100+ datasets found
  1. Global Graph Analytics Market Size By Deployment Mode, By Component, By...

    • verifiedmarketresearch.com
    Updated Feb 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Graph Analytics Market Size By Deployment Mode, By Component, By Application, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/graph-analytics-market/
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2030
    Area covered
    Global
    Description

    Graph Analytics Market size was valued at USD 77.1 Million in 2023 and is projected to reach USD 637.1 Million by 2030, growing at a CAGR of 35.1% during the forecast period 2024-2030.

    Global Graph Analytics Market Drivers
    The market drivers for the Graph Analytics Market can be influenced by various factors. These may include:

    Growing Need for Data Analysis: In order to extract insightful information from the massive amounts of data generated by social media, IoT devices, and corporate transactions, there is a growing need for sophisticated analytics tools like graph analytics.

    Growing Uptake of Big Data Tools: Graph analytics solutions are becoming more and more popular due to the spread of big data platforms and technology. Businesses are using these technologies to improve the efficiency of their analysis of intricately linked datasets.

    Developments in AI and ML: The capabilities of graph analytics solutions are being improved by advances in machine learning and artificial intelligence. These technologies make it possible for recommendation systems, anomaly detection, and forecasts based on graph data to be more accurate.

    Increasing Recognition of the Advantages of Graph Databases: Businesses are realizing the advantages of graph databases for handling and evaluating highly related data. Consequently, there’s been a sharp increase in the use of graph analytics tools to leverage the potential of graph databases for diverse applications.

    The use of advanced analytics solutions, such as graph analytics, for fraud detection, cybersecurity, and risk management is becoming more and more important as a result of the increase in cyberthreats and fraudulent activity.

    Demand for Personalized suggestions: Companies in a variety of sectors are using graph analytics to provide their clients with suggestions that are tailored specifically to them. Personalized recommendations increase consumer engagement and loyalty on social networking, e-commerce, and entertainment platforms.

    Analysis of Networks and Social Media is Necessary: In order to comprehend relationships, influence patterns, and community structures, networks and social media data must be analyzed using graph analytics. The capacity to do this is very helpful for security agencies, sociologists, and marketers.

    Government programs and Regulations: The need for graph analytics solutions is being driven by regulations pertaining to data security and privacy as well as government programs aimed at encouraging the adoption of data analytics. These tools are being purchased by organizations in order to guarantee compliance and reduce risks.

    Emergence of Industry-specific Use Cases: Graph analytics is finding applications in a number of areas, such as healthcare, finance, retail, and transportation. These use cases include supply chain management, customer attrition prediction, and financial fraud detection in addition to patient care optimization.

    Technological Developments in Graph Analytics Tools: As graph analytics tools, algorithms, and platforms continue to evolve, their capabilities and performance are being enhanced. Adoption is being fueled by this technological advancement across a variety of industries and use cases.

  2. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just two percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.

  3. f

    Data set introduction.

    • plos.figshare.com
    xls
    Updated May 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guoyang Tang; Xueyi Zhao; Yanyun Fu; Xiaolin Ning (2024). Data set introduction. [Dataset]. http://doi.org/10.1371/journal.pone.0297989.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 23, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Guoyang Tang; Xueyi Zhao; Yanyun Fu; Xiaolin Ning
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In light of the exponential growth in information volume, the significance of graph data has intensified. Graph clustering plays a pivotal role in graph data processing by jointly modeling the graph structure and node attributes. Notably, the practical significance of multi-view graph clustering is heightened due to the presence of diverse relationships within real-world graph data. Nonetheless, prevailing graph clustering techniques, predominantly grounded in deep learning neural networks, face challenges in effectively handling multi-view graph data. These challenges include the incapability to concurrently explore the relationships between multiple view structures and node attributes, as well as difficulties in processing multi-view graph data with varying features. To tackle these issues, this research proposes a straightforward yet effective multi-view graph clustering approach known as SLMGC. This approach uses graph filtering to filter noise, reduces computational complexity by extracting samples based on node importance, enhances clustering representations through graph contrastive regularization, and achieves the final clustering outcomes using a self-training clustering algorithm. Notably, unlike neural network algorithms, this approach avoids the need for intricate parameter settings. Comprehensive experiments validate the supremacy of the SLMGC approach in multi-view graph clustering endeavors when contrasted with prevailing deep neural network techniques.

  4. C

    Event Graph of BPI Challenge 2019

    • data.4tu.nl
    zip
    Updated Apr 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dirk Fahland (2021). Event Graph of BPI Challenge 2019 [Dataset]. http://doi.org/10.4121/14169614.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 22, 2021
    Dataset provided by
    4TU.ResearchData
    Authors
    Dirk Fahland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Business process event data modeled as labeled property graphs

    Data Format
    -----------

    The dataset comprises one labeled property graph in two different file formats.

    #1) Neo4j .dump format

    A neo4j (https://neo4j.com) database dump that contains the entire graph and can be imported into a fresh neo4j database instance using the following command, see also the neo4j documentation: https://neo4j.com/docs/

    /bin/neo4j-admin.(bat|sh) load --database=graph.db --from=

    The .dump was created with Neo4j v3.5.

    #2) .graphml format

    A .zip file containing a .graphml file of the entire graph


    Data Schema
    -----------

    The graph is a labeled property graph over business process event data. Each graph uses the following concepts

    :Event nodes - each event node describes a discrete event, i.e., an atomic observation described by attribute "Activity" that occurred at the given "timestamp"

    :Entity nodes - each entity node describes an entity (e.g., an object or a user), it has an EntityType and an identifier (attribute "ID")

    :Log nodes - describes a collection of events that were recorded together, most graphs only contain one log node

    :Class nodes - each class node describes a type of observation that has been recorded, e.g., the different types of activities that can be observed, :Class nodes group events into sets of identical observations

    :CORR relationships - from :Event to :Entity nodes, describes whether an event is correlated to a specific entity; an event can be correlated to multiple entities

    :DF relationships - "directly-followed by" between two :Event nodes describes which event is directly-followed by which other event; both events in a :DF relationship must be correlated to the same entity node. All :DF relationships form a directed acyclic graph.

    :HAS relationship - from a :Log to an :Event node, describes which events had been recorded in which event log

    :OBSERVES relationship - from an :Event to a :Class node, describes to which event class an event belongs, i.e., which activity was observed in the graph

    :REL relationship - placeholder for any structural relationship between two :Entity nodes

    The concepts a further defined in Stefan Esser, Dirk Fahland: Multi-Dimensional Event Data in Graph Databases. CoRR abs/2005.14552 (2020) https://arxiv.org/abs/2005.14552


    Data Contents
    -------------

    neo4j-bpic19-2021-02-17 (.dump|.graphml.zip)

    An integrated graph describing the raw event data of the entire BPI Challenge 2019 dataset.
    van Dongen, B.F. (Boudewijn) (2019): BPI Challenge 2019. 4TU.ResearchData. Collection. https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1

    This data originated from a large multinational company operating from The Netherlands in the area of coatings and paints and we ask participants to investigate the purchase order handling process for some of its 60 subsidiaries. In particular, the process owner has compliance questions. In the data, each purchase order (or purchase document) contains one or more line items. For each line item, there are roughly four types of flows in the data: (1) 3-way matching, invoice after goods receipt: For these items, the value of the goods receipt message should be matched against the value of an invoice receipt message and the value put during creation of the item (indicated by both the GR-based flag and the Goods Receipt flags set to true). (2) 3-way matching, invoice before goods receipt: Purchase Items that do require a goods receipt message, while they do not require GR-based invoicing (indicated by the GR-based IV flag set to false and the Goods Receipt flags set to true). For such purchase items, invoices can be entered before the goods are receipt, but they are blocked until goods are received. This unblocking can be done by a user, or by a batch process at regular intervals. Invoices should only be cleared if goods are received and the value matches with the invoice and the value at creation of the item. (3) 2-way matching (no goods receipt needed): For these items, the value of the invoice should match the value at creation (in full or partially until PO value is consumed), but there is no separate goods receipt message required (indicated by both the GR-based flag and the Goods Receipt flags set to false). (4)Consignment: For these items, there are no invoices on PO level as this is handled fully in a separate process. Here we see GR indicator is set to true but the GR IV flag is set to false and also we know by item type (consignment) that we do not expect an invoice against this item. Unfortunately, the complexity of the data goes further than just this division in four categories. For each purchase item, there can be many goods receipt messages and corresponding invoices which are subsequently paid. Consider for example the process of paying rent. There is a Purchase Document with one item for paying rent, but a total of 12 goods receipt messages with (cleared) invoices with a value equal to 1/12 of the total amount. For logistical services, there may even be hundreds of goods receipt messages for one line item. Overall, for each line item, the amounts of the line item, the goods receipt messages (if applicable) and the invoices have to match for the process to be compliant. Of course, the log is anonymized, but some semantics are left in the data, for example: The resources are split between batch users and normal users indicated by their name. The batch users are automated processes executed by different systems. The normal users refer to human actors in the process. The monetary values of each event are anonymized from the original data using a linear translation respecting 0, i.e. addition of multiple invoices for a single item should still lead to the original item worth (although there may be small rounding errors for numerical reasons). Company, vendor, system and document names and IDs are anonymized in a consistent way throughout the log. The company has the key, so any result can be translated by them to business insights about real customers and real purchase documents.

    The case ID is a combination of the purchase document and the purchase item. There is a total of 76,349 purchase documents containing in total 251,734 items, i.e. there are 251,734 cases. In these cases, there are 1,595,923 events relating to 42 activities performed by 627 users (607 human users and 20 batch users). Sometimes the user field is empty, or NONE, which indicates no user was recorded in the source system. For each purchase item (or case) the following attributes are recorded: concept:name: A combination of the purchase document id and the item id, Purchasing Document: The purchasing document ID, Item: The item ID, Item Type: The type of the item, GR-Based Inv. Verif.: Flag indicating if GR-based invoicing is required (see above), Goods Receipt: Flag indicating if 3-way matching is required (see above), Source: The source system of this item, Doc. Category name: The name of the category of the purchasing document, Company: The subsidiary of the company from where the purchase originated, Spend classification text: A text explaining the class of purchase item, Spend area text: A text explaining the area for the purchase item, Sub spend area text: Another text explaining the area for the purchase item, Vendor: The vendor to which the purchase document was sent, Name: The name of the vendor, Document Type: The document type, Item Category: The category as explained above (3-way with GR-based invoicing, 3-way without, 2-way, consignment).

    The data contains the following entities and their events

    - PO - Purchase Order documents handled at a large multinational company operating from The Netherlands
    - POItem - an item in a Purchase Order document describing a specific item to be purchased
    - Resource - the user or worker handling the document or a specific item
    - Vendor - the external organization from which an item is to be purchased

    Data Size
    ---------

    BPIC19, nodes: 1926651, relationships: 15082099

  5. T

    Mexico Imports - Synthetic Filament Yarn, Not Put Up For Retail Sale

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Mexico Imports - Synthetic Filament Yarn, Not Put Up For Retail Sale [Dataset]. https://tradingeconomics.com/mexico/imports-of-synthetic-filament-yarn-not-put-up-fo
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Jun 2, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 31, 2014 - Jan 31, 2024
    Area covered
    Mexico
    Description

    Imports - Synthetic Filament Yarn, Not Put Up For Retail Sale in Mexico increased to 45504 USD Thousand in January from 32723 USD Thousand in December of 2023. This dataset includes a chart with historical data for Mexico Imports of Synthetic Filament Yarn, Not Put Up Fo.

  6. T

    United States - State and Local Governments; Nonfinancial Assets (Does Not...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). United States - State and Local Governments; Nonfinancial Assets (Does Not Include Land), Level [Dataset]. https://tradingeconomics.com/united-states/state-and-local-governments-excluding-employee-retirement-funds-nonfinancial-assets-does-not-include-land-level-fed-data.html
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Mar 18, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    United States - State and Local Governments; Nonfinancial Assets (Does Not Include Land), Level was 13836787.00000 Mil. of $ in January of 2021, according to the United States Federal Reserve. Historically, United States - State and Local Governments; Nonfinancial Assets (Does Not Include Land), Level reached a record high of 13836787.00000 in January of 2021 and a record low of 66207.00000 in January of 1945. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - State and Local Governments; Nonfinancial Assets (Does Not Include Land), Level - last updated from the United States Federal Reserve on March of 2025.

  7. F

    Total Construction Spending: Total Construction in the United States

    • fred.stlouisfed.org
    json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Total Construction Spending: Total Construction in the United States [Dataset]. https://fred.stlouisfed.org/series/TTLCONS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Total Construction Spending: Total Construction in the United States (TTLCONS) from Jan 1993 to Jan 2025 about headline figure, expenditures, construction, and USA.

  8. F

    Data from: Currency in Circulation

    • fred.stlouisfed.org
    json
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Currency in Circulation [Dataset]. https://fred.stlouisfed.org/series/CURRCIR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Currency in Circulation (CURRCIR) from Aug 1917 to Feb 2025 about currency and USA.

  9. F

    Software Development Job Postings on Indeed in the United States

    • fred.stlouisfed.org
    json
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Software Development Job Postings on Indeed in the United States [Dataset]. https://fred.stlouisfed.org/series/IHLIDXUSTPSOFTDEVE
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Area covered
    United States
    Description

    Graph and download economic data for Software Development Job Postings on Indeed in the United States (IHLIDXUSTPSOFTDEVE) from 2020-02-01 to 2025-03-21 about software, jobs, and USA.

  10. F

    Federal Debt: Total Public Debt

    • fred.stlouisfed.org
    json
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Federal Debt: Total Public Debt [Dataset]. https://fred.stlouisfed.org/series/GFDEBTN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 4, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Federal Debt: Total Public Debt (GFDEBTN) from Q1 1966 to Q4 2024 about public, debt, federal, government, and USA.

  11. T

    United States Money Supply M2

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Money Supply M2 [Dataset]. https://tradingeconomics.com/united-states/money-supply-m2
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Feb 28, 2025
    Area covered
    United States
    Description

    Money Supply M2 in the United States increased to 21447.60 USD Billion in November from 21311.20 USD Billion in October of 2024. This dataset provides - United States Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  12. F

    Real Median Personal Income in the United States

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Real Median Personal Income in the United States [Dataset]. https://fred.stlouisfed.org/series/MEPAINUSA672N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2023 about personal income, personal, median, income, real, and USA.

  13. F

    All Employees, Federal

    • fred.stlouisfed.org
    json
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All Employees, Federal [Dataset]. https://fred.stlouisfed.org/series/CES9091000001
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 7, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for All Employees, Federal (CES9091000001) from Jan 1939 to Feb 2025 about establishment survey, federal, government, employment, and USA.

  14. T

    Gold - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +18more
    csv, excel, json, xml
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1968 - Mar 26, 2025
    Area covered
    World
    Description

    Gold increased 393.93 USD/t oz. or 15.01% since the beginning of 2025, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on March of 2025.

  15. T

    U.S. Retail Sales

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). U.S. Retail Sales [Dataset]. https://tradingeconomics.com/united-states/retail-sales
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Mar 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 1992 - Feb 28, 2025
    Area covered
    United States
    Description

    Retail Sales in the United States increased 0.20 percent in February of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. T

    United States Money Supply M0

    • tradingeconomics.com
    • hu.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Money Supply M0 [Dataset]. https://tradingeconomics.com/united-states/money-supply-m0
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Feb 28, 2025
    Area covered
    United States
    Description

    Money Supply M0 in the United States decreased to 5614000 USD Million in February from 5614200 USD Million in January of 2025. This dataset provides - United States Money Supply M0 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  17. T

    South Korea GDP

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, South Korea GDP [Dataset]. https://tradingeconomics.com/south-korea/gdp
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    South Korea
    Description

    The Gross Domestic Product (GDP) in South Korea was worth 1712.79 billion US dollars in 2023, according to official data from the World Bank. The GDP value of South Korea represents 1.62 percent of the world economy. This dataset provides - South Korea GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. T

    Mexican Peso Data

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +16more
    csv, excel, json, xml
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Mexican Peso Data [Dataset]. https://tradingeconomics.com/mexico/currency
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 17, 1972 - Mar 27, 2025
    Area covered
    Mexico
    Description

    The USDMXN increased 0.2404 or 1.20% to 20.3451 on Thursday March 27 from 20.1047 in the previous trading session. Mexican Peso - values, historical data, forecasts and news - updated on March of 2025.

  19. T

    United States Personal Savings Rate

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +16more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Personal Savings Rate [Dataset]. https://tradingeconomics.com/united-states/personal-savings
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Jan 31, 2025
    Area covered
    United States
    Description

    Household Saving Rate in the United States increased to 4.60 percent in January from 3.50 percent in December of 2024. This dataset provides - United States Personal Savings Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  20. T

    Corn - Price Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +16more
    csv, excel, json, xml
    Updated Jan 2, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2012). Corn - Price Data [Dataset]. https://tradingeconomics.com/commodity/corn
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jan 2, 2012
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 1912 - Mar 26, 2025
    Area covered
    World
    Description

    Corn decreased 3.39 USd/BU or 0.74% since the beginning of 2025, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Corn - values, historical data, forecasts and news - updated on March of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
VERIFIED MARKET RESEARCH (2024). Global Graph Analytics Market Size By Deployment Mode, By Component, By Application, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/graph-analytics-market/
Organization logo

Global Graph Analytics Market Size By Deployment Mode, By Component, By Application, By Geographic Scope And Forecast

Explore at:
Dataset updated
Feb 19, 2024
Dataset provided by
Verified Market Researchhttps://www.verifiedmarketresearch.com/
Authors
VERIFIED MARKET RESEARCH
License

https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

Time period covered
2024 - 2030
Area covered
Global
Description

Graph Analytics Market size was valued at USD 77.1 Million in 2023 and is projected to reach USD 637.1 Million by 2030, growing at a CAGR of 35.1% during the forecast period 2024-2030.

Global Graph Analytics Market Drivers
The market drivers for the Graph Analytics Market can be influenced by various factors. These may include:

Growing Need for Data Analysis: In order to extract insightful information from the massive amounts of data generated by social media, IoT devices, and corporate transactions, there is a growing need for sophisticated analytics tools like graph analytics.

Growing Uptake of Big Data Tools: Graph analytics solutions are becoming more and more popular due to the spread of big data platforms and technology. Businesses are using these technologies to improve the efficiency of their analysis of intricately linked datasets.

Developments in AI and ML: The capabilities of graph analytics solutions are being improved by advances in machine learning and artificial intelligence. These technologies make it possible for recommendation systems, anomaly detection, and forecasts based on graph data to be more accurate.

Increasing Recognition of the Advantages of Graph Databases: Businesses are realizing the advantages of graph databases for handling and evaluating highly related data. Consequently, there’s been a sharp increase in the use of graph analytics tools to leverage the potential of graph databases for diverse applications.

The use of advanced analytics solutions, such as graph analytics, for fraud detection, cybersecurity, and risk management is becoming more and more important as a result of the increase in cyberthreats and fraudulent activity.

Demand for Personalized suggestions: Companies in a variety of sectors are using graph analytics to provide their clients with suggestions that are tailored specifically to them. Personalized recommendations increase consumer engagement and loyalty on social networking, e-commerce, and entertainment platforms.

Analysis of Networks and Social Media is Necessary: In order to comprehend relationships, influence patterns, and community structures, networks and social media data must be analyzed using graph analytics. The capacity to do this is very helpful for security agencies, sociologists, and marketers.

Government programs and Regulations: The need for graph analytics solutions is being driven by regulations pertaining to data security and privacy as well as government programs aimed at encouraging the adoption of data analytics. These tools are being purchased by organizations in order to guarantee compliance and reduce risks.

Emergence of Industry-specific Use Cases: Graph analytics is finding applications in a number of areas, such as healthcare, finance, retail, and transportation. These use cases include supply chain management, customer attrition prediction, and financial fraud detection in addition to patient care optimization.

Technological Developments in Graph Analytics Tools: As graph analytics tools, algorithms, and platforms continue to evolve, their capabilities and performance are being enhanced. Adoption is being fueled by this technological advancement across a variety of industries and use cases.

Search
Clear search
Close search
Google apps
Main menu