessed with STATA by default or with plenty of programming languages using the respective packages, e.g., R or Python.

    2. Code files

    The associated code files that have been used to process the data files are:

     - data_prep_and_analysis_script.do
    - coef_plots_script.R

    The first file has been used to process the CSV data files above for data preparation and analysis purposes. Here, data aggregation and data preprocessing is executed. Furthermore, all statistical regressions for the ounterfactual impact evaluation are listed in this code file. The second code file "coef_plots_script.R" uses the computed results of the counterfactual impact evaluation to create the final graphic plots using the ggplot2 package.

    The first ".do" file has to be run in STATA, the second one (".R") requires the use of an integrated development environment for R.

    Further Information are avilable in the final report and via the followng URLs:
    https://www.coalition-s.org/
    https://scidecode.com/
    https://oa.works/
    https://openalex.org/
    https://sites.google.com/view/wbschmal
  12. c

    2 INDIVIDUAL ( Sections 1 2 3 5) v4 (stata 11)

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Assistant Secretary for Policy (2022). 2 INDIVIDUAL ( Sections 1 2 3 5) v4 (stata 11) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/2-individual-sections-1-2-3-5-v4-stata-11
    Explore at:
    Dataset updated
    Oct 8, 2022
    Dataset provided by
    Office of Assistant Secretary for Policy
    Description

    Restricted Use data from the ILAB Philippines study

  13. m

    Panel dataset on Brazilian fuel demand

    • data.mendeley.com
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergio Prolo (2024). Panel dataset on Brazilian fuel demand [Dataset]. http://doi.org/10.17632/hzpwbp7j22.1
    Explore at:
    Dataset updated
    Oct 7, 2024
    Authors
    Sergio Prolo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    Summary : Fuel demand is shown to be influenced by fuel prices, people's income and motorization rates. We explore the effects of electric vehicle's rates in gasoline demand using this panel dataset.

    Files : dataset.csv - Panel dimensions are the Brazilian state ( i ) and year ( t ). The other columns are: gasoline sales per capita (ln_Sg_pc), prices of gasoline (ln_Pg) and ethanol (ln_Pe) and their lags, motorization rates of combustion vehicles (ln_Mi_c) and electric vehicles (ln_Mi_e) and GDP per capita (ln_gdp_pc). All variables are all under the natural log function, since we use this to calculate demand elasticities in a regression model.

    adjacency.csv - The adjacency matrix used in interaction with electric vehicles' motorization rates to calculate spatial effects. At first, it follows a binary adjacency formula: for each pair of states i and j, the cell (i, j) is 0 if the states are not adjacent and 1 if they are. Then, each row is normalized to have sum equal to one.

    regression.do - Series of Stata commands used to estimate the regression models of our study. dataset.csv must be imported to work, see comment section.

    dataset_predictions.xlsx - Based on the estimations from Stata, we use this excel file to make average predictions by year and by state. Also, by including years beyond the last panel sample, we also forecast the model into the future and evaluate the effects of different policies that influence gasoline prices (taxation) and EV motorization rates (electrification). This file is primarily used to create images, but can be used to further understand how the forecasting scenarios are set up.

    Sources: Fuel prices and sales: ANP (https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp) State population, GDP and vehicle fleet: IBGE (https://www.ibge.gov.br/en/home-eng.html?lang=en-GB) State EV fleet: Anfavea (https://anfavea.com.br/en/site/anuarios/)

  14. c

    1 MAIN (Sections 0 4 5 6 7 8 9 10) v4 (stata 11)

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Assistant Secretary for Policy (2022). 1 MAIN (Sections 0 4 5 6 7 8 9 10) v4 (stata 11) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/1-main-sections-0-4-5-6-7-8-9-10-v4-stata-11
    Explore at:
    Dataset updated
    Oct 8, 2022
    Dataset provided by
    Office of Assistant Secretary for Policy
    Description

    Restricted Use data from the ILAB Philippines study

  15. Effects of community management on user activity in online communities

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alberto Cottica; Alberto Cottica (2025). Effects of community management on user activity in online communities [Dataset]. http://doi.org/10.5281/zenodo.1320261
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alberto Cottica; Alberto Cottica
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and code needed to reproduce the results of the paper "Effects of community management on user activity in online communities", available in draft here.

    Instructions:

    1. Unzip the files.
    2. Start with JSON files obtained from calling platform APIs: each dataset consists of one file for posts, one for comments, one for users. In the paper we use two datasets, one referring Edgeryders, the other to Matera 2019.
    3. Run them through edgesense (https://github.com/edgeryders/edgesense). Edgesense allows to set the length of the observation period. We set it to 1 week and 1 day for Edgeryders data, and to 1 day for Matera 2019 data. Edgesense stores its results in a file called JSON network.min.json, which we then rename to keep track of the data source and observation length.
    4. Launch Jupyter Notebook and run the notebook provided to convert the network.min.json files into CSV flat files, one for each netwrk file
    5. Launch Stata and open each flat csv files with it, then save it in Stata format.
    6. Use the provided Stata .do scripts to replicate results.

    Please note: I use both Stata and Jupyter Notebook interactively, running a block with a few lines of code at a time. Expect to have to change directories, file names etc.

  16. p

    High Frequency Phone Survey, Continuous Data Collection 2023 - Papua New...

    • microdata.pacificdata.org
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Seitz (2025). High Frequency Phone Survey, Continuous Data Collection 2023 - Papua New Guinea [Dataset]. https://microdata.pacificdata.org/index.php/catalog/877
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Darian Naidoo
    William Seitz
    Time period covered
    2023 - 2025
    Area covered
    Papua New Guinea
    Description

    Abstract

    Access to up-to-date socio-economic data is a widespread challenge in Papua New Guinea and other Pacific Island Countries. To increase data availability and promote evidence-based policymaking, the Pacific Observatory provides innovative solutions and data sources to complement existing survey data and analysis. One of these data sources is a series of High Frequency Phone Surveys (HFPS), which began in 2020 as a way to monitor the socio-economic impacts of the COVID-19 Pandemic, and since 2023 has grown into a series of continuous surveys for socio-economic monitoring. See https://www.worldbank.org/en/country/pacificislands/brief/the-pacific-observatory for further details.

    For PNG, after five rounds of data collection from 2020-2022, in April 2023 a monthly HFPS data collection commenced and continued for 18 months (ending September 2024) –on topics including employment, income, food security, health, food prices, assets and well-being. This followed an initial pilot of the data collection from January 2023-March 2023. Data for April 2023-September 2023 were a repeated cross section, while October 2023 established the first month of a panel, which is ongoing as of March 2025. For each month, approximately 550-1000 households were interviewed. The sample is representative of urban and rural areas but is not representative at the province level. This dataset contains combined monthly survey data for all months of the continuous HFPS in PNG. There is one date file for household level data with a unique household ID, and separate files for individual level data within each household data, and household food price data, that can be matched to the household file using the household ID. A unique individual ID within the household data which can be used to track individuals over time within households.

    Geographic coverage

    Urban and rural areas of Papua New Guinea

    Analysis unit

    Household, Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The initial sample was drawn through Random Digit Dialing (RDD) with geographic stratification from a large random sample of Digicel’s subscribers. As an objective of the survey was to measure changes in household economic wellbeing over time, the HFPS sought to contact a consistent number of households across each province month to month. This was initially a repeated cross section from April 2023-Dec 2023. The resulting overall sample has a probability-based weighted design, with a proportionate stratification to achieve a proper geographical representation. More information on sampling for the cross-sectional monthly sample can be found in previous documentation for the PNG HFPS data.

    A monthly panel was established in October 2023, that is ongoing as of March 2025. In each subsequent round of data collection after October 2024, the survey firm would first attempt to contact all households from the previous month, and then attempt to contact households from earlier months that had dropped out. After previous numbers were exhausted, RDD with geographic stratification was used for replacement households.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    he questionnaire, which can be found in the External Resources of this documentation, is in English with a Pidgin translation.

    The survey instrument for Q1 2025 consists of the following modules: -1. Basic Household information, -2. Household Roster, -3. Labor, -4a Food security, -4b Food prices -5. Household income, -6. Agriculture, -8. Access to services, -9. Assets -10. Wellbeing and shocks -10a. WASH

    Cleaning operations

    The raw data were cleaned by the World Bank team using STATA. This included formatting and correcting errors identified through the survey’s monitoring and quality control process. The data are presented in two datasets: a household dataset and an individual dataset. The individual dataset contains information on individual demographics and labor market outcomes of all household members aged 15 and above, and the household data set contains information about household demographics, education, food security, food prices, household income, agriculture activities, social protection, access to services, and durable asset ownership. The household identifier (hhid) is available in both the household dataset and the individual dataset. The individual identifier (id_member) can be found in the individual dataset.

  17. u

    Health Survey for England, 2000-2001: Small Area Estimation Teaching Dataset...

    • datacatalogue.ukdataservice.ac.uk
    Updated Jul 29, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Manchester, Cathie Marsh Centre for Census and Survey Research, ESDS Government (2011). Health Survey for England, 2000-2001: Small Area Estimation Teaching Dataset [Dataset]. http://doi.org/10.5255/UKDA-SN-6792-1
    Explore at:
    Dataset updated
    Jul 29, 2011
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    University of Manchester, Cathie Marsh Centre for Census and Survey Research, ESDS Government
    Area covered
    England
    Description

    The Health Survey for England, 2000-2001: Small Area Estimation Teaching Dataset was prepared as a resource for those interested in learning introductory small area estimation techniques. It was first presented as part of a workshop entitled 'Introducing small area estimation techniques and applying them to the Health Survey for England using Stata'. The data are accompanied by a guide that includes a practical case study enabling users to derive estimates of disability for districts in the absence of survey estimates. This is achieved using various models that combine information from ESDS government surveys with other aggregate data that are reliably available for sub-national areas. Analysis is undertaken using Stata statistical software; all relevant syntax is provided in the accompanying '.do' files.

    The data files included in this teaching resource contain HSE variables and data from the Census and Mid-year population estimates and projections that were developed originally by the National Statistical agencies, as follows:

    • The main data file, 'hse_data.dta', is a reduced version of the HSE for 2000 and 2001. In order to combine data from two years of the HSE in a consistent way some changes have been made to the weights in each year. Additionally, some recoding of the limiting long term illness (LLTI), disability and the age variable has also been undertaken.
    • File 'practical_1_task_5_data.dta' contains population counts and model mobility disability rates (estimated during practical 1) distinguishing single year of age and sex for the six case study districts.
    • File 'practical_2_data.dta' contains the aggregate data required for Practical 2, including age- and sex-specific rates of LLTI (Census) for six UK case study districts, age- and sex-specific rates of mobility disability for England (HSE), and population counts for the six districts.
    • File 'pop_data_practical_3.dta' contains population counts for the six districts (by age, sex and LLTI status) required for practical 3
    The original HSEs for 2000 and 2001 are held at the UK Data Archive under SNs 4628 and 4912 respectively. Full details of the recoding of HSE variables and how the aggregate data was produced can be found in the data documentation.

    This unrestricted access data collection is freely available to download under an Open Government Licence from the UK Data Service. Note that the files should be unzipped/saved to the C: drive of the computer to be used; all syntax assumes files are saved at this location.

  18. The Canada Trademarks Dataset

    • zenodo.org
    pdf, zip
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Sheff; Jeremy Sheff (2024). The Canada Trademarks Dataset [Dataset]. http://doi.org/10.5281/zenodo.4999655
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jeremy Sheff; Jeremy Sheff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Canada Trademarks Dataset

    18 Journal of Empirical Legal Studies 908 (2021), prepublication draft available at https://papers.ssrn.com/abstract=3782655, published version available at https://onlinelibrary.wiley.com/share/author/CHG3HC6GTFMMRU8UJFRR?target=10.1111/jels.12303

    Dataset Selection and Arrangement (c) 2021 Jeremy Sheff

    Python and Stata Scripts (c) 2021 Jeremy Sheff

    Contains data licensed by Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, the minister responsible for the administration of the Canadian Intellectual Property Office.

    This individual-application-level dataset includes records of all applications for registered trademarks in Canada since approximately 1980, and of many preserved applications and registrations dating back to the beginning of Canada’s trademark registry in 1865, totaling over 1.6 million application records. It includes comprehensive bibliographic and lifecycle data; trademark characteristics; goods and services claims; identification of applicants, attorneys, and other interested parties (including address data); detailed prosecution history event data; and data on application, registration, and use claims in countries other than Canada. The dataset has been constructed from public records made available by the Canadian Intellectual Property Office. Both the dataset and the code used to build and analyze it are presented for public use on open-access terms.

    Scripts are licensed for reuse subject to the Creative Commons Attribution License 4.0 (CC-BY-4.0), https://creativecommons.org/licenses/by/4.0/. Data files are licensed for reuse subject to the Creative Commons Attribution License 4.0 (CC-BY-4.0), https://creativecommons.org/licenses/by/4.0/, and also subject to additional conditions imposed by the Canadian Intellectual Property Office (CIPO) as described below.

    Terms of Use:

    As per the terms of use of CIPO's government data, all users are required to include the above-quoted attribution to CIPO in any reproductions of this dataset. They are further required to cease using any record within the datasets that has been modified by CIPO and for which CIPO has issued a notice on its website in accordance with its Terms and Conditions, and to use the datasets in compliance with applicable laws. These requirements are in addition to the terms of the CC-BY-4.0 license, which require attribution to the author (among other terms). For further information on CIPO’s terms and conditions, see https://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/wr01935.html. For further information on the CC-BY-4.0 license, see https://creativecommons.org/licenses/by/4.0/.

    The following attribution statement, if included by users of this dataset, is satisfactory to the author, but the author makes no representations as to whether it may be satisfactory to CIPO:

    The Canada Trademarks Dataset is (c) 2021 by Jeremy Sheff and licensed under a CC-BY-4.0 license, subject to additional terms imposed by the Canadian Intellectual Property Office. It contains data licensed by Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, the minister responsible for the administration of the Canadian Intellectual Property Office. For further information, see https://creativecommons.org/licenses/by/4.0/ and https://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/wr01935.html.

    Details of Repository Contents:

    This repository includes a number of .zip archives which expand into folders containing either scripts for construction and analysis of the dataset or data files comprising the dataset itself. These folders are as follows:

    • /csv: contains the .csv versions of the data files
    • /do: contains Stata do-files used to convert the .csv files to .dta format and perform the statistical analyses set forth in the paper reporting this dataset
    • /dta: contains the .dta versions of the data files
    • /py: contains the python scripts used to download CIPO’s historical trademarks data via SFTP and generate the .csv data files

    If users wish to construct rather than download the datafiles, the first script that they should run is /py/sftp_secure.py. This script will prompt the user to enter their IP Horizons SFTP credentials; these can be obtained by registering with CIPO at https://ised-isde.survey-sondage.ca/f/s.aspx?s=59f3b3a4-2fb5-49a4-b064-645a5e3a752d&lang=EN&ds=SFTP. The script will also prompt the user to identify a target directory for the data downloads. Because the data archives are quite large, users are advised to create a target directory in advance and ensure they have at least 70GB of available storage on the media in which the directory is located.

    The sftp_secure.py script will generate a new subfolder in the user’s target directory called /XML_raw. Users should note the full path of this directory, which they will be prompted to provide when running the remaining python scripts. Each of the remaining scripts, the filenames of which begin with “iterparse”, corresponds to one of the data files in the dataset, as indicated in the script’s filename. After running one of these scripts, the user’s target directory should include a /csv subdirectory containing the data file corresponding to the script; after running all the iterparse scripts the user’s /csv directory should be identical to the /csv directory in this repository. Users are invited to modify these scripts as they see fit, subject to the terms of the licenses set forth above.

    With respect to the Stata do-files, only one of them is relevant to construction of the dataset itself. This is /do/CA_TM_csv_cleanup.do, which converts the .csv versions of the data files to .dta format, and uses Stata’s labeling functionality to reduce the size of the resulting files while preserving information. The other do-files generate the analyses and graphics presented in the paper describing the dataset (Jeremy N. Sheff, The Canada Trademarks Dataset, 18 J. Empirical Leg. Studies (forthcoming 2021)), available at https://papers.ssrn.com/abstract=3782655). These do-files are also licensed for reuse subject to the terms of the CC-BY-4.0 license, and users are invited to adapt the scripts to their needs.

    The python and Stata scripts included in this repository are separately maintained and updated on Github at https://github.com/jnsheff/CanadaTM.

    This repository also includes a copy of the current version of CIPO's data dictionary for its historical XML trademarks archive as of the date of construction of this dataset.

  19. Z

    STATA do file for "Economic shocks predict increases in child wasting...

    • data.niaid.nih.gov
    Updated Mar 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Headey, Derek (2022). STATA do file for "Economic shocks predict increases in child wasting prevalence" in Nature Communications [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6318071
    Explore at:
    Dataset updated
    Mar 1, 2022
    Dataset authored and provided by
    Headey, Derek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a STATA v16 do file for the study "Economic shocks predict increases in child wasting prevalence" published in Nature Communications in 2022. To access the study data - which is not open access - please email Dr. Derek Headey at d.headey@cgiar.org

  20. o

    Data from: Time Use, College Attainment, and The Working-from-Home...

    • openicpsr.org
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Cowan (2024). Time Use, College Attainment, and The Working-from-Home Revolution [Dataset]. http://doi.org/10.3886/E201001V1
    Explore at:
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Washington State University
    Authors
    Benjamin Cowan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The file atus._00014.do is the Stata .do file that reads in the American Time Use Survey (ATUS) data pulled from IPUMS (atus_00014.dat). The file public_do_file reads in the Stata ATUS data (atus_school_closure.dta) and adds data on state-level school closures (schoolclosure20-21_st) and occupational telework potential (teleworkable-cps). See the text of the paper for more details on the sources for these datasets.public_do_file then goes on to perform all analyses in the paper.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zeynep Sahin Mencutek; Zeynep Sahin Mencutek; Fatma Yılmaz-Elmas; Fatma Yılmaz-Elmas (2025). GAPs Data Repository on Return: Guideline, Data Samples and Codebook [Dataset]. http://doi.org/10.5281/zenodo.14862490

GAPs Data Repository on Return: Guideline, Data Samples and Codebook

Explore at:
Dataset updated
Feb 13, 2025
Dataset provided by
RedCAP
Authors
Zeynep Sahin Mencutek; Zeynep Sahin Mencutek; Fatma Yılmaz-Elmas; Fatma Yılmaz-Elmas
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The GAPs Data Repository provides a comprehensive overview of available qualitative and quantitative data on national return regimes, now accessible through an advanced web interface at https://data.returnmigration.eu/.

This updated guideline outlines the complete process, starting from the initial data collection for the return migration data repository to the development of a comprehensive web-based platform. Through iterative development, participatory approaches, and rigorous quality checks, we have ensured a systematic representation of return migration data at both national and comparative levels.

The Repository organizes data into five main categories, covering diverse aspects and offering a holistic view of return regimes: country profiles, legislation, infrastructure, international cooperation, and descriptive statistics. These categories, further divided into subcategories, are based on insights from a literature review, existing datasets, and empirical data collection from 14 countries. The selection of categories prioritizes relevance for understanding return and readmission policies and practices, data accessibility, reliability, clarity, and comparability. Raw data is meticulously collected by the national experts.

The transition to a web-based interface builds upon the Repository’s original structure, which was initially developed using REDCap (Research Electronic Data Capture). It is a secure web application for building and managing online surveys and databases.The REDCAP ensures systematic data entries and store them on Uppsala University’s servers while significantly improving accessibility and usability as well as data security. It also enables users to export any or all data from the Project when granted full data export privileges. Data can be exported in various ways and formats, including Microsoft Excel, SAS, Stata, R, or SPSS for analysis. At this stage, the Data Repository design team also converted tailored records of available data into public reports accessible to anyone with a unique URL, without the need to log in to REDCap or obtain permission to access the GAPs Project Data Repository. Public reports can be used to share information with stakeholders or external partners without granting them access to the Project or requiring them to set up a personal account. Currently, all public report links inserted in this report are also available on the Repository’s webpage, allowing users to export original data.

This report also includes a detailed codebook to help users understand the structure, variables, and methodologies used in data collection and organization. This addition ensures transparency and provides a comprehensive framework for researchers and practitioners to effectively interpret the data.

The GAPs Data Repository is committed to providing accessible, well-organized, and reliable data by moving to a centralized web platform and incorporating advanced visuals. This Repository aims to contribute inputs for research, policy analysis, and evidence-based decision-making in the return and readmission field.

Explore the GAPs Data Repository at https://data.returnmigration.eu/.

Search
Clear search
Close search
Google apps
Main menu