27 datasets found
  1. Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  2. Data from: Sales Performance

    • kaggle.com
    zip
    Updated Oct 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vutikonda Johnpaul (2025). Sales Performance [Dataset]. https://www.kaggle.com/datasets/vutikondajohnpaul/sales-performance
    Explore at:
    zip(51903 bytes)Available download formats
    Dataset updated
    Oct 31, 2025
    Authors
    Vutikonda Johnpaul
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains sales transaction records used to create an interactive Excel Sales Performance Dashboard for business analytics practice.

    It includes six columns capturing essential sales metrics such as date, region, product, quantity, sales revenue, and profit. The data is structured to help analysts and learners explore data visualization, PivotTable summarization, and dashboard design concepts in Excel.

    The dataset was created for educational and demonstration purposes to help users:

    1. Build dashboards that visualize total sales and profit trends
    2. Identify top-performing products and high-profit regions
    3. Practice Excel-based business analytics workflows

    Columns: Date – Transaction date (daily sales record) Region – Geographic area of the sale (East, West, North, South) Product – Product category or item sold Sales – Total revenue generated from the sale (USD) Profit – Net profit made per transaction Quantity – Number of units sold

    Typical uses include: Excel or Power BI dashboard projects PivotTable practice for business reporting Data cleaning and chart-building exercises Portfolio development for business analytics students Built and tested in Microsoft Excel using PivotTables, Charts, and Conditional Formatting.

  3. f

    Excel tables include all values used to generate graphs.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hankinson, Jacqueline; Lulla, Aleksei; Noyvert, David; Ali, Hashim; Lulla, Valeria; Lindsey, Gemma (2024). Excel tables include all values used to generate graphs. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001322634
    Explore at:
    Dataset updated
    Jul 15, 2024
    Authors
    Hankinson, Jacqueline; Lulla, Aleksei; Noyvert, David; Ali, Hashim; Lulla, Valeria; Lindsey, Gemma
    Description

    Excel tables include all values used to generate graphs.

  4. Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  5. Superstore Sales Analysis

    • kaggle.com
    zip
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis/versions/1
    Explore at:
    zip(3009057 bytes)Available download formats
    Dataset updated
    Oct 21, 2023
    Authors
    Ali Reda Elblgihy
    Description

    Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

    1- Data Import and Transformation:

    • Gather and import relevant sales data from various sources into Excel.
    • Utilize Power Query to clean, transform, and structure the data for analysis.
    • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

    2- Data Quality Assessment:

    • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
    • Standardize data formats and ensure that all data is in a consistent, usable state.

    3- Calculating COGS:

    • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
    • Apply appropriate formulas and calculations to determine COGS accurately.

    4- Discount Analysis:

    • Analyze the discount values offered on products to understand their impact on sales and profitability.
    • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

    5- Sales Metrics:

    • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
    • Utilize Excel functions to compute these metrics and create visuals for better insights.

    6- Visualization:

    • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
    • Visual representations can help identify trends, outliers, and patterns in the data.

    7- Report Generation:

    • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

    Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

  6. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  7. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  8. Project Priority Matrix (Dynamic Excel Template)

    • kaggle.com
    zip
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asjad (2025). Project Priority Matrix (Dynamic Excel Template) [Dataset]. https://www.kaggle.com/datasets/asjadd/project-priority-matrix-dynamic-excel-template
    Explore at:
    zip(50515 bytes)Available download formats
    Dataset updated
    Oct 24, 2025
    Authors
    Asjad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Project Priority Matrix (Dynamic Excel Tool)

    Overview

    This dataset provides a dynamic Excel model for prioritizing projects based on Feasibility, Impact, and Size.
    It visualizes project data on a Bubble Chart that updates automatically when new projects are added.

    Use this tool to make data-driven prioritization decisions by identifying which projects are most feasible and high-impact.

    Goal

    Organizations often struggle to compare multiple initiatives objectively.
    This matrix helps teams quickly determine which projects to pursue first by visualizing:

    • Feasibility → How achievable a project is
    • Impact → The potential benefit or value it delivers
    • Size → The level of effort or resources required

    How It Works

    1. Each project is rated on a 1–10 scale for:
      • Feasibility
      • Impact
      • Size
    2. The Excel file uses a Bubble Chart:
      • X-axis: Feasibility
      • Y-axis: Impact
      • Bubble size: Project Size
    3. The chart automatically updates when new projects or scores are added.

    Example (partial data):

    CriteriaProject 1Project 2Project 3Project 4Project 5Project 6Project 7Project 8
    Feasibility79527268
    Impact84466777
    Size102374431

    Interpretation Guide

    QuadrantDescriptionAction
    High Feasibility / High ImpactQuick winsTop Priority
    High Impact / Low FeasibilityValuable but riskyPlan carefully
    Low Impact / High FeasibilityEasy but minor valueOptional
    Low Impact / Low FeasibilityLow returnDefer or drop

    Excel Features

    • Dynamic Bubble Chart (updates with new data)
    • Named Ranges for auto-expanding data
    • Optional Conditional Formatting
    • Data Validation for consistent scoring

    How to Use

    1. Download and open Project_Priority_Matrix.xlsx.
    2. Go to the Data sheet.
    3. Add your project names and scores (1–10).
    4. Watch the chart update instantly to reflect your data.

    You can use this for: - Portfolio management
    - Product or feature prioritization
    - Strategy planning workshops

    File Information

    • File: Project_Priority_Matrix.xlsx
    • Format: Excel (.xlsx)
    • Version: 1.0
    • Last Updated: October 2025

    License

    Free for personal and organizational use.
    Attribution is appreciated if you share or adapt this file.

    Author: [Asjad]
    Contact: [m.asjad2000@gmail.com]
    Compatible With: Microsoft Excel 2019+ / Office 365

  9. G

    Industrial Knowledge Graph Platform Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Industrial Knowledge Graph Platform Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/industrial-knowledge-graph-platform-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Oct 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Industrial Knowledge Graph Platform Market Outlook



    Based on our latest research, the global Industrial Knowledge Graph Platform market size was valued at USD 1.23 billion in 2024, with a robust compound annual growth rate (CAGR) of 25.8% expected through the forecast period. With this trajectory, the market is projected to reach USD 9.08 billion by 2033. This exponential growth is fueled by the surge in industrial digitalization, the increasing need for contextual data integration, and the adoption of artificial intelligence (AI) and machine learning (ML) across industrial sectors. The market’s rapid expansion is underpinned by the critical role that knowledge graph platforms play in unifying disparate data sources, driving operational efficiency, and enabling advanced analytics for enterprise decision-making.




    One of the primary growth drivers for the Industrial Knowledge Graph Platform market is the escalating demand for real-time, context-rich insights across industrial operations. As industries such as manufacturing, energy, and automotive embrace Industry 4.0 principles, the volume and complexity of data generated from interconnected devices and systems have increased dramatically. Knowledge graph platforms excel at integrating structured and unstructured data from diverse sources, enabling organizations to create a comprehensive, interconnected view of their assets, processes, and supply chains. This capability is crucial for enhancing operational transparency, optimizing resource allocation, and supporting predictive analytics, which collectively contribute to improved productivity and reduced downtime.




    Another key factor propelling market growth is the widespread adoption of AI and ML technologies within industrial environments. Industrial knowledge graph platforms serve as foundational infrastructure for advanced AI applications by providing a semantic layer that contextualizes data relationships. This semantic enrichment empowers AI-driven solutions to deliver more accurate predictions, uncover hidden patterns, and automate complex decision-making processes. As organizations strive to achieve greater agility and resilience in the face of global supply chain disruptions and evolving regulatory requirements, knowledge graph platforms are increasingly seen as indispensable tools for digital transformation and competitive differentiation.




    Furthermore, the growing emphasis on asset management, risk mitigation, and process optimization is fueling the adoption of industrial knowledge graph platforms. These platforms facilitate holistic visibility into asset lifecycles, maintenance schedules, and operational risks by connecting siloed data repositories and enabling cross-domain analytics. Industries such as oil & gas, pharmaceuticals, and chemicals, which operate in highly regulated environments, benefit significantly from the ability to trace data lineage, ensure compliance, and proactively manage risks. The integration of knowledge graphs with existing enterprise systems, including ERP, MES, and SCADA, further enhances their value proposition by streamlining workflows and supporting real-time decision-making.




    Regionally, North America leads the global market, driven by early technology adoption, strong presence of key vendors, and significant investments in industrial IoT and AI initiatives. Europe follows closely, supported by robust manufacturing and automotive sectors, as well as stringent regulatory standards that encourage data integration and transparency. The Asia Pacific region is witnessing the fastest growth, propelled by rapid industrialization, government-led digitalization programs, and the proliferation of smart manufacturing initiatives in countries such as China, Japan, and South Korea. Latin America and the Middle East & Africa are also experiencing steady growth, albeit from a smaller base, as local industries increasingly recognize the value of knowledge graph platforms for operational excellence and risk management.





    Component Analysis


    <br

  10. g

    Data from: Stratigraphic Classification Table for the PetroPhysical Property...

    • dataservices.gfz-potsdam.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristian Bär; Philipp Mielke (2019). Stratigraphic Classification Table for the PetroPhysical Property Database P³ [Dataset]. http://doi.org/10.5880/gfz.4.8.2019.p3.s
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    datacite
    GFZ Data Services
    Authors
    Kristian Bär; Philipp Mielke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Dataset funded by
    FP7 Energy
    Description

    This data publication is part of the 'P³-Petrophysical Property Database' project, which was developed within the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553) and consists of a scientific paper, a full report on the database, the database as excel and .csv files and additional tables for a hierarchical classification of the petrography and stratigraphy of the investigated rock samples (see related references). This publication here provides a hierarchical interlinked stratigraphic classification according to the chronostratigraphical units of the international chronostratigraphic chart of the IUGS v2016/04 (Cohen et al. 2013, updated) according to international standardisation. As addition to this IUGS chart, which is also documented in GeoSciML, stratigraphic IDs and parent IDs were included to define the direct relationships between the stratigraphic terms. The P³ database aims at providing easily accessible, peer-reviewed information on physical rock properties relevant for geothermal exploration and reservoir characterization in one single compilation. Collected data include hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age and, most important, original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis, of which the stratigraphic catalogue is presented here. These chronostratigraphic units are compiled to ensure that formations of a certain age are connected to the corresponding stratigraphic epoch, period or erathem. Thus, the chronostratigraphic units are directly correlated to each other by their stratigraphic ID and stratigraphic parent ID and can thus be used for interlinked data assessment of the petrophysical properties of samples of an according stratigraphic unit.

  11. m

    Bathymetry and velocity data from, "Sediment transport and topographic...

    • marine-geo.org
    Updated Mar 31, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Bathymetry and velocity data from, "Sediment transport and topographic evolution of a coupled river and river-plume system: An experimental and numerical study (2014)" [Dataset]. https://www.marine-geo.org/tools/search/Files.php?data_set_uid=22304
    Explore at:
    Dataset updated
    Mar 31, 2013
    Description

    This data set was derived from experimental and numerical studies of sediment transport and the topographic evolution of a coupled river and rive-plume system. Data files are Microsoft Excel format and include data and graphs of experimental topographic cross sections, centerline profiles and numerical model runs used to produce the figures in Chatanantavet and Lamb, 2014. Funding was provided by NSF grant(s): OCE12-33685.

  12. u

    Temperature, salinity and rainfall analysis of the Olifants and Breede...

    • researchdata.up.ac.za
    bin
    Updated Aug 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edwin Greyling (2023). Temperature, salinity and rainfall analysis of the Olifants and Breede estuaries [Dataset]. http://doi.org/10.25403/UPresearchdata.23807511.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 1, 2023
    Dataset provided by
    University of Pretoria
    Authors
    Edwin Greyling
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This MS Excel data has been processed into line graphs to create time series line graphs and data tables which give insight into changing physiochemical water quality characteristics and influences. The study sets out to determine if climate change has had an influence on physiochemical water quality characteristics both within and between the Breede and Olifants estuaries over a nine year monitoring period. The data represents changes and comparisons between salinity, temperature and rainfall within and between the Olifants and Breede river estuaries in the Wester Cape Province of South Africa.

  13. Sales Dashboard in Microsoft Excel

    • kaggle.com
    zip
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavana Joshi (2023). Sales Dashboard in Microsoft Excel [Dataset]. https://www.kaggle.com/datasets/bhavanajoshij/sales-dashboard-in-microsoft-excel/discussion
    Explore at:
    zip(253363 bytes)Available download formats
    Dataset updated
    Apr 14, 2023
    Authors
    Bhavana Joshi
    Description

    This interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.

    Dashboard Overview

    1. Sales dashboard ==> basically, it is designed for the B2C type of business. like Dmart, Walmart, Amazon, Shops & supermarkets, etc.
    2. Slices ==> slices are used to drill down the data, on the basis of yearly, monthly, by sales type, and by mode of payment.
    3. Total Sales/Total Profits ==> here is, the total sales, total profit, and profit percentage these all are combined into a monthly format and we can hide or unhide it to view it as individually or comparative.
    4. Product Visual ==> the visual indicates product-wise sales for the selected period. Only 10 products are visualized at a glance, and you can scroll up & down to view other products in the list.
    5. Daily Sales ==> It shows day-wise sales. (Area Chart)
    6. Sales Type/Payment Mode ==> It shows sales percentage contribution based on the type of selling and mode of payment.
    7. Top Product & Category ==> this is for the top-selling product and product category.
    8. Category ==> the final one is the category-wise sales contribution.

    Datasheets Overview

    1. The dataset has the master data sheet or you can call it a catalog. It is added in the table form.
    2. The first column is the product ID the list of items in this column is unique.
    3. Then we have the product column instead of these two columns, we can manage with only one also but I kept it separate because sometimes product names can be the same, but some parameters will be different, like price, supplier, etc.
    4. The next column is the category column, which is the product category. like cosmetics, foods, drinks, electronics, etc.
    5. Then we have 4th column which is the unit of measure (UOM) you can update it also, based on the products you have.
    6. And the last two columns are buying price and selling price, which means unit purchasing price and unit selling price.

    Input Sheet

    The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.

    Analysis Sheet: where all backend calculations are performed.

    So, basically these are the four sheets mentioned above with different tasks.

    However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.

    A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.

    Questions & Answers

    1. What percentage of profit ratio of sales are displayed in the year 2021 and year 2022? ==> Total profit ratio of sales in the year 2021 is 19% with large sales of PRODUCT42, whereas profit ratio of sales for 2022 is 22% with large sales of PRODUCT30.
    2. Which is the top product that have large number of sales in year 2021-2022? ==> The top product in the year 2021 is PRODUCT42 with the total sales of $12,798 whereas in the year 2022 the top product is PRODUCT30 with the total sales of $13,888.
    3. In Area Chart which product is highly sold on 28th April 2022? ==> The large number of sales on 28th April 2022 is for PRODUCT14 with a 24% of profit ratio.
    4. What is the sales type and payment mode present? ==> The sale type and payment modes show the sales percentage contribution based on the type of selling and mode of payment. Here, the sale types are Direct Sales with 52%, Online Sales with 33% and Wholesaler with 15%. Also, the payment modes are Online mode and Cash equally distributed with 50%.
    5. In which month the direct sales are highest in the year 2022? ==> The highest direct sales can be easily identified which is designed by monthly format and it’s the November month where direct sales are highest with 28% as compared with other months.
    6. Which payment mode is highly received in the year 2021 and year 2022? ==> The payments received in the year 2021 are the cash payments with 52% as compared with online transactions which are 48%. Also, the cash payment highly received is in the month of March, July and October with direct sales of 42%, Online with 45% and wholesaler with 13% with large sales of PRODUCT24. ==> The payments received in the year 2022 are the Online payments with 52% as compared with cash payments which are 48%. Also, the online payment highly received is in the month of Jan, Sept and December with direct sales of 45%, Online with 37% and whole...
  14. c

    The global Graph Database market size is USD 7.3 billion in 2024 and will...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, The global Graph Database market size is USD 7.3 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 20.2% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/graph-database-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Graph Database market size was USD 7.3 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 20.2% from 2024 to 2031. Market Dynamics of Graph Database Market

    Key Drivers for Graph Database Market

    Increasing demand for solutions with the capability to process low-latency queries-One of the main reasons the Graph Database market is extensively being used all over the globe, to the extent that numerous legacy database providers are endeavoring to assimilate graph database schemas into their main relational database infrastructures. Whereas, in theory, the strategy might save money, it might degrade and slow down the performance of queries run beside the database. A graph database is altering traditional brick-and-mortar trades into digital business powerhouses in terms of digital business activities.
    Growing usage of graph database technology to drive the Graph Database market's expansion in the years ahead.
    

    Key Restraints for Graph Database Market

    Complex programming and standardization pose a serious threat to the Graph Database industry.
    The market also faces significant difficulties related to low-cost clusters.
    

    Introduction of the Graph Database Market

    The graph database market has experienced significant growth due to the increasing need for efficient data management and complex relationship mapping in various industries. Unlike traditional relational databases, graph databases excel in handling interconnected data, making them ideal for applications such as social networks, fraud detection, recommendation engines, and supply chain management. Key drivers of this market include the rising adoption of big data analytics, advancements in artificial intelligence, and the proliferation of connected devices. Leading players, such as Neo4j, Amazon Web Services, and Microsoft, continue to innovate, offering scalable and robust graph database solutions. The growing demand for real-time, low-latency data processing capabilities further propels the market's expansion.

  15. Global Spreadsheet Software Market Size By Type of Software, By Deployment...

    • verifiedmarketresearch.com
    Updated Oct 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Spreadsheet Software Market Size By Type of Software, By Deployment Mode, By Industry Vertical, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/spreadsheet-software-market/
    Explore at:
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Spreadsheet Software Market Size And Forecast

    Spreadsheet Software Market size was valued at USD 10.05 Billion in 2023 and is expected to reach USD 14.55 Billion by 2031, with a CAGR of 7.8% from 2024-2031.

    Global Spreadsheet Software Market Drivers

    The market drivers for the Spreadsheet Software Market can be influenced by various factors. These may include:

    Increasing Data Volume: As organizations generate and collect more data, the need for efficient data analysis and management tools, such as spreadsheet software, grows. Rising Demand for Data Visualization: Users increasingly seek sophisticated tools to visualize data for better insights. Spreadsheet software can provide charts and graphs, making data interpretation easier.

    Global Spreadsheet Software Market Restraints

    Several factors can act as restraints or challenges for the Spreadsheet Software Market, These may include:

    Market Saturation: Many organizations already use established spreadsheet software such as Microsoft Excel or Google Sheets. The reliance on these platforms can make it difficult for new entrants or alternative solutions to capture market share. High Competition: The market is highly competitive, with numerous players offering similar features and functionalities. This can lead to price wars and reduced profit margins for software providers.

  16. c

    Niagara Open Data

    • catalog.civicdataecosystem.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Niagara Open Data [Dataset]. https://catalog.civicdataecosystem.org/dataset/niagara-open-data
    Explore at:
    Description

    The Ontario government, generates and maintains thousands of datasets. Since 2012, we have shared data with Ontarians via a data catalogue. Open data is data that is shared with the public. Click here to learn more about open data and why Ontario releases it. Ontario’s Open Data Directive states that all data must be open, unless there is good reason for it to remain confidential. Ontario’s Chief Digital and Data Officer also has the authority to make certain datasets available publicly. Datasets listed in the catalogue that are not open will have one of the following labels: If you want to use data you find in the catalogue, that data must have a licence – a set of rules that describes how you can use it. A licence: Most of the data available in the catalogue is released under Ontario’s Open Government Licence. However, each dataset may be shared with the public under other kinds of licences or no licence at all. If a dataset doesn’t have a licence, you don’t have the right to use the data. If you have questions about how you can use a specific dataset, please contact us. The Ontario Data Catalogue endeavors to publish open data in a machine readable format. For machine readable datasets, you can simply retrieve the file you need using the file URL. The Ontario Data Catalogue is built on CKAN, which means the catalogue has the following features you can use when building applications. APIs (Application programming interfaces) let software applications communicate directly with each other. If you are using the catalogue in a software application, you might want to extract data from the catalogue through the catalogue API. Note: All Datastore API requests to the Ontario Data Catalogue must be made server-side. The catalogue's collection of dataset metadata (and dataset files) is searchable through the CKAN API. The Ontario Data Catalogue has more than just CKAN's documented search fields. You can also search these custom fields. You can also use the CKAN API to retrieve metadata about a particular dataset and check for updated files. Read the complete documentation for CKAN's API. Some of the open data in the Ontario Data Catalogue is available through the Datastore API. You can also search and access the machine-readable open data that is available in the catalogue. How to use the API feature: Read the complete documentation for CKAN's Datastore API. The Ontario Data Catalogue contains a record for each dataset that the Government of Ontario possesses. Some of these datasets will be available to you as open data. Others will not be available to you. This is because the Government of Ontario is unable to share data that would break the law or put someone's safety at risk. You can search for a dataset with a word that might describe a dataset or topic. Use words like “taxes” or “hospital locations” to discover what datasets the catalogue contains. You can search for a dataset from 3 spots on the catalogue: the homepage, the dataset search page, or the menu bar available across the catalogue. On the dataset search page, you can also filter your search results. You can select filters on the left hand side of the page to limit your search for datasets with your favourite file format, datasets that are updated weekly, datasets released by a particular organization, or datasets that are released under a specific licence. Go to the dataset search page to see the filters that are available to make your search easier. You can also do a quick search by selecting one of the catalogue’s categories on the homepage. These categories can help you see the types of data we have on key topic areas. When you find the dataset you are looking for, click on it to go to the dataset record. Each dataset record will tell you whether the data is available, and, if so, tell you about the data available. An open dataset might contain several data files. These files might represent different periods of time, different sub-sets of the dataset, different regions, language translations, or other breakdowns. You can select a file and either download it or preview it. Make sure to read the licence agreement to make sure you have permission to use it the way you want. Read more about previewing data. A non-open dataset may be not available for many reasons. Read more about non-open data. Read more about restricted data. Data that is non-open may still be subject to freedom of information requests. The catalogue has tools that enable all users to visualize the data in the catalogue without leaving the catalogue – no additional software needed. Have a look at our walk-through of how to make a chart in the catalogue. Get automatic notifications when datasets are updated. You can choose to get notifications for individual datasets, an organization’s datasets or the full catalogue. You don’t have to provide and personal information – just subscribe to our feeds using any feed reader you like using the corresponding notification web addresses. Copy those addresses and paste them into your reader. Your feed reader will let you know when the catalogue has been updated. The catalogue provides open data in several file formats (e.g., spreadsheets, geospatial data, etc). Learn about each format and how you can access and use the data each file contains. A file that has a list of items and values separated by commas without formatting (e.g. colours, italics, etc.) or extra visual features. This format provides just the data that you would display in a table. XLSX (Excel) files may be converted to CSV so they can be opened in a text editor. How to access the data: Open with any spreadsheet software application (e.g., Open Office Calc, Microsoft Excel) or text editor. Note: This format is considered machine-readable, it can be easily processed and used by a computer. Files that have visual formatting (e.g. bolded headers and colour-coded rows) can be hard for machines to understand, these elements make a file more human-readable and less machine-readable. A file that provides information without formatted text or extra visual features that may not follow a pattern of separated values like a CSV. How to access the data: Open with any word processor or text editor available on your device (e.g., Microsoft Word, Notepad). A spreadsheet file that may also include charts, graphs, and formatting. How to access the data: Open with a spreadsheet software application that supports this format (e.g., Open Office Calc, Microsoft Excel). Data can be converted to a CSV for a non-proprietary format of the same data without formatted text or extra visual features. A shapefile provides geographic information that can be used to create a map or perform geospatial analysis based on location, points/lines and other data about the shape and features of the area. It includes required files (.shp, .shx, .dbt) and might include corresponding files (e.g., .prj). How to access the data: Open with a geographic information system (GIS) software program (e.g., QGIS). A package of files and folders. The package can contain any number of different file types. How to access the data: Open with an unzipping software application (e.g., WinZIP, 7Zip). Note: If a ZIP file contains .shp, .shx, and .dbt file types, it is an ArcGIS ZIP: a package of shapefiles which provide information to create maps or perform geospatial analysis that can be opened with ArcGIS (a geographic information system software program). A file that provides information related to a geographic area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open using a GIS software application to create a map or do geospatial analysis. It can also be opened with a text editor to view raw information. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format for sharing data in a machine-readable way that can store data with more unconventional structures such as complex lists. How to access the data: Open with any text editor (e.g., Notepad) or access through a browser. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format to store and organize data in a machine-readable way that can store data with more unconventional structures (not just data organized in tables). How to access the data: Open with any text editor (e.g., Notepad). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A file that provides information related to an area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open with a geospatial software application that supports the KML format (e.g., Google Earth). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. This format contains files with data from tables used for statistical analysis and data visualization of Statistics Canada census data. How to access the data: Open with the Beyond 20/20 application. A database which links and combines data from different files or applications (including HTML, XML, Excel, etc.). The database file can be converted to a CSV/TXT to make the data machine-readable, but human-readable formatting will be lost. How to access the data: Open with Microsoft Office Access (a database management system used to develop application software). A file that keeps the original layout and

  17. s

    In-Air Hand-Drawn Number and Shape Dataset

    • orda.shef.ac.uk
    zip
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Basheer Alwaely; Charith Abhayaratne (2025). In-Air Hand-Drawn Number and Shape Dataset [Dataset]. http://doi.org/10.15131/shef.data.7381472.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Basheer Alwaely; Charith Abhayaratne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains in-air hand-written numbers and shapes data used in the paper:B. Alwaely and C. Abhayaratne, "Graph Spectral Domain Feature Learning With Application to in-Air Hand-Drawn Number and Shape Recognition," in IEEE Access, vol. 7, pp. 159661-159673, 2019, doi: 10.1109/ACCESS.2019.2950643.The dataset contains the following:-Readme.txt- InAirNumberShapeDataset.zip containing-Number Folder (With 2 sub folders for Matlab and Excel)-Shapes Folder (With 2 sub folders for Matlab and Excel)The datasets include the in-air drawn number and shape hand movement path captured by a Kinect sensor. The number sub dataset includes 500 instances per each number 0 to 9, resulting in a total of 5000 number data instances. Similarly, the shape sub dataset also includes 500 instances per each shape for 10 different arbitrary 2D shapes, resulting in a total of 5000 shape instances. The dataset provides X, Y, Z coordinates of the hand movement path data in Matlab (M-file) and Excel formats and their corresponding labels.This dataset creation has received The University of Sheffield ethics approval under application #023005 granted on 19/10/2018.

  18. ICSE 2025 - Artifact

    • figshare.com
    pdf
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FARIDAH AKINOTCHO (2025). ICSE 2025 - Artifact [Dataset]. http://doi.org/10.6084/m9.figshare.28194605.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    FARIDAH AKINOTCHO
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Mobile Application Coverage: The 30% Curse and Ways Forward## Purpose In this artifact, we provide the information about our benchmarks used for manual and tool exploration. We include coverage results achieved by tools and human analysts as well as plots of the coverage progression over time for analysts. We further provide manual analysis results for our case study, more specifically extracted reasons for unreachability for the case study apps and extracted code-level properties, which constitute a ground truth for future work in coverage explainability. Finally, we identify a list of beyond-GUI exploration tools and categorize them for future work to take inspiration from. We are claiming available and reusable badges; the artifact is fully aligned with the results described in our paper and comprehensively documented.## ProvenanceThe paper preprint is available here: https://people.ece.ubc.ca/mjulia/publications/Mobile_Application_Coverage_ICSE2025.pdf## Data The artifact submission is organized into five parts:- 'BenchInfo' excel sheet describing our experiment dataset- 'Coverage' folder containing coverage results for tools and analysts (RQ1) - 'Reasons' excel sheet describing our manually extracted reasons for unreachability (RQ2)- 'ActivationProperties' excel sheet describing our manually extracted code properties of unreached activities (RQ3)- 'ActivationProperties-Graph' pdf which presents combinations of the extracted code properties in a graph format.- 'BeyondGUI' folder containing information about identified techniques which go beyond GUI exploration.The artifact requires about 15MB of storage.### Dataset: 'BenchInfo.xlsx'This file list the full application dataset used for experiments into three tabs: 'BenchNotGP' (apps from AndroTest dataset which are not on Google Play), 'BenchGP' (apps from AndroTest which are also on Google Play) and 'TopGP' (top ranked free apps from Google Play). Each tab contains the following information:- Application Name- Package Name- Version Used (Latest)- Original Version- # Activities- Minimum SDK- Target SDK- # Permissions (in Manifest)- List of Permissions (in Manifest)- # Features (in Manifest)- List of Features (in Manifest)The 'TopGP' sheet also includes Google-Play-specific information, namely:- Category (one of 32 app categories)- Downloads- Popularity RankThe 'BenchGP' and 'BenchNotGP' sheets also include the original version (included in the AndroTest benchmark) and the source (one of F-Droid, Github or Google Code Archives).### RQ1: 'Coverage'The 'Coverage' folder includes coverage results for tools and analysts, and is structured as follows:- 'CoverageResults.xlsx": An excel sheet containing the coverage results achieved by each human analysts and tool. - The first tab described the results over all apps for analysts combined, tools combined, and analysts + tools, which map to Table II in the paper. - Each of the following 42 tab, one per app in TopGP, marks the activities reached by Analyst 1, Analyst 2, Tool 1 (ape) and Tool 2 (fastbot), with an 'x' in the corresponding column to indicate that the activity was reached by the given agent.- 'Plots': A folder containing plots of the progressive coverage over time of analysts, split into one folder for 'Analyst1' and one for 'Analyst2'. - Each of the analysts' folder includes a subfolder per benchmark ('BenchNotGP', 'BenchGP' and 'TopGP'), containing as many png files as applications in the benchmark (respectively 47, 14 and 42 image files) named 'ANALYST_[X]_[APP_PACKAGE_NAME]'.png.### RQ2: 'Reasons.xslx'This file contains the extracted reasons for unreachability for the 11 apps manually analyzed. - The 'Summary' tab provides an overview of unreached activities per reasons over all apps and per app, which corresponds to Table III in the paper. - The following 11 tabs, each corresponding to and named after a single application, describe the reasons associated with each activity of that application. Each column corresponds to a single reason and 'x' indicates that the activity is unreached due to the reason in that column. The top row sums up the total number of activities unreached due to a given reason in each column.- The activities at the bottom which are greyed out correspond to activities that were reached during exploration, and are thus excluded from the reason extraction.### RQ3: 'ActivationProperties.xslx'This file contains the full list of activation properties extracted for each of the 185 activities analyzed for RQ2.The first half of the columns (columns C-M) correspond to the reasons (excluding Transitive, Inconclusive and No Caller) and the second half (columns N-AD) correspond to properties described in Figure 5 in the paper, namely:- Exported- Activation Location: - Code: GUI/lifecycle, Other Android or App-specific - Manifest- Activation Guards: - Enforcement: In Code or In Resources - Restriction: Mandatory or Discretionary- Data: - Type: Parameters, Execution Dependencies - Format: Primitive, Strings, ObjectsThe rows are grouped by applications, and each row correspond to an activity of that application. 'x' in a given column indicates the presence of the property in that column within the analyzed path to the activity. The third and fourth rows sums up the numbers and percentages for each property, as reported in Figure 5.### RQ3: 'ActivationProperties-Graph.pdf'This file shows combinations of the individual properties listed in 'ActivationProperties.xlsx' in a graph format, extending the combinations described in Table IV with data (types and format) and reasons for unreachability.### BeyondGUIThis folder includes:- 'ToolInfo.xlsx': an excel sheet listing the identified 22 beyond-GUI papers, the date of publication, availability, invasiveness (Source code, Bytecode, framework, OS) and their targeting strategy (None, Manual or Automated).- ToolClassification.pdf': a pdf file describing our paper selection methodology as well as a classication of the techniques in terms of Invocation Strategy, Navigation Strategy, Value Generation Strategy, and Value Generation Types. We fully introduced these categories in the pdf file.## Requirements & technology skills assumed by the reviewer evaluating the artifactThe artifact entirely consists of Excel sheets which can be opened with common Excel visualization software, i.e., Microsoft Excel, coverage plots as PNG files and PDF files. It requires about 15MB of storage in total.No other specific technology skills are required of the reviewer evaluating the artifact.

  19. Car-Sales-Analysis-Excel-Dashboard

    • kaggle.com
    zip
    Updated Feb 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibrahimryk (2025). Car-Sales-Analysis-Excel-Dashboard [Dataset]. https://www.kaggle.com/datasets/ibrahimryk/car-sales-analysis-excel-dashboard/code
    Explore at:
    zip(496747 bytes)Available download formats
    Dataset updated
    Feb 11, 2025
    Authors
    Ibrahimryk
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    his project involves the creation of an interactive Excel dashboard for SwiftAuto Traders to analyze and visualize car sales data. The dashboard includes several visualizations to provide insights into car sales, profits, and performance across different models and manufacturers. The project makes use of various charts and slicers in Excel for the analysis.

    Objective: The primary goal of this project is to showcase the ability to manipulate and visualize car sales data effectively using Excel. The dashboard aims to provide:

    Profit and Sales Analysis for each dealer. Sales Performance across various car models and manufacturers. Resale Value Analysis comparing prices and resale values. Insights into Retention Percentage by car models. Files in this Project: Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx: The original dataset used to create the dashboard. dashboards.xlsx: The final Excel file that contains the complete dashboard with interactive charts and slicers. Key Visualizations: Average Price and Year Resale Value: A bar chart comparing the average price and resale value of various car models. Power Performance Factor: A column chart displaying the performance across different car models. Unit Sales by Model: A donut chart showcasing unit sales by car model. Retention Percentage: A pie chart illustrating customer retention by car model. Tools Used: Microsoft Excel for creating and organizing the visualizations and dashboard. Excel Slicers for interactive filtering. Charts: Bar charts, pie charts, column charts, and sunburst charts. How to Use: Download the Dataset: You can download the Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx file from Kaggle and follow the steps to create a similar dashboard in Excel. Open the Dashboard: The dashboards.xlsx file contains the final version of the dashboard. Simply open it in Excel and start exploring the interactive charts and slicers.

  20. m

    Data for: Peritectic assemblage entrainment as the main compositional driver...

    • data.mendeley.com
    Updated Apr 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Russell Bailie (2021). Data for: Peritectic assemblage entrainment as the main compositional driver in the I-type Vredenburg Granite, north-western Pan-African Saldania Belt, South Africa: A lithogeochemical perspective [Dataset]. http://doi.org/10.17632/c9v6gyrxxw.1
    Explore at:
    Dataset updated
    Apr 26, 2021
    Authors
    Russell Bailie
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Area covered
    Vredenburg, South Africa
    Description

    These are Excel spreadsheets which include the experimental data from melt experiments along with the proposed source for the Vredenburg Granite magmas. From the spreadsheets the restite composition is determined. Peritectic assemblage entrainment models can be determined by making use of graph functions in the Excel spreadsheet

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
Organization logoOrganization logo

Graph Input Data Example.xlsx

Explore at:
xlsxAvailable download formats
Dataset updated
Dec 26, 2018
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Dr Corynen
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

Search
Clear search
Close search
Google apps
Main menu