48 datasets found
  1. Attachment Viewer

    • noveladata.com
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2020). Attachment Viewer [Dataset]. https://www.noveladata.com/items/65dd2fa3369649529b2c5939333977a1
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Use the Attachment Viewer template to provide an app for users to explore a layer's features and review attachments with the option to update attribute data. Present your images, videos, and PDF files collected using ArcGIS Field Maps or ArcGIS Survey123 workflows. Choose an attachment-focused layout to display individual images beside your map or a map-focused layout to highlight your map next to a gallery of images. Examples: Review photos collected during emergency response damage inspections. Display the results of field data collection and support downloading images for inclusion in a report. Present a map of land parcel along with associated documents stored as attachments. Data requirements The Attachment Viewer template requires a feature layer with attachments. It includes the capability to view attachments of a hosted feature service or an ArcGIS Server feature service (10.8 or later). Currently, the app can display JPEG, JPG, PNG, GIF, MP4, QuickTime (.mov), and PDF files in the viewer window. All other attachment types are displayed as a link. Key app capabilities App layout - Choose between an attachment-focused layout, which displays one attachment at a time in the main panel of the app with the map on the side, or a map-focused layout, which displays the map in the main panel of the app with a gallery of attachments. Feature selection - Allows users to select features in the map and view associated attachments. Review data - Enable tools to review and update existing records. Zoom, pan, download images - Allow users to interact with and download attachments. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.

  2. f

    Geomorphology model (ArcGIS Pro version), input datasets and legend...

    • uvaauas.figshare.com
    • data.niaid.nih.gov
    zip
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen (2023). Geomorphology model (ArcGIS Pro version), input datasets and legend symbology files [Dataset]. http://doi.org/10.21942/uva.13693702.v20
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.

  3. a

    United States of America Soils Map Units

    • chi-phi-nmcdc.opendata.arcgis.com
    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated May 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). United States of America Soils Map Units [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/united-states-of-america-soils-map-units
    Explore at:
    Dataset updated
    May 18, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Number of Features: 36,569,286Source: USDA Natural Resources Conservation ServicePublication Date: December 2021Data from the gSSURGO database was used to create this layer.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied the first value in the table was selected.Percent AlfisolsPercent AndisolsPercent AridisolsPercent EntisolsPercent GelisolsPercent HistosolsPercent InceptisolsPercent MollisolsPercent SpodosolsPercent UltisolsPercent VertisolsSoil Order - Dominant ConditionEsri Popup StringThis field contains a text string calculated by Esri that is used to create a basic pop-up using some of the more popular SSURGO attributes.Map Unit KeyThe Mapunit key field is found

  4. m

    Standard color legend for Romanian soil type maps in ESRI ArcMap-10...

    • data.mendeley.com
    Updated May 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virgil Vlad (2020). Standard color legend for Romanian soil type maps in ESRI ArcMap-10 electronic format [Dataset]. http://doi.org/10.17632/5x2gm24zkb.2
    Explore at:
    Dataset updated
    May 6, 2020
    Authors
    Virgil Vlad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Romania
    Description

    In order to use the standard color legend for Romanian soil type maps in the ESRI ArcMap-10 electronic format, a dataset consisting a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), four different .lyr files, and three different .style files have been prepared (ESRI, 2016). The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil types from the standard legend. This legend contains 67 standard items: 63 proper colors (different color hues, each of them having, generally, 2 - 4 degrees of lightness and/or chroma, four shades of grey, and white color), and four hatching patterns on white background (ESRI, 2016). The “color difference DE*ab” between any two legend colors, calculated with the color perceptually-uniform model CIELAB , is greater than 10 units, thus ensuring acceptably-distinguishable colors in the legend. The 67 standard items are assigned to 60 main soils existing in Romania, four main nonsoils, and three special cases of unsurveyed land. The soils are specified in terms of the current Romanian system of soil taxonomy, SRTS-2012+, and of the international soil classification system WRB-2014. The four different .lyr files presented here are: legend_soilcode_srts_wrb.lyr, legend_soilcode_wrb.lyr, legend_colourcode_srts_wrb.lyr, and legend_colourcode_wrb.lyr. The first two of them are built using as value field the ‘Soil_codes’ field, and as labels (explanation texts) the ‘Soil_name’ field (storing the soil types according to SRTS/WRB classification), respectively, the ‘WRB’ field (the soil type according to WRB classification), while the last two .lyr files are built using as value field the ‘colour_code’ field (storing the color codes) and as labels the soil name in SRTS and WRB, respectively, in WRB classification. In order to exemplify how the legend is displayed, two .jpg files are also presented: legend_soil_srts_wrb.jpg and legend_colour_wrb.jpg. The first displays the legend (symbols and labels) according to the SRTS classification order, the second according to the WRB classification. The three different .style files presented here are: soil_symbols.style, wrb_codes.style, and colour_codes.style. They use as name the soil acronym in SRTS classification, soil acronym in WRB classification, and, respectively, the color code.

  5. m

    FEMA National Flood Hazard Layer for Massachusetts (Tile Service)

    • gis.data.mass.gov
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2023). FEMA National Flood Hazard Layer for Massachusetts (Tile Service) [Dataset]. https://gis.data.mass.gov/maps/fema-national-flood-hazard-layer-for-massachusetts-tile-service
    Explore at:
    Dataset updated
    Aug 2, 2023
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This cached tiled map service, hosted at MassGIS' ArcGIS Online site, represents FEMA National Flood Hazard Layer (NFHL) data currently available for Massachusetts. At scales 1:80,000 and closer, flood zone abbreviation labels appear (from the FLD_ZONE field). The National Flood Hazard Layer (NFHL) dataset represents the current effective flood risk data for those parts of the country where maps have been modernized by the Federal Emergency Management Agency (FEMA). It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and any Letters of Map Revision (LOMR) that have been issued against those databases since their publication date. The NFHL is updated as new data reaches its designated effective date and becomes valid for regulatory use under the National Flood Insurance Program (NFIP). See full metadata from MassGIS.

    All data included in this layer are considered "final" by FEMA. Any preliminary data that appear on maps displayed at community meetings, etc., are not included here.

    This map service includes data published by FEMA as of July 2, 2023.

    To display a legend for this layer, add https://massgis.maps.arcgis.com/home/item.html?id=8455678914e64b03b565b97d07577279 to your map along with this service

  6. a

    Soil Survey Geographic Datasets

    • opendata-volusiacountyfl.hub.arcgis.com
    Updated Apr 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Volusia (2025). Soil Survey Geographic Datasets [Dataset]. https://opendata-volusiacountyfl.hub.arcgis.com/datasets/soil-survey-geographic-datasets
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    County of Volusia
    License

    https://www.arcgis.com/home/item.html?id=806c857d504c476ba6477ac475c45bf5https://www.arcgis.com/home/item.html?id=806c857d504c476ba6477ac475c45bf5

    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Ready-to-use project packages with over 170 attributes derived from the SSURGO dataset, split up by HUC8s. Geographic Extent: The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Source: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024Link to source metadata*Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data.The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Map Unit Name (muname) fields. This field was created using the dominant soil order of each map unit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied

  7. C

    Allegheny County Soil Type Areas

    • data.wprdc.org
    • datadiscoverystudio.org
    • +7more
    csv, geojson, html +2
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County Soil Type Areas [Dataset]. https://data.wprdc.org/dataset/allegheny-county-soil-type-areas
    Explore at:
    html, geojson(67027786), csv, kml(25990848), zip(19554272)Available download formats
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Allegheny County
    Area covered
    Allegheny County
    Description

    This dataset contains soil type and soil classification, by area.

    This dataset is harvested on a weekly basis from Allegheny County’s GIS data portal. The full metadata record for this dataset can also be found on Allegheny County's GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the "Explore button (and choosing the "Go to resource" option) to the right of the "ArcGIS Open Dataset" text below.

    Category: Environment

    Department: Geographic Information Systems Group; Department of Administrative Services

    Development Notes: This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties. The soil map and data used in the SSURGO product were prepared by soil scientists as part of the National Cooperative Soil Survey.

    Related Documents: Data Dictionary for SOIL_CODE, https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/pennsylvania/PA003/0/legends.pdf (the last page includes the soil legend for this dataset)

  8. f

    Modifiable set of ESRI ArcMap-10 shape-lyr-style files implementing the...

    • figshare.com
    zip
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virgil Vlad; Sorina Dumitru; Mihai Toti; Catalin Simota; Mihail Dumitru (2023). Modifiable set of ESRI ArcMap-10 shape-lyr-style files implementing the Romanian color standard for soil type map legends [Dataset]. http://doi.org/10.6084/m9.figshare.12782138.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    figshare
    Authors
    Virgil Vlad; Sorina Dumitru; Mihai Toti; Catalin Simota; Mihail Dumitru
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In order to use the Romanian color standard for soil type map legends, a dataset of ESRI ArcMap-10 files, consisting of a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), four different .lyr files, and three different .style files (https://desktop.arcgis.com/en/arcmap/10.3/map/ : saving-layers-and-layer-packages, about-creating-new-symbols, what-are-symbols-and-styles-), have been prepared. The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil types from the standard legend.

    This legend contains 67 standard items: 63 proper colors (different color hues, each of them having, generally, 2 - 4 degrees of lightness and/or chroma, four shades of grey, and white color), and four hatching patterns on white background. The “color difference DE*ab” between any two legend colors, calculated with the color perceptually-uniform model CIELAB, is greater than 10 units, thus ensuring acceptably-distinguishable colors in the legend. The 67 standard items are assigned to 60 main soils existing in Romania, four main nonsoils, and three special cases of unsurveyed land. The soils are specified in terms of the current Romanian system of soil taxonomy, SRTS-2012+, and of the international system WRB-2014.

    The four different .lyr files presented here are: legend_soilcode_srts_wrb.lyr, legend_soilcode_wrb.lyr, legend_colorcode_srts_wrb.lyr, and legend_colorcode_wrb.lyr. The first two of them are built using as value field the “Soil_codes” field, and as labels (explanation texts) the “Soil_name” field (storing the soil types according to SRTS/WRB classification), respectively, the “WRB” field (the soil type according to WRB classification), while the last two .lyr files are built using as value field the “color_code” field (storing the color codes) and as labels the soil name in SRTS and WRB, respectively, in WRB classification.

    In order to exemplify how the legend is displayed, two .jpg files are also presented: legend_soil_srts_wrb.jpg and legend_color_wrb.jpg. The first displays the legend (symbols and labels) according to the SRTS classification order, the second according to the WRB classification.

    The three different .style files presented here are: soil_symbols.style, wrb_codes.style, and color_codes.style. They use as name the soil acronym in SRTS classification, soil acronym in WRB classification, and, respectively, the color code.

    The presented file set may be used to directly implement the Romanian color standard in digital soil type map legends, or may be adjusted/modified to other specific requirements.

  9. n

    Jurisdictional Unit (Public) - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Jurisdictional Unit (Public) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/jurisdictional-unit-public
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The

  10. a

    Broadband Coverage and Speed Regional Map for Kenai Peninsula Borough

    • gis.data.alaska.gov
    • hub.arcgis.com
    • +5more
    Updated Jul 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Commerce, Community, & Economic Development (2021). Broadband Coverage and Speed Regional Map for Kenai Peninsula Borough [Dataset]. https://gis.data.alaska.gov/documents/616090ae882c44e7b06a12cf465d8c54
    Explore at:
    Dataset updated
    Jul 22, 2021
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Kenai Peninsula Borough
    Description

    PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values

  11. a

    Broadband Coverage and Speed Regional Map for Yukon-Koyukuk and Doyon Ltd

    • gis.data.alaska.gov
    • dcra-cdo-dcced.opendata.arcgis.com
    • +4more
    Updated Jul 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Broadband Coverage and Speed Regional Map for Yukon-Koyukuk and Doyon Ltd [Dataset]. https://gis.data.alaska.gov/documents/719234d929eb4e4da78e8731648fa2bc
    Explore at:
    Dataset updated
    Jul 22, 2021
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Yukon-Koyukuk Census Area
    Description

    PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values

  12. a

    Broadband Coverage and Speed Regional Map for Bering Straits Native Corp

    • gis.data.alaska.gov
    • dcra-program-summaries-dcced.hub.arcgis.com
    • +5more
    Updated Jul 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Broadband Coverage and Speed Regional Map for Bering Straits Native Corp [Dataset]. https://gis.data.alaska.gov/documents/33cbfcb43ec441598467212d38d488fc
    Explore at:
    Dataset updated
    Jul 22, 2021
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values

  13. gSSURGO Muaggat FY 2013

    • catalog.data.gov
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center (Point of Contact) (2024). gSSURGO Muaggat FY 2013 [Dataset]. https://catalog.data.gov/dataset/gssurgo-muaggat-fy-2013
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    Natural Resources Conservation Servicehttp://www.nrcs.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Description

    This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The recently released (2011) gSSURGO value added look up (valu) table (created by USDA-NRCS) contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.Summarized description of the Format and organization of SSURGO:Adjacent soil surveys may have been composed by different individuals, and may be of widely different vintages. Any given survey must comply with basic standards, but older surveys reflect a more generalized approach than more modern surveys. The figure to the right illustrates such differences.Polygons represent a repeating pattern of legend entries: groups of map-able soil concepts called map unitsMap unit data is stored in the mapunit table, and is referenced by the field mukeyPre-aggregated map unit data is stored in the muaggatt table, and is referenced by the field mukeyMap units are comprised of multiple, unmapped soil types called 'components'Component data is stored in the component table, and is referenced by the field cokeySoil components (or soil type) are associated with multiple horizonsHorizon data is stored in the chorizon table, and is referenced by the field cokeySince there is a 1:many:many (mapunit:component:horizon) relationship between spatial and horizon-level soil property data two aggregation steps are required in order to produce a thematic mapSource: http://casoilresource.lawr.ucdavis.edu/drupal/book/export/html/335Summary Descriptions of gSSURGO Soil Survey Attributes contained within the MUAGGATT table.MUAGGATT Table:Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth – MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency – MaximumPonding Frequency – PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class – WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification – PresenceRating for Manure and Food Processing Waste - Weighted Average

  14. a

    Broadband Coverage and Speed Regional Map for Ahtna Inc

    • gis.data.alaska.gov
    • hub.arcgis.com
    • +4more
    Updated Jul 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Broadband Coverage and Speed Regional Map for Ahtna Inc [Dataset]. https://gis.data.alaska.gov/documents/d910704dd1b94ad3a96de5efb1547a5e
    Explore at:
    Dataset updated
    Jul 22, 2021
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps. These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries. Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas). This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue _Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010)USDA Non-Rural Areas (2013)FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020)Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020)FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data.BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020)M-Lab (Jan - Jun 2020) Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include:99: All Terrestrial Broadband Plus Satellite98: All Terrestrial Broadband97: Cable Modem96: DSL95: All Other (Electric Power Line, Other Copper Wireline, Other)Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values. The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes:

    Geography: State, County, Tract, Block Group, Block, Hex Bins geographiesData source: all data within the Omnibus, i.e. FCC, Ookla, M-LabRepresentation: comparison tables and single speed values

  15. g

    Circumpolar Arctic Vegetation Map (CAVM Team 2003) - Datasets - Alaska...

    • arcticatlas.geobotany.org
    Updated May 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Circumpolar Arctic Vegetation Map (CAVM Team 2003) - Datasets - Alaska Arctic Geoecological Atlas [Dataset]. https://arcticatlas.geobotany.org/catalog/dataset/circumpolar-arctic-vegetation-map-cavm-team-2003
    Explore at:
    Dataset updated
    May 25, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arctic, Arctic Alaska
    Description

    The Circumpolar Arctic Vegetation Map (CAVM) is a geoecological map (front) of the entire Arctic with a unified legend (back). It is the first vegetation map of an entire global biome at a comparable resolution. It was funded by the US National Science Foundation (OPP-9908-829), the US Fish & Wildlife Service, the US Geological Survey and the US Bureau of Land Management. The CAVM region is north of the climatic limit of trees and is characterized by an arctic climate, arctic flora, and tundra vegetation. It excludes tundra regions than have a boreal flora such as the boreal oceanic areas of Iceland and the Aleutian Islands and alpine tundra south of the latitudinal treeline. The map was published at 1:7.5 million scale and displays the vegetation using 15 units (CAVM Team 2003, legend details: www.arcticatlas.org/maps/themes/cp/cpvg). The methods used to make the map are described in Walker et al. 2005. The CAVM is a polygon (vector) map. The GIS data are in shapefile format, and include fields for bioclimate subzone, floristic province, lake cover, landscape, substrate chemistry and vegetation category. There is also a landscape age shapefile which was created after the publication of the CAVM (Raynolds et al. 2009) In addition, there are a number of raster maps of the same extent (the Arctic), based on satellite data from the Advanced High Resolution Radiometer (AVHRR) instruments. These include the false color-infrared and NDVI images which formed the base maps for the CAVM mapping effort (Walker et al. 2005, Raynolds et al. 2006), a recent biomass map (Raynolds et al. 2012), biomass trends (Epstein et al. 2012), NDVI trends (Bhatt et al. 2010), and Summer Warmth Index (Raynolds et al. 2008). Go to Website Link :: Toolik Arctic Geobotanical Atlas below for details on legend units, photos of map units and plant species, glossary, bibliography and links to ground data. Map Themes: AVHRR Biomass 2010, AVHRR Biomass Trend 1982-2010, AVHRR False Color Infrared 1993-1995, AVHRR NDVI 1993-1995, AVHRR NDVI Trend 1982-2010, AVHRR Summer Warmth Index 1982-2003, Bioclimate Subzone, Coastline and Treeline, Elevation, Floristic Provinces, Lake Cover, Landscape Physiography, Landscape Age, Substrate Chemistry, Vegetation Layer References CAVM Team. 2003. Circumpolar Arctic Vegetation Map, scale 1:7 500 000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, Alaska. Bhatt, U. S., D. A. Walker, M. K. Raynolds, J. C. Comiso, H. E. Epstein, G. J. Jia, R. Gens, J. E. Pinzon, C. J. Tucker, C. E. Tweedie, and P. J. Webber. 2010. Circumpolar arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14:1-20. doi: 10.1175/2010EI1315.1171. Epstein, H. E., M. K. Raynolds, D. A. Walker, U. S. Bhatt, C. J. Tucker, and J. E. Pinzon. 2012. Dynamics of aboveground phytomass of the circumpolar arctic tundra during the past three decades. Environmental Research Letters 7:015506 (015512 pp). Raynolds, M. K., D. A. Walker, and H. A. Maier. 2006. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sensing of Environment 102:271-281. Raynolds, M. K., J. C. Comiso, D. A. Walker, and D. Verbyla. 2008. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment 112:1884-1894. Raynolds, M. K. and D. A. Walker. 2009. The effects of deglaciation on circumpolar distribution of arctic vegetation. Canadian Journal of Remote Sensing 35:118-129. Raynolds, M. K. 2009. A geobotanical analysis of circumpolar arctic vegetation, climate, and substrate. PhD Thesis, University of Alaska, Fairbanks. Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker. 2012. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sensing Letters 3:403-411. Raynolds, M. K., D. A. Walker, A. Balser, C. Bay, M. W. Campbell, M. M. Cherosov, F. J. A. Daniëls, P. B. Eidesen, K. A. Ermokhina, G. V. Frost, B. Jedrzejek, M. T. Jorgenson, B. E. Kennedy, S. S. Kholod, I. A. Lavrinenko, O. Lavrinenko, B. Magnússon, S. Metúsalemsson, I. Olthof, I. N. Pospelov, E. B. Pospelova, D. Pouliot, V. Y. Razzhivin, G. Schaepman-Strub, J. Šibík, M. Y. Telyatnikov, and E. Troeva. 2019. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sensing of Environment 232:111297. Walker, D. A., M. K. Raynolds, F. J. A. Daniels, E. Einarsson, A. Elvebakk, W. A. Gould, A. E. Katenin, S. S. Kholod, C. J. Markon, E. S. Melnikov, N. G. Moskalenko, S. S. Talbot, B. A. Yurtsev, and CAVM Team. 2005. The Circumpolar Arctic Vegetation Map. Journal of Vegetation Science 16:267-282.

  16. Z

    Urban Land Use Dataset (1964-2001) of Maputo city, Mozambique

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henriques, Cristina Delgado (2024). Urban Land Use Dataset (1964-2001) of Maputo city, Mozambique [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8069020
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Correia, Ezequiel
    Henriques, Cristina Delgado
    Rolo, Elisabete
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mozambique, Maputo
    Description

    This dataset comprises land use maps of Maputo city, with exception of the KaTembe urban district, for the years 1964, 1973, 1982, 1991 and 2001. It is the digital version of the land use maps published by Henriques [1] and revised under the LUCO research project.

    The land use of Maputo city was identified from: i) aerial photographs (1964, 1982, 1991), orthophoto maps (1973) and IKONOS images (2001); ii) documentary sources, such as the Urbanization Master Plan (1969) and the Maputo City Addressing (1997); iii) the recognition made during several field survey campaigns. The methodology is described in Henriques [1].

    Land use was classified into three levels, resulting from a hierarchical classification system, including descriptive and parametric classes. Levels I and II are available in this repository.

    Level I, composed by 10 classes, contains the main forms of occupation: built-up areas (residential, economic activity, equipment, and infrastructure) and non-built-up areas (vacant or "natural"). It is geared towards analyses that serve policymaking and resource management at the regional or national scale [1].

    Level II, composed by 31 classes, discriminates the higher hierarchical level according to its functional land use to become useful for municipal planning and management in municipal master plans, for example [1].

    Maps are available in shapefile format and include predefined symbology-legend files, for QGIS and ArcGIS (v.10.7 or higher). The urban land use classes are described in Portuguese and English, and their meaning is provided as an accompanying document (ULU_Maputo_Nomenclatura_PT.pdf / ULU_Maputo_Nomenclature_EN.pdf).

    Data format: vector (shapefile, polygon)

    Reference system: WGS84, UTM 36S (EPSG:32736)

    Original minimum mapping unit: 25 m2

    Urban Land Use dataset attributes:

    [N_I_C] – code of level I

    [N_I_D_PT] – name of level I, in Portuguese

    [N_I_D_EN] - name of level I, in English

    [N_II_C] – code of level II

    [N_II_D_PT] - name of level II, in Portuguese

    [N_II_D_EN] - name of level II, in English

    Funding: this research was supported by national funds through FCT – Fundação para a Ciência e Tecnologia, I.P. Project number: FCT AGA-KHAN/ 541731809 / 2019

    [1] Henriques, C.D. (2008). Maputo. Cinco décadas de mudança territorial. O uso do solo observado por tecnologias de informação geográfica [Maputo. Five decades of territorial transformation. Land use assessed by geographical information technologies]. Lisboa, Instituto Português de Apoio ao Desenvolvimento (ISBN: 978-972-8975-22-7).

  17. a

    Surficial Geology

    • catalogue.arctic-sdi.org
    • data-with-cpaws-nl.hub.arcgis.com
    Updated Sep 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Surficial Geology [Dataset]. http://catalogue.arctic-sdi.org/geonetwork/srv/search?keyword=glaciofluvial%20sediments
    Explore at:
    Dataset updated
    Sep 12, 2020
    Description

    This entry provides access to surficial geology maps that have been published by the Geological survey of Canada. Two series of maps are available: "A Series" maps, published from 1909 to 2010 and "Canadian Geoscience Maps", published since 2010. Three types of CGM-series maps are available: 1)Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, Digital Elevation Models (DEM)), incorporating field data and ground truthing resulting from extensive, systematic fieldwork across the entire map area. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 2)Reconnaissance Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, DEMs), with limited or no fieldwork. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 3)Predictive Surficial Geology: derived from one or more methods of remote predictive mapping (RPM) using different satellite imagery, spectral characteristics of vegetation and surface moisture, machine processing, algorithms etc., DEMs, where raster data are converted to vector, with some expert-knowledge air photo interpretation (training areas or post-verification areas), varying degrees of non-systematic fieldwork, and the addition of any legacy data available. Each map is based on a version of the Geological Survey of Canada’s Surficial Data Model (https://doi.org/10.4095/315021), thus providing an easily accessible national surficial geological framework and context in a standardized format to all users. "A series" maps were introduced in 1909 and replaced by CGM maps in 2010. The symbols and vocabulary used on those maps was not as standardized as they are in the CGM maps. Some "A series" maps were converted into, or redone, as CGM maps, Both versions are available whenever that is the case. In addition to CGM and "A series" maps, some surficial geology maps are published in the Open File series. Those maps are not displayed in this entry, but can be found and accessed using the NRCan publications website, GEOSCAN:(https://geoscan.nrcan.gc.ca). The "view on map" functionality provides a geospatial index of each published map, overlaid on a colour-coded map of Canada's surficial geological features described in the "Surficial geology of Canada" map (https://doi.org/10.4095/295462, 2014). Each geospatial polygon (footprint) points to a page in the Geoscan repository (Natural Resources Canada), each page displaying a link to a ZIP file which contains the map (PDF/JPEG), the corresponding geospatial data (raster images, shape files, legends) and possibly field data information. The geospatial index can also be downloaded as ESRI GeospatialDataBase (GDB) and MXD files.

  18. All Wales Phase 1 Terrestrial - Vegetation Layer - Voronoi

    • metadata.naturalresources.wales
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Wales (NRW) (2025). All Wales Phase 1 Terrestrial - Vegetation Layer - Voronoi [Dataset]. https://metadata.naturalresources.wales/geonetwork/srv/api/records/NRW_DS115875
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    Natural Resources Waleshttp://naturalresources.wales/
    Time period covered
    Jan 1, 1979 - Dec 31, 1999
    Area covered
    Description

    This is a GIS dataset containing spatial polygons showing the boundaries and attributes of vegetation polygons.

    A voronoi procedure was applied to the All Wales Phase 1 Terrestrial - Vegetation Layer - GIS dataset to subdivide upland mixed habitat polygons into their component habitats as identified by the All Wales Phase 1 Terrestrial - Habitat Layer - GIS dataset. New polygons derived by the voronoi procedure have Voronoi_UID's prefixed 'v_'. New polygons created from Habitat Layer points mapped with a string of habitats, e.g. D.1.1 + D.2/E.2.1, are attributed 'mosaic' in the Phase 1 Code field, and the component habitats and their proportions are listed in the Mosaic browser table (see metadata for All Wales Phase 1 Terrestrial - Mosaic Layer voronoi - GIS dataset). The two tables link on the Voronoi_UID field. The Phase 2 Tools were used to create a mospolys (mosaic polygons) layer to which the Phase 1 legend can be applied for better visualisation in GIS.

    The original field surveys were carried out as part of a national habitat survey programme required to implement conservation at a local level. An all-Wales 1km square dataset was created for the generation of national statistics on habitat coverage, and the maps were digitised as part of the mapping of Open Access land. The dataset was subsequently imported into a GIS to enable its disaggregation into various different geographical regions within Wales.

    Voronoi was carried out to enable full representation and visualisation of the components of complex mixed-habitat upland polygons in the vector data.

  19. d

    Geologic Map of the Meadview North Quadrangle, Mohave County, Arizona and...

    • datadiscoverystudio.org
    pdf, zip
    Updated Jan 1, 2005
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert J. Brady; James E. Faulds; Mark A. Wallace (2005). Geologic Map of the Meadview North Quadrangle, Mohave County, Arizona and Clark County, Nevada, NBMG M154 [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ad7fb2c008494da5a7315250cfc73d8c/html
    Explore at:
    pdf, zipAvailable download formats
    Dataset updated
    Jan 1, 2005
    Authors
    Robert J. Brady; James E. Faulds; Mark A. Wallace
    Area covered
    Description

    A 1:24,000 scale, geologic map of the Meadview North Quadrangle in Mohave County, Arizona and Clark County, Nevada, with description of 54 geologic units. Detailed geologic mapping by Mark A. Wallace, James E. Faulds, and Robert J. Brady of the Department of Geology, University of Iowa, Iowa City, IA 52242; Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557; Department of Geology and Geophysics, University of Calgary, Calgary, AB, Canada, T2N 1N. The GIS work was in support of the U. S. Geological Survey COGEOMAP program. The Geodatabase specifies feature datasets and feature classes, together with feature attributes, subtypes and domains, suitable for the printed geologic map. In addition to basic geology (lithology, contacts and faults, etc.), the maps may include metamorphic overprints, cross sections, and explanatory legend graphics such as correlation charts, used to supplement columnar legends. The Geologic Map of the Meadview North 7.5' Quadrangle in Mohave County, Arizona and Clark County, Nevada 1:24,000-scale is available for download online in Portable Document Format. Field work was supported by an EDMAP grant from the U.S. Geological Survey (Copperative agreement 1434-HQ-97-AG- 07146) and National Science Foundation grant EAR99-10977 awarded to Faulds. The U.S. Geological Survey also provided a field vehicle and funds for digitizing and publication of the map, for which we thank Gary Dixon and Peter Rowley. The National Park Service at Lake Mead National Recreation Area kindly provided boat access into some relatively inaccessible areas. The Meadview North Quadrangle lies within the northeasternmost part of the Colorado River extensional corridor (Howard and John, 1987; Faulds and others, 1990), which is a 70 to 100-km wide region of moderately to highly extended crust between the Colorado Plateau on the east and Spring Mountains on the west. The quadrangle contains much of the town of Meadview, Arizona, as well as the southern part of the Grand Wash trough (including much of the Gregg Basin), southern part of Wheeler Ridge, and northern end of a mountain range informally referred to as the Lost Basin Range (after Theodore and others, 1987). Base map: U. S. Geological Survey Meadview North 7.5-minute Quadrangle, 1984. To download and view this map resource and associated map text and GIS zipped data-set, please see the links provided.

  20. s

    Regolith map of the greater Tarcoola area of the central Gawler [Craton]...

    • pid.sarig.sa.gov.au
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Regolith map of the greater Tarcoola area of the central Gawler [Craton] region. - Map - SARIG catalogue [Dataset]. https://pid.sarig.sa.gov.au/dataset/mesac29201
    Explore at:
    Dataset updated
    Dec 20, 2024
    Area covered
    Tarcoola
    Description

    With the dawning of renewed interest in one of South Australia’s historic gold provinces, driven by the newly acquired data from the Department’s highly successful Gawler Craton Airborne Survey (GCAS), the Geological Survey of South Australia has... With the dawning of renewed interest in one of South Australia’s historic gold provinces, driven by the newly acquired data from the Department’s highly successful Gawler Craton Airborne Survey (GCAS), the Geological Survey of South Australia has teamed up with researchers from CSIRO to generate new ideas for tackling the challenge of exploring through the cover of the greater Tarcoola area. Part of this project has included undertaking the compilation of a regolith material and landform map. A variety of regolith mapping data is already available for the central Gawler Craton, but the records vary in scale, detail and consistency. Existing regolith map data for the greater Tarcoola area include GSSA’s state-wide regolith layer, plus the four regolith maps of Bon Bon-Eba, Half Moon Lake, Edoldeh Tank and Tunkillia compiled as part of the Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME) work done in the early 2000s. The subject newly compiled regolith map for the greater Tarcoola area covers the Malbooma, Tarcoola and Kingoonya 1:100,000 scale mapsheet areas. Mapping was based on the 1:100,000 State geology dataset and used the RTMAP (regolith landform mapping) scheme devised by Pain et al. (2007). The precision of mapping was improved by the use of remote sensing data (including new Landsat 8 imagery) as well as high resolution digital elevation and radiometric data from the GCAS Regions 9A and 9B coverage. In addition, one field trip made to the study area provided vital on-ground observations. This resulted in the definition of 22 regolith landform units, with the map legend giving information about regolith materials and landform defining each of these units. Because mineralisation in regolith is often related to intense induration, e.g. uranium and gold in calcretes, induration of regolith materials was also mapped. Calcrete, silcrete and ferricrete have been included as three separate induration/duricrust units. The polygon line work for the regolith map was compiled using ArcGIS 10.6. For each regolith polygon, twelve attributes were captured during the mapping process, including regolith materials and landform name, description, RTMAP code and map symbol, as well as the TI (transported vs. in-situ) and RED (residual-erosional-depositional) schemas, which are based on previous regolith mapping undertaken by GSSA. It should be noted that the subject map represents merely the surface distribution and physical expression of regolith units; it does not include any information about their thickness, and gives only limited, relative conclusions about their stratigraphy and age. Outcropping bedrock has been assigned to map units on the basis of its geological province, lithology, stratigraphy and/or age. Scant information about bedrock weathering intensity was available from existing datasets.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
esri_en (2020). Attachment Viewer [Dataset]. https://www.noveladata.com/items/65dd2fa3369649529b2c5939333977a1
Organization logo

Attachment Viewer

Explore at:
36 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 1, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
esri_en
Description

Use the Attachment Viewer template to provide an app for users to explore a layer's features and review attachments with the option to update attribute data. Present your images, videos, and PDF files collected using ArcGIS Field Maps or ArcGIS Survey123 workflows. Choose an attachment-focused layout to display individual images beside your map or a map-focused layout to highlight your map next to a gallery of images. Examples: Review photos collected during emergency response damage inspections. Display the results of field data collection and support downloading images for inclusion in a report. Present a map of land parcel along with associated documents stored as attachments. Data requirements The Attachment Viewer template requires a feature layer with attachments. It includes the capability to view attachments of a hosted feature service or an ArcGIS Server feature service (10.8 or later). Currently, the app can display JPEG, JPG, PNG, GIF, MP4, QuickTime (.mov), and PDF files in the viewer window. All other attachment types are displayed as a link. Key app capabilities App layout - Choose between an attachment-focused layout, which displays one attachment at a time in the main panel of the app with the map on the side, or a map-focused layout, which displays the map in the main panel of the app with a gallery of attachments. Feature selection - Allows users to select features in the map and view associated attachments. Review data - Enable tools to review and update existing records. Zoom, pan, download images - Allow users to interact with and download attachments. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.

Search
Clear search
Close search
Google apps
Main menu