91 datasets found
  1. d

    500 Cities: City Boundaries

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). 500 Cities: City Boundaries [Dataset]. https://catalog.data.gov/dataset/500-cities-city-boundaries
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.

  2. Z

    BVNA Community Informatics Project Dataset I

    • data.niaid.nih.gov
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clement, Gail (2024). BVNA Community Informatics Project Dataset I [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8260155
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Clement, Gail
    McKay, Laurie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This collection comprises geospatial datasets used to create the Beaverdam Valley Neighborhood Association community map and the resulting map in pdf and jpeg formats. This scope of the map covers the borders of Buncombe County, North Carolina, the city limits of Asheville, NC, and the three registered neighborhoods of the Beaverdam Valley (Beaverdam Valley, Hills of Beaverdam, and Beaverdam Run). The geospatial data includes the following layers and associated files:

    "AVL City Limits.geojson": City of Asheville GIS municipal boundary data

    "AVL City Limits.qmd": QGIS metadata file for the above

    "AVL Neighborhoods.geojson": City of Asheville GIS registered neighborhood data

    "AVL Neighborhoods.qmd": QGIS metadata file for the above

    "Buncombe_County_Parcels.geojson": Buncombe County GIS parcel data.

    "Buncombe_County_Parcels.qmd": QGIS metadata file for the above

    "BV Boundaries.geojson": Beaverdam Valley Neighborhood boundaries.

    "BV Boundaries.qmd": QGIS metadata file for the above

    "BV Parcel Intersection.geojson": Intersection of the Beverdam Valley Neighborhood boundaries with the Buncombe County Parcel data.

    "BV Parcel Intersection.qmd": QGIS metadata file for the above

    "BVNA_Map_2022_v2.pdf": BVNA CIP Community Map

    "BVNA_Map_2022_v2_825.jpg": BVNA CIP Community Map

    "City Limits.geojson": Buncombe county boundaries and city limits boundaries witin the county.

    "QGIS BVNA CIP.zip": Zip file containing the above layers in a QGIS project folder and file.

    About the Project: The Beaverdam Valley Neighborhood Association (BVNA) Community Informatics Project aims to gain deeper understanding of the Beaverdam Valley community and to work towards gathering and sharing information about the community and its history. This collection represents a deliverable produced under the 2022-2023 City of Asheville Neighborhood Matching Grant program.

  3. CA Geographic Boundaries

    • data.ca.gov
    shp
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). CA Geographic Boundaries [Dataset]. https://data.ca.gov/dataset/ca-geographic-boundaries
    Explore at:
    shp(136046), shp(10153125), shp(2597712)Available download formats
    Dataset updated
    May 3, 2024
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Description

    This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.

  4. Z

    Urban Land Use Dataset (1964-2001) of Maputo city, Mozambique

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henriques, Cristina Delgado (2024). Urban Land Use Dataset (1964-2001) of Maputo city, Mozambique [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8069020
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Rolo, Elisabete
    Correia, Ezequiel
    Henriques, Cristina Delgado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maputo, Mozambique
    Description

    This dataset comprises land use maps of Maputo city, with exception of the KaTembe urban district, for the years 1964, 1973, 1982, 1991 and 2001. It is the digital version of the land use maps published by Henriques [1] and revised under the LUCO research project.

    The land use of Maputo city was identified from: i) aerial photographs (1964, 1982, 1991), orthophoto maps (1973) and IKONOS images (2001); ii) documentary sources, such as the Urbanization Master Plan (1969) and the Maputo City Addressing (1997); iii) the recognition made during several field survey campaigns. The methodology is described in Henriques [1].

    Land use was classified into three levels, resulting from a hierarchical classification system, including descriptive and parametric classes. Levels I and II are available in this repository.

    Level I, composed by 10 classes, contains the main forms of occupation: built-up areas (residential, economic activity, equipment, and infrastructure) and non-built-up areas (vacant or "natural"). It is geared towards analyses that serve policymaking and resource management at the regional or national scale [1].

    Level II, composed by 31 classes, discriminates the higher hierarchical level according to its functional land use to become useful for municipal planning and management in municipal master plans, for example [1].

    Maps are available in shapefile format and include predefined symbology-legend files, for QGIS and ArcGIS (v.10.7 or higher). The urban land use classes are described in Portuguese and English, and their meaning is provided as an accompanying document (ULU_Maputo_Nomenclatura_PT.pdf / ULU_Maputo_Nomenclature_EN.pdf).

    Data format: vector (shapefile, polygon)

    Reference system: WGS84, UTM 36S (EPSG:32736)

    Original minimum mapping unit: 25 m2

    Urban Land Use dataset attributes:

    [N_I_C] – code of level I

    [N_I_D_PT] – name of level I, in Portuguese

    [N_I_D_EN] - name of level I, in English

    [N_II_C] – code of level II

    [N_II_D_PT] - name of level II, in Portuguese

    [N_II_D_EN] - name of level II, in English

    Funding: this research was supported by national funds through FCT – Fundação para a Ciência e Tecnologia, I.P. Project number: FCT AGA-KHAN/ 541731809 / 2019

    [1] Henriques, C.D. (2008). Maputo. Cinco décadas de mudança territorial. O uso do solo observado por tecnologias de informação geográfica [Maputo. Five decades of territorial transformation. Land use assessed by geographical information technologies]. Lisboa, Instituto Português de Apoio ao Desenvolvimento (ISBN: 978-972-8975-22-7).

  5. DAFNE Basemap for the Omo-Turkana Basin case study

    • zenodo.org
    • explore.openaire.eu
    bin, zip
    Updated Nov 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marco Micotti; Marco Micotti (2020). DAFNE Basemap for the Omo-Turkana Basin case study [Dataset]. http://doi.org/10.5281/zenodo.4156152
    Explore at:
    zip, binAvailable download formats
    Dataset updated
    Nov 5, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marco Micotti; Marco Micotti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatial dataset derived from many different open data repositories and cropped on the Omo-Turkana Basin boundary, used to create a base-map describing the components of Water-Energy-Food nexus in the case study.

    omo-turkana.gpkg: vector dataset including the following layers, together with the related map style for QGIS Desktop used in the DAFNE Geoportal basemap:

    • basin: Hydrological basin of the Omo-Turkana river (case study boundary)
    • subbasin: Basins of the main tributaries
    • waterbodies: Natural lakes and reservoirs boundaries
    • rivers: River network
    • dams: Existing dams
    • protected_areas: Protected areas
    • aei_pct_cells: Area equipped for irrigation, expressed as percentage of total area.
    • roads: Main roads network
    • cities: Main cities in the riparian countries
    • countries: Administrative borders of riparian countries
    • markers: DAFNE model components location, with existing and planned dams and power plants, irrigation schemes, environmental target areas.

    zambezi_raster.zip: raster dataset including the following layers:

    • srtm_90m: Digital Elevation Model
    • Global Surface Water:
      • change: Occurrence Change Intensity map provides information on where surface water occurrence increased, decreased or remained the same between 1984-1999 and 2000-2015
      • extent: Maximum Water Extent shows all the locations ever detected as water over period 1984-2015
      • occurence: Occurrence shows where surface water occurred between 1984 and 2015 and provides information concerning overall water dynamics.
      • recurrence: Recurrence provides information concerning the inter-annual behaviour of water surfaces and captures the frequency with which water returns from year to year.
      • seasonality: Seasonality map provides information concerning the intra-annual behaviour of water surfaces for a single year (2015) and shows permanent and seasonal water and the number of months water was present.
      • transitions: Transitions map provides information on the change in surface water seasonality between the first and last years (between 1984 and 2015) and captures changes between the three classes of not water, seasonal water and permanent water.

    Original data sources include:

    • AQUASTAT, the FAO global information system on water resources and agricultural water management;
    • Natural Earth, a public domain map dataset available at different scales;

    • Protected Planet, the most up to date and complete source of data on protected areas and other effective area-based conservation measures, maintained by UNEP-WCMC and IUCN;

    • OpenStreetMap, a collaborative project to create a free editable map of the world;

    • NASA's Shuttle Radar Topography Mission (SRTM) Digital Elevation Database;

    • Global Water Surface, a virtual time machine that maps the location and temporal distribution of water surfaces at the global scale.

  6. K

    NZ Populated Places - Polygons

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Jun 16, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Scott (2011). NZ Populated Places - Polygons [Dataset]. https://koordinates.com/layer/3658-nz-populated-places-polygons/
    Explore at:
    kml, csv, dwg, mapinfo tab, pdf, geodatabase, shapefile, mapinfo mif, geopackage / sqliteAvailable download formats
    Dataset updated
    Jun 16, 2011
    Authors
    Peter Scott
    Area covered
    Description

    ps-places-metadata-v1.01

    SUMMARY

    This dataset comprises a pair of layers, (points and polys) which attempt to better locate "populated places" in NZ. Populated places are defined here as settled areas, either urban or rural where densitys of around 20 persons per hectare exist, and something is able to be seen from the air.

    RATIONALE

    The only liberally licensed placename dataset is currently LINZ geographic placenames, which has the following drawbacks: - coordinates are not place centers but left most label on 260 series map - the attributes are outdated

    METHODOLOGY

    This dataset necessarily involves cleaving the linz placenames set into two, those places that are poplulated, and those unpopulated. Work was carried out in four steps. First placenames were shortlisted according to the following criterion: - all places that rated at least POPL in the linz geographic places layer, ie POPL, METR or TOWN or USAT were adopted. - Then many additional points were added from a statnz meshblock density analysis.
    - Finally remaining points were added from a check against linz residential polys, and zenbu poi clusters.

    Spelling is broadly as per linz placenames, but there are differences for no particular reason. Instances of LINZ all upper case have been converted to sentance case. Some places not presently in the linz dataset are included in this set, usually new places, or those otherwise unnamed. They appear with no linz id, and are not authoritative, in some cases just wild guesses.

    Density was derived from the 06 meshblock boundarys (level 2, geometry fixed), multipart conversion, merging in 06 usually resident MB population then using the formula pop/area*10000. An initial urban/rural threshold level of 0.6 persons per hectare was used.

    Step two was to trace the approx extent of each populated place. The main purpose of this step was to determine the relative area of each place, and to create an intersection with meshblocks for population. Step 3 involved determining the political center of each place, broadly defined as the commercial center.

    Tracing was carried out at 1:9000 for small places, and 1:18000 for large places using either bing or google satellite views. No attempt was made to relate to actual town 'boundarys'. For example large parks or raceways on the urban fringe were not generally included. Outlying industrial areas were included somewhat erratically depending on their connection to urban areas.

    Step 3 involved determining the centers of each place. Points were overlaid over the following layers by way of a base reference:

    a. original linz placenames b. OSM nz-locations points layer c. zenbu pois, latest set as of 5/4/11 d. zenbu AllSuburbsRegions dataset (a heavily hand modified) LINZ BDE extract derived dataset courtesy Zenbu. e. LINZ road-centerlines, sealed and highway f. LINZ residential areas, g. LINZ building-locations and building footprints h. Olivier and Co nz-urban-north and south

    Therefore in practice, sources c and e, form the effective basis of the point coordinates in this dataset. Be aware that e, f and g are referenced to the LINZ topo data, while c and d are likely referenced to whatever roading dataset google possesses. As such minor discrepencys may occur when moving from one to the other.

    Regardless of the above, this place centers dataset was created using the following criteria, in order of priority:

    • attempts to represent the present (2011) subjective 'center' of each place as defined by its commercial/retail center ie. mainstreets where they exist, any kind of central retail cluster, even a single shop in very small places.
    • the coordinate is almost always at the junction of two or more roads.
    • most of the time the coordinate is at or near the centroid of the poi cluster
    • failing any significant retail presence, the coordinate tends to be placed near the main road junction to the community.
    • when the above criteria fail to yield a definitive answer, the final criteria involves the centroids of: . the urban polygons . the clusters of building footprints/locations.

    To be clear the coordinates are manually produced by eye without any kind of computation. As such the points are placed approximately perhaps plus or minus 10m, but given that the roads layers are not that flash, no attempt was made to actually snap the coordinates to the road junctions themselves.

    The final step involved merging in population from SNZ meshblocks (merge+sum by location) of popl polys). Be aware that due to the inconsistent way that meshblocks are defined this will result in inaccurate populations, particular small places will collect population from their surrounding area. In any case the population will generally always overestimate by including meshblocks that just nicked the place poly. Also there are a couple of dozen cases of overlapping meshblocks between two place polys and these will double count. Which i have so far made no attempt to fix.

    Merged in also tla and regions from SNZ shapes, a few of the original linz atrributes, and lastly grading the size of urban areas according to SNZ 'urban areas" criteria. Ie: class codes:

    1. Not used.
    2. main urban area 30K+
    3. secondary urban area 10k-30K
    4. minor urban area 1k-10k
    5. rural center 300-1K
    6. village -300

    Note that while this terminology is shared with SNZ the actual places differ owing to different decisions being made about where one area ends an another starts, and what constiutes a suburb or satellite. I expect some discussion around this issue. For example i have included tinwald and washdyke as part of ashburton and timaru, but not richmond or waikawa as part of nelson and picton. Im open to discussion on these.

    No attempt has or will likely ever be made to locate the entire LOC and SBRB data subsets. We will just have to wait for NZFS to release what is thought to be an authoritative set.

    PROJECTION

    Shapefiles are all nztm. Orig data from SNZ and LINZ was all sourced in nztm, via koordinates, or SNZ. Satellite tracings were in spherical mercator/wgs84 and converted to nztm by Qgis. Zenbu POIS were also similarly converted.

    ATTRIBUTES

    Shapefile: Points id : integer unique to dataset name : name of popl place, string class : urban area size as above. integer tcode : SNZ tla code, integer rcode : SNZ region code, 1-16, integer area : area of poly place features, integer in square meters. pop : 2006 usually resident popluation, being the sum of meshblocks that intersect the place poly features. Integer lid : linz geog places id desc_code : linz geog places place type code

    Shapefile: Polygons gid : integer unique to dataset, shared by points and polys name : name of popl place, string, where spelling conflicts occur points wins area : place poly area, m2 Integer

    LICENSE

    Clarification about the minorly derived nature of LINZ and google data needs to be sought. But pending these copyright complications, the actual points data is essentially an original work, released as public domain. I retain no copyright, nor any responsibility for data accuracy, either as is, or regardless of any changes that are subsequently made to it.

    Peter Scott 16/6/2011

    v1.01 minor spelling and grammar edits 17/6/11

  7. a

    Ground Level Map 5m DEM (CCT GLM 2019)

    • odp-cctegis.opendata.arcgis.com
    • hub.arcgis.com
    Updated Nov 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cape Town (2021). Ground Level Map 5m DEM (CCT GLM 2019) [Dataset]. https://odp-cctegis.opendata.arcgis.com/documents/dfed46fcf1784aafacb146b14f01cd49
    Explore at:
    Dataset updated
    Nov 11, 2021
    Dataset authored and provided by
    City of Cape Town
    Description

    The 5m DEM is derived from the LiDAR2019B dataset (consisting of the 2018, 2019A and 2019B datasets). The 5m DEM has a vertical accuracy of 30cm. The height reference used is the SA Land Levelling Datum and the SAGEOID2010 was employed.The City of Cape Town Ground Level Map 2019 is defined in the City of Cape Town Municipal Planning Amendment By-law, 2019 as: “‘City of Cape Town Ground Level Map’ means a map approved in terms of the development management scheme, indicating the existing ground level based on floating point raster’s and a contour dataset from LiDAR information available to the City”. The Ground Level Map was approved by the City Council on the 27th July 2023.All Raster Image Services (REST):https://cityimg.capetown.gov.za/erdas-iws/esri/GeoSpatial%20Datasets/rest/services/All Raster Image Services (WMS):Use URL below to add WMS Server Connection in ArcGIS Desktop, ArcPro, QGIS, AutoCAD, etc.https://cityimg.capetown.gov.za/erdas-iws/ogc/wms/GeoSpatial Datasets?service=WMS&request=getcapabilities&For a copy or subset of this dataset, please contact the City Maps Office: city.maps@capetown.gov.zaCCT Ground Level Map: ‘How to Access’ Guide – External Users: CCT Ground Level Map: ‘How to Access’ Guide – External Users | Open Data Portal (arcgis.com)Geomatics Ground Level Map Explainer: Geomatics Ground Level Map Explainer | Open Data Portal (arcgis.com)Land Use Management Ground Level Map Explainer: Land Use Management Ground Level Map Explainer | Open Data Portal (arcgis.com)

  8. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  9. Geoscape Administrative Boundaries

    • data.gov.au
    • researchdata.edu.au
    zip
    Updated May 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Industry, Science and Resources (DISR) (2025). Geoscape Administrative Boundaries [Dataset]. https://data.gov.au/data/dataset/geoscape-administrative-boundaries
    Explore at:
    zip(1897457552), zip(1844909540), zip(1051292340), zip(1069165202)Available download formats
    Dataset updated
    May 19, 2025
    Dataset provided by
    Department of Industry and Sciencehttp://www.industry.gov.au/
    Authors
    Department of Industry, Science and Resources (DISR)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous

    Geoscape Administrative Boundaries is Australia’s most comprehensive national collection of boundaries, including government, statistical and electoral boundaries. It is built and maintained by Geoscape Australia using authoritative government data. Further information about contributors to Administrative Boundaries is available here.

    This dataset comprises seven Geoscape products:

    • Localities
    • Local Government Areas (LGAs)
    • Wards
    • Australian Bureau of Statistics (ABS) Boundaries
    • Electoral Boundaries
    • State Boundaries and
    • Town Points

    Updated versions of Administrative Boundaries are published on a quarterly basis.

    Users have the option to download datasets with feature coordinates referencing either GDA94 or GDA2020 datums.

    Notable changes in the May 2025 release

    • Victorian Wards have seen almost half of the dataset change now reflecting the boundaries from the 2024 subdivision review. https://www.vec.vic.gov.au/electoral-boundaries/council-reviews/ subdivision-reviews.

      • There have been spatial changes (area) greater than 1 km2 to 66 wards in Victoria.
    • One new locality ‘Kenwick Island’ has been added to the local Government area ‘Mackay Regional’ in Queensland.

      • There have been spatial changes(area) greater than 1 km2 to the local government areas 'Burke Shire' and 'Mount Isa City' in Queensland.
    • There have been spatial changes(area) greater than 1 km2 to the localities ‘Nicholson’, ‘Lawn Hill’ and ‘Coral Sea’ in Queensland and ‘Calguna’, ‘Israelite Bay’ and ‘Balladonia’ in Western Australia.

    • An update to the NT Commonwealth Electoral Boundaries has been applied to reflect the redistribution of the boundaries gazetted on 4 March 2025.

    • Geoscape has become aware that the DATE_CREATED and DATE_RETIRED attributes in the commonwealth_electoral_polygon MapInfo TAB tables were incorrectly ordered and did not match the product data model. These attributes have been re-ordered to match the data model for the May 2025 release.

    IMPORTANT NOTE: correction of issues with the 22 November 2022 release

    • On 28 November 2022, the Administrative Boundaries dataset originally released on 22 November 2022 was amended and re-uploaded after Geoscape identified some issues with the original data for 'Electoral Boundaries'.
    • As a result of the error, some shapefiles were published in 3D rather than 2D, which may affect some users when importing data into GIS applications.
    • The error affected the Electoral Boundaries dataset, specifically the Commonwealth boundary data for Victoria and Western Australia, including 'All States'.
    • Only the ESRI Shapefile formats were affected (both GDA94 and GDA2020). The MapInfo TAB format was not affected.
    • Because the datasets are zipped into a single file, once the error was fixed by Geoscape all of Administrative Boundaries shapefiles had to be re-uploaded, rather than only the affected files.
    • If you downloaded either of the two Administrative Boundary ESRI Shapefiles between 22 November and 28 November 2022 and plan to use the Electoral Boundary component, you are advised to download the revised version dated 28 November 2022. Apologies for any inconvenience.

    Further information on Administrative Boundaries, including FAQs on the data, is available here or through Geoscape Australia’s network of partners. They provide a range of commercial products based on Administrative Boundaries, including software solutions, consultancy and support.

    Note: On 1 October 2020, PSMA Australia Limited began trading as Geoscape Australia.

    The Australian Government has negotiated the release of Administrative Boundaries to the whole economy under an open CCBY 4.0 licence.

    Users must only use the data in ways that are consistent with the Australian Privacy Principles issued under the Privacy Act 1988 (Cth).

    Users must also note the following attribution requirements:

    Preferred attribution for the Licensed Material:

    Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International license (CC BY 4.0).

    Preferred attribution for Adapted Material:

    Incorporates or developed using Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International licence (CC BY 4.0).

    What to Expect When You Download Administrative Boundaries

    Administrative Boundaries is large dataset (around 1.5GB unpacked), made up of seven themes each containing multiple layers.

    Users are advised to read the technical documentation including the product change notices and the individual product descriptions before downloading and using the product.

    Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous

    License Information

  10. Z

    Green Roofs Footprints for New York City, Assembled from Available Data and...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maxwell, Emily Nobel (2020). Green Roofs Footprints for New York City, Assembled from Available Data and Remote Sensing [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_1469673
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Treglia, Michael L.
    Sanderson, Eric W.
    Yetman, Greg
    McPhearson, Timon
    Maxwell, Emily Nobel
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    Summary:

    The files contained herein represent green roof footprints in NYC visible in 2016 high-resolution orthoimagery of NYC (described at https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_AerialImagery.md). Previously documented green roofs were aggregated in 2016 from multiple data sources including from NYC Department of Parks and Recreation and the NYC Department of Environmental Protection, greenroofs.com, and greenhomenyc.org. Footprints of the green roof surfaces were manually digitized based on the 2016 imagery, and a sample of other roof types were digitized to create a set of training data for classification of the imagery. A Mahalanobis distance classifier was employed in Google Earth Engine, and results were manually corrected, removing non-green roofs that were classified and adjusting shape/outlines of the classified green roofs to remove significant errors based on visual inspection with imagery across multiple time points. Ultimately, these initial data represent an estimate of where green roofs existed as of the imagery used, in 2016.

    These data are associated with an existing GitHub Repository, https://github.com/tnc-ny-science/NYC_GreenRoofMapping, and as needed and appropriate pending future work, versioned updates will be released here.

    Terms of Use:

    The Nature Conservancy and co-authors of this work shall not be held liable for improper or incorrect use of the data described and/or contained herein. Any sale, distribution, loan, or offering for use of these digital data, in whole or in part, is prohibited without the approval of The Nature Conservancy and co-authors. The use of these data to produce other GIS products and services with the intent to sell for a profit is prohibited without the written consent of The Nature Conservancy and co-authors. All parties receiving these data must be informed of these restrictions. Authors of this work shall be acknowledged as data contributors to any reports or other products derived from these data.

    Associated Files:

    As of this release, the specific files included here are:

    GreenRoofData2016_20180917.geojson is in the human-readable, GeoJSON format, in geographic coordinates (Lat/Long, WGS84; EPSG 4263).

    GreenRoofData2016_20180917.gpkg is in the GeoPackage format, which is an Open Standard readable by most GIS software including Esri products (tested on ArcMap 10.3.1 and multiple versions of QGIS). This dataset is in the New York State Plan Coordinate System (units in feet) for the Long Island Zone, North American Datum 1983, EPSG 2263.

    GreenRoofData2016_20180917_Shapefile.zip is a zipped folder containing a Shapefile and associated files. Please note that some field names were truncated due to limitations of Shapefiles, but columns are in the same order as for other files and in the same order as listed below. This dataset is in the New York State Plan Coordinate System (units in feet) for the Long Island Zone, North American Datum 1983, EPSG 2263.

    GreenRoofData2016_20180917.csv is a comma-separated values file (CSV) with coordinates for centroids for the green roofs stored in the table itself. This allows for easily opening the data in a tool like spreadsheet software (e.g., Microsoft Excel) or a text editor.

    Column Information for the datasets:

    Some, but not all fields were joined to the green roof footprint data based on building footprint and tax lot data; those datasets are embedded as hyperlinks below.

    fid - Unique identifier

    bin - NYC Building ID Number based on overlap between green roof areas and a building footprint dataset for NYC from August, 2017. (Newer building footprint datasets do not have linkages to the tax lot identifier (bbl), thus this older dataset was used). The most current building footprint dataset should be available at: https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh. Associated metadata for fields from that dataset are available at https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_BuildingFootprints.md.

    bbl - Boro Block and Lot number as a single string. This field is a tax lot identifier for NYC, which can be tied to the Digital Tax Map (http://gis.nyc.gov/taxmap/map.htm) and PLUTO/MapPLUTO (https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page). Metadata for fields pulled from PLUTO/MapPLUTO can be found in the PLUTO Data Dictionary found on the aforementioned page. All joins to this bbl were based on MapPLUTO version 18v1.

    gr_area - Total area of the footprint of the green roof as per this data layer, in square feet, calculated using the projected coordinate system (EPSG 2263).

    bldg_area - Total area of the footprint of the associated building, in square feet, calculated using the projected coordinate system (EPSG 2263).

    prop_gr - Proportion of the building covered by green roof according to this layer (gr_area/bldg_area).

    cnstrct_yr - Year the building was constructed, pulled from the Building Footprint data.

    doitt_id - An identifier for the building assigned by the NYC Dept. of Information Technology and Telecommunications, pulled from the Building Footprint Data.

    heightroof - Height of the roof of the associated building, pulled from the Building Footprint Data.

    feat_code - Code describing the type of building, pulled from the Building Footprint Data.

    groundelev - Lowest elevation at the building level, pulled from the Building Footprint Data.

    qa - Flag indicating a positive QA/QC check (using multiple types of imagery); all data in this dataset should have 'Good'

    notes - Any notes about the green roof taken during visual inspection of imagery; for example, it was noted if the green roof appeared to be missing in newer imagery, or if there were parts of the roof for which it was unclear whether there was green roof area or potted plants.

    classified - Flag indicating whether the green roof was detected image classification. (1 for yes, 0 for no)

    digitized - Flag indicating whether the green roof was digitized prior to image classification and used as training data. (1 for yes, 0 for no)

    newlyadded - Flag indicating whether the green roof was detected solely by visual inspection after the image classification and added. (1 for yes, 0 for no)

    original_source - Indication of what the original data source was, whether a specific website, agency such as NYC Dept. of Parks and Recreation (DPR), or NYC Dept. of Environmental Protection (DEP). Multiple sources are separated by a slash.

    address - Address based on MapPLUTO, joined to the dataset based on bbl.

    borough - Borough abbreviation pulled from MapPLUTO.

    ownertype - Owner type field pulled from MapPLUTO.

    zonedist1 - Zoning District 1 type pulled from MapPLUTO.

    spdist1 - Special District 1 pulled from MapPLUTO.

    bbl_fixed - Flag to indicate whether bbl was manually fixed. Since tax lot data may have changed slightly since the release of the building footprint data used in this work, a small percentage of bbl codes had to be manually updated based on overlay between the green roof footprint and the MapPLUTO data, when no join was feasible based on the bbl code from the building footprint data. (1 for yes, 0 for no)

    For GreenRoofData2016_20180917.csv there are two additional columns, representing the coordinates of centroids in geographic coordinates (Lat/Long, WGS84; EPSG 4263):

    xcoord - Longitude in decimal degrees.

    ycoord - Latitude in decimal degrees.

    Acknowledgements:

    This work was primarily supported through funding from the J.M. Kaplan Fund, awarded to the New York City Program of The Nature Conservancy, with additional support from the New York Community Trust, through New York City Audubon and the Green Roof Researchers Alliance.

  11. g

    World Administrative Boundaries

    • geopostcodes.com
    csv
    Updated Apr 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). World Administrative Boundaries [Dataset]. https://www.geopostcodes.com/world-administrative-boundaries/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 28, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    World, World
    Description

    Our World Administrative Boundaries Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  12. h

    Heat Severity - USA 2021

    • heat.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2022). Heat Severity - USA 2021 [Dataset]. https://www.heat.gov/datasets/cdd2ffd5a2fc414ca1a5e676f5fce3e3
    Explore at:
    Dataset updated
    Jan 6, 2022
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    United States,
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  13. A

    Ocean Basemap

    • data.amerigeoss.org
    • caribbeangeoportal.com
    • +3more
    esri rest, html
    Updated Mar 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Ocean Basemap [Dataset]. https://data.amerigeoss.org/dataset/ocean-basemap
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Mar 19, 2020
    Dataset provided by
    Caribbean GeoPortal
    Description

    This map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap includes bathymetry, marine water body names, undersea feature names, and derived depth values in meters. Land features include administrative boundaries, cities, inland waters, roads, overlaid on land cover and shaded relief imagery.

    The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and DeLorme, HERE, and Esri for topographic content. The basemap was designed and developed by Esri.

    The Ocean Basemap currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details, see the Community Maps Program.

    Tip: Here are some famous oceanic locations as they appear in this map. Each URL below launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound

  14. g

    Nigeria zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Nigeria zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/nigeria-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Nigeria
    Description

    Our Nigeria zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  15. g

    Poland zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Poland zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/poland-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 23, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Poland
    Description

    Our Poland zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  16. g

    Download US ZIP Code Dataset - United States of America

    • geopostcodes.com
    csv
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Download US ZIP Code Dataset - United States of America [Dataset]. https://www.geopostcodes.com/country/united-states-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Our United States zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  17. g

    Hungary zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Feb 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Hungary zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/hungary-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 26, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Hungary
    Description

    Our Hungary zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  18. g

    Puerto Rico zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Puerto Rico zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/puerto-rico-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Puerto Rico
    Description

    Our Puerto Rico zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  19. g

    Bulgaria zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Bulgaria zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/bulgaria-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 19, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Bulgaria
    Description

    Our Bulgaria zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  20. g

    Russia zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Russia zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/russia-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Russia
    Description

    Our Russia zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). 500 Cities: City Boundaries [Dataset]. https://catalog.data.gov/dataset/500-cities-city-boundaries

500 Cities: City Boundaries

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 3, 2025
Dataset provided by
Centers for Disease Control and Prevention
Description

This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.

Search
Clear search
Close search
Google apps
Main menu