17 datasets found
  1. Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  2. Data from: Sales Performance

    • kaggle.com
    zip
    Updated Oct 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vutikonda Johnpaul (2025). Sales Performance [Dataset]. https://www.kaggle.com/datasets/vutikondajohnpaul/sales-performance
    Explore at:
    zip(51903 bytes)Available download formats
    Dataset updated
    Oct 31, 2025
    Authors
    Vutikonda Johnpaul
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains sales transaction records used to create an interactive Excel Sales Performance Dashboard for business analytics practice.

    It includes six columns capturing essential sales metrics such as date, region, product, quantity, sales revenue, and profit. The data is structured to help analysts and learners explore data visualization, PivotTable summarization, and dashboard design concepts in Excel.

    The dataset was created for educational and demonstration purposes to help users:

    1. Build dashboards that visualize total sales and profit trends
    2. Identify top-performing products and high-profit regions
    3. Practice Excel-based business analytics workflows

    Columns: Date – Transaction date (daily sales record) Region – Geographic area of the sale (East, West, North, South) Product – Product category or item sold Sales – Total revenue generated from the sale (USD) Profit – Net profit made per transaction Quantity – Number of units sold

    Typical uses include: Excel or Power BI dashboard projects PivotTable practice for business reporting Data cleaning and chart-building exercises Portfolio development for business analytics students Built and tested in Microsoft Excel using PivotTables, Charts, and Conditional Formatting.

  3. Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  4. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  5. Project Priority Matrix (Dynamic Excel Template)

    • kaggle.com
    zip
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asjad (2025). Project Priority Matrix (Dynamic Excel Template) [Dataset]. https://www.kaggle.com/datasets/asjadd/project-priority-matrix-dynamic-excel-template
    Explore at:
    zip(50515 bytes)Available download formats
    Dataset updated
    Oct 24, 2025
    Authors
    Asjad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Project Priority Matrix (Dynamic Excel Tool)

    Overview

    This dataset provides a dynamic Excel model for prioritizing projects based on Feasibility, Impact, and Size.
    It visualizes project data on a Bubble Chart that updates automatically when new projects are added.

    Use this tool to make data-driven prioritization decisions by identifying which projects are most feasible and high-impact.

    Goal

    Organizations often struggle to compare multiple initiatives objectively.
    This matrix helps teams quickly determine which projects to pursue first by visualizing:

    • Feasibility → How achievable a project is
    • Impact → The potential benefit or value it delivers
    • Size → The level of effort or resources required

    How It Works

    1. Each project is rated on a 1–10 scale for:
      • Feasibility
      • Impact
      • Size
    2. The Excel file uses a Bubble Chart:
      • X-axis: Feasibility
      • Y-axis: Impact
      • Bubble size: Project Size
    3. The chart automatically updates when new projects or scores are added.

    Example (partial data):

    CriteriaProject 1Project 2Project 3Project 4Project 5Project 6Project 7Project 8
    Feasibility79527268
    Impact84466777
    Size102374431

    Interpretation Guide

    QuadrantDescriptionAction
    High Feasibility / High ImpactQuick winsTop Priority
    High Impact / Low FeasibilityValuable but riskyPlan carefully
    Low Impact / High FeasibilityEasy but minor valueOptional
    Low Impact / Low FeasibilityLow returnDefer or drop

    Excel Features

    • Dynamic Bubble Chart (updates with new data)
    • Named Ranges for auto-expanding data
    • Optional Conditional Formatting
    • Data Validation for consistent scoring

    How to Use

    1. Download and open Project_Priority_Matrix.xlsx.
    2. Go to the Data sheet.
    3. Add your project names and scores (1–10).
    4. Watch the chart update instantly to reflect your data.

    You can use this for: - Portfolio management
    - Product or feature prioritization
    - Strategy planning workshops

    File Information

    • File: Project_Priority_Matrix.xlsx
    • Format: Excel (.xlsx)
    • Version: 1.0
    • Last Updated: October 2025

    License

    Free for personal and organizational use.
    Attribution is appreciated if you share or adapt this file.

    Author: [Asjad]
    Contact: [m.asjad2000@gmail.com]
    Compatible With: Microsoft Excel 2019+ / Office 365

  6. g

    Data from: Stratigraphic Classification Table for the PetroPhysical Property...

    • dataservices.gfz-potsdam.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristian Bär; Philipp Mielke (2019). Stratigraphic Classification Table for the PetroPhysical Property Database P³ [Dataset]. http://doi.org/10.5880/gfz.4.8.2019.p3.s
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    datacite
    GFZ Data Services
    Authors
    Kristian Bär; Philipp Mielke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Dataset funded by
    FP7 Energy
    Description

    This data publication is part of the 'P³-Petrophysical Property Database' project, which was developed within the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553) and consists of a scientific paper, a full report on the database, the database as excel and .csv files and additional tables for a hierarchical classification of the petrography and stratigraphy of the investigated rock samples (see related references). This publication here provides a hierarchical interlinked stratigraphic classification according to the chronostratigraphical units of the international chronostratigraphic chart of the IUGS v2016/04 (Cohen et al. 2013, updated) according to international standardisation. As addition to this IUGS chart, which is also documented in GeoSciML, stratigraphic IDs and parent IDs were included to define the direct relationships between the stratigraphic terms. The P³ database aims at providing easily accessible, peer-reviewed information on physical rock properties relevant for geothermal exploration and reservoir characterization in one single compilation. Collected data include hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age and, most important, original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis, of which the stratigraphic catalogue is presented here. These chronostratigraphic units are compiled to ensure that formations of a certain age are connected to the corresponding stratigraphic epoch, period or erathem. Thus, the chronostratigraphic units are directly correlated to each other by their stratigraphic ID and stratigraphic parent ID and can thus be used for interlinked data assessment of the petrophysical properties of samples of an according stratigraphic unit.

  7. c

    The global Graph Database market size is USD 7.3 billion in 2024 and will...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, The global Graph Database market size is USD 7.3 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 20.2% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/graph-database-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Graph Database market size was USD 7.3 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 20.2% from 2024 to 2031. Market Dynamics of Graph Database Market

    Key Drivers for Graph Database Market

    Increasing demand for solutions with the capability to process low-latency queries-One of the main reasons the Graph Database market is extensively being used all over the globe, to the extent that numerous legacy database providers are endeavoring to assimilate graph database schemas into their main relational database infrastructures. Whereas, in theory, the strategy might save money, it might degrade and slow down the performance of queries run beside the database. A graph database is altering traditional brick-and-mortar trades into digital business powerhouses in terms of digital business activities.
    Growing usage of graph database technology to drive the Graph Database market's expansion in the years ahead.
    

    Key Restraints for Graph Database Market

    Complex programming and standardization pose a serious threat to the Graph Database industry.
    The market also faces significant difficulties related to low-cost clusters.
    

    Introduction of the Graph Database Market

    The graph database market has experienced significant growth due to the increasing need for efficient data management and complex relationship mapping in various industries. Unlike traditional relational databases, graph databases excel in handling interconnected data, making them ideal for applications such as social networks, fraud detection, recommendation engines, and supply chain management. Key drivers of this market include the rising adoption of big data analytics, advancements in artificial intelligence, and the proliferation of connected devices. Leading players, such as Neo4j, Amazon Web Services, and Microsoft, continue to innovate, offering scalable and robust graph database solutions. The growing demand for real-time, low-latency data processing capabilities further propels the market's expansion.

  8. m

    Bathymetry and velocity data from, "Sediment transport and topographic...

    • marine-geo.org
    Updated Mar 31, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Bathymetry and velocity data from, "Sediment transport and topographic evolution of a coupled river and river-plume system: An experimental and numerical study (2014)" [Dataset]. https://www.marine-geo.org/tools/search/Files.php?data_set_uid=22304
    Explore at:
    Dataset updated
    Mar 31, 2013
    Description

    This data set was derived from experimental and numerical studies of sediment transport and the topographic evolution of a coupled river and rive-plume system. Data files are Microsoft Excel format and include data and graphs of experimental topographic cross sections, centerline profiles and numerical model runs used to produce the figures in Chatanantavet and Lamb, 2014. Funding was provided by NSF grant(s): OCE12-33685.

  9. Sales Dashboard in Microsoft Excel

    • kaggle.com
    zip
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavana Joshi (2023). Sales Dashboard in Microsoft Excel [Dataset]. https://www.kaggle.com/datasets/bhavanajoshij/sales-dashboard-in-microsoft-excel/discussion
    Explore at:
    zip(253363 bytes)Available download formats
    Dataset updated
    Apr 14, 2023
    Authors
    Bhavana Joshi
    Description

    This interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.

    Dashboard Overview

    1. Sales dashboard ==> basically, it is designed for the B2C type of business. like Dmart, Walmart, Amazon, Shops & supermarkets, etc.
    2. Slices ==> slices are used to drill down the data, on the basis of yearly, monthly, by sales type, and by mode of payment.
    3. Total Sales/Total Profits ==> here is, the total sales, total profit, and profit percentage these all are combined into a monthly format and we can hide or unhide it to view it as individually or comparative.
    4. Product Visual ==> the visual indicates product-wise sales for the selected period. Only 10 products are visualized at a glance, and you can scroll up & down to view other products in the list.
    5. Daily Sales ==> It shows day-wise sales. (Area Chart)
    6. Sales Type/Payment Mode ==> It shows sales percentage contribution based on the type of selling and mode of payment.
    7. Top Product & Category ==> this is for the top-selling product and product category.
    8. Category ==> the final one is the category-wise sales contribution.

    Datasheets Overview

    1. The dataset has the master data sheet or you can call it a catalog. It is added in the table form.
    2. The first column is the product ID the list of items in this column is unique.
    3. Then we have the product column instead of these two columns, we can manage with only one also but I kept it separate because sometimes product names can be the same, but some parameters will be different, like price, supplier, etc.
    4. The next column is the category column, which is the product category. like cosmetics, foods, drinks, electronics, etc.
    5. Then we have 4th column which is the unit of measure (UOM) you can update it also, based on the products you have.
    6. And the last two columns are buying price and selling price, which means unit purchasing price and unit selling price.

    Input Sheet

    The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.

    Analysis Sheet: where all backend calculations are performed.

    So, basically these are the four sheets mentioned above with different tasks.

    However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.

    A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.

    Questions & Answers

    1. What percentage of profit ratio of sales are displayed in the year 2021 and year 2022? ==> Total profit ratio of sales in the year 2021 is 19% with large sales of PRODUCT42, whereas profit ratio of sales for 2022 is 22% with large sales of PRODUCT30.
    2. Which is the top product that have large number of sales in year 2021-2022? ==> The top product in the year 2021 is PRODUCT42 with the total sales of $12,798 whereas in the year 2022 the top product is PRODUCT30 with the total sales of $13,888.
    3. In Area Chart which product is highly sold on 28th April 2022? ==> The large number of sales on 28th April 2022 is for PRODUCT14 with a 24% of profit ratio.
    4. What is the sales type and payment mode present? ==> The sale type and payment modes show the sales percentage contribution based on the type of selling and mode of payment. Here, the sale types are Direct Sales with 52%, Online Sales with 33% and Wholesaler with 15%. Also, the payment modes are Online mode and Cash equally distributed with 50%.
    5. In which month the direct sales are highest in the year 2022? ==> The highest direct sales can be easily identified which is designed by monthly format and it’s the November month where direct sales are highest with 28% as compared with other months.
    6. Which payment mode is highly received in the year 2021 and year 2022? ==> The payments received in the year 2021 are the cash payments with 52% as compared with online transactions which are 48%. Also, the cash payment highly received is in the month of March, July and October with direct sales of 42%, Online with 45% and wholesaler with 13% with large sales of PRODUCT24. ==> The payments received in the year 2022 are the Online payments with 52% as compared with cash payments which are 48%. Also, the online payment highly received is in the month of Jan, Sept and December with direct sales of 45%, Online with 37% and whole...
  10. Global Spreadsheet Software Market Size By Type of Software, By Deployment...

    • verifiedmarketresearch.com
    Updated Oct 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Spreadsheet Software Market Size By Type of Software, By Deployment Mode, By Industry Vertical, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/spreadsheet-software-market/
    Explore at:
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Spreadsheet Software Market Size And Forecast

    Spreadsheet Software Market size was valued at USD 10.05 Billion in 2023 and is expected to reach USD 14.55 Billion by 2031, with a CAGR of 7.8% from 2024-2031.

    Global Spreadsheet Software Market Drivers

    The market drivers for the Spreadsheet Software Market can be influenced by various factors. These may include:

    Increasing Data Volume: As organizations generate and collect more data, the need for efficient data analysis and management tools, such as spreadsheet software, grows. Rising Demand for Data Visualization: Users increasingly seek sophisticated tools to visualize data for better insights. Spreadsheet software can provide charts and graphs, making data interpretation easier.

    Global Spreadsheet Software Market Restraints

    Several factors can act as restraints or challenges for the Spreadsheet Software Market, These may include:

    Market Saturation: Many organizations already use established spreadsheet software such as Microsoft Excel or Google Sheets. The reliance on these platforms can make it difficult for new entrants or alternative solutions to capture market share. High Competition: The market is highly competitive, with numerous players offering similar features and functionalities. This can lead to price wars and reduced profit margins for software providers.

  11. s

    In-Air Hand-Drawn Number and Shape Dataset

    • orda.shef.ac.uk
    zip
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Basheer Alwaely; Charith Abhayaratne (2025). In-Air Hand-Drawn Number and Shape Dataset [Dataset]. http://doi.org/10.15131/shef.data.7381472.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Basheer Alwaely; Charith Abhayaratne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains in-air hand-written numbers and shapes data used in the paper:B. Alwaely and C. Abhayaratne, "Graph Spectral Domain Feature Learning With Application to in-Air Hand-Drawn Number and Shape Recognition," in IEEE Access, vol. 7, pp. 159661-159673, 2019, doi: 10.1109/ACCESS.2019.2950643.The dataset contains the following:-Readme.txt- InAirNumberShapeDataset.zip containing-Number Folder (With 2 sub folders for Matlab and Excel)-Shapes Folder (With 2 sub folders for Matlab and Excel)The datasets include the in-air drawn number and shape hand movement path captured by a Kinect sensor. The number sub dataset includes 500 instances per each number 0 to 9, resulting in a total of 5000 number data instances. Similarly, the shape sub dataset also includes 500 instances per each shape for 10 different arbitrary 2D shapes, resulting in a total of 5000 shape instances. The dataset provides X, Y, Z coordinates of the hand movement path data in Matlab (M-file) and Excel formats and their corresponding labels.This dataset creation has received The University of Sheffield ethics approval under application #023005 granted on 19/10/2018.

  12. ICSE 2025 - Artifact

    • figshare.com
    pdf
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FARIDAH AKINOTCHO (2025). ICSE 2025 - Artifact [Dataset]. http://doi.org/10.6084/m9.figshare.28194605.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    FARIDAH AKINOTCHO
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Mobile Application Coverage: The 30% Curse and Ways Forward## Purpose In this artifact, we provide the information about our benchmarks used for manual and tool exploration. We include coverage results achieved by tools and human analysts as well as plots of the coverage progression over time for analysts. We further provide manual analysis results for our case study, more specifically extracted reasons for unreachability for the case study apps and extracted code-level properties, which constitute a ground truth for future work in coverage explainability. Finally, we identify a list of beyond-GUI exploration tools and categorize them for future work to take inspiration from. We are claiming available and reusable badges; the artifact is fully aligned with the results described in our paper and comprehensively documented.## ProvenanceThe paper preprint is available here: https://people.ece.ubc.ca/mjulia/publications/Mobile_Application_Coverage_ICSE2025.pdf## Data The artifact submission is organized into five parts:- 'BenchInfo' excel sheet describing our experiment dataset- 'Coverage' folder containing coverage results for tools and analysts (RQ1) - 'Reasons' excel sheet describing our manually extracted reasons for unreachability (RQ2)- 'ActivationProperties' excel sheet describing our manually extracted code properties of unreached activities (RQ3)- 'ActivationProperties-Graph' pdf which presents combinations of the extracted code properties in a graph format.- 'BeyondGUI' folder containing information about identified techniques which go beyond GUI exploration.The artifact requires about 15MB of storage.### Dataset: 'BenchInfo.xlsx'This file list the full application dataset used for experiments into three tabs: 'BenchNotGP' (apps from AndroTest dataset which are not on Google Play), 'BenchGP' (apps from AndroTest which are also on Google Play) and 'TopGP' (top ranked free apps from Google Play). Each tab contains the following information:- Application Name- Package Name- Version Used (Latest)- Original Version- # Activities- Minimum SDK- Target SDK- # Permissions (in Manifest)- List of Permissions (in Manifest)- # Features (in Manifest)- List of Features (in Manifest)The 'TopGP' sheet also includes Google-Play-specific information, namely:- Category (one of 32 app categories)- Downloads- Popularity RankThe 'BenchGP' and 'BenchNotGP' sheets also include the original version (included in the AndroTest benchmark) and the source (one of F-Droid, Github or Google Code Archives).### RQ1: 'Coverage'The 'Coverage' folder includes coverage results for tools and analysts, and is structured as follows:- 'CoverageResults.xlsx": An excel sheet containing the coverage results achieved by each human analysts and tool. - The first tab described the results over all apps for analysts combined, tools combined, and analysts + tools, which map to Table II in the paper. - Each of the following 42 tab, one per app in TopGP, marks the activities reached by Analyst 1, Analyst 2, Tool 1 (ape) and Tool 2 (fastbot), with an 'x' in the corresponding column to indicate that the activity was reached by the given agent.- 'Plots': A folder containing plots of the progressive coverage over time of analysts, split into one folder for 'Analyst1' and one for 'Analyst2'. - Each of the analysts' folder includes a subfolder per benchmark ('BenchNotGP', 'BenchGP' and 'TopGP'), containing as many png files as applications in the benchmark (respectively 47, 14 and 42 image files) named 'ANALYST_[X]_[APP_PACKAGE_NAME]'.png.### RQ2: 'Reasons.xslx'This file contains the extracted reasons for unreachability for the 11 apps manually analyzed. - The 'Summary' tab provides an overview of unreached activities per reasons over all apps and per app, which corresponds to Table III in the paper. - The following 11 tabs, each corresponding to and named after a single application, describe the reasons associated with each activity of that application. Each column corresponds to a single reason and 'x' indicates that the activity is unreached due to the reason in that column. The top row sums up the total number of activities unreached due to a given reason in each column.- The activities at the bottom which are greyed out correspond to activities that were reached during exploration, and are thus excluded from the reason extraction.### RQ3: 'ActivationProperties.xslx'This file contains the full list of activation properties extracted for each of the 185 activities analyzed for RQ2.The first half of the columns (columns C-M) correspond to the reasons (excluding Transitive, Inconclusive and No Caller) and the second half (columns N-AD) correspond to properties described in Figure 5 in the paper, namely:- Exported- Activation Location: - Code: GUI/lifecycle, Other Android or App-specific - Manifest- Activation Guards: - Enforcement: In Code or In Resources - Restriction: Mandatory or Discretionary- Data: - Type: Parameters, Execution Dependencies - Format: Primitive, Strings, ObjectsThe rows are grouped by applications, and each row correspond to an activity of that application. 'x' in a given column indicates the presence of the property in that column within the analyzed path to the activity. The third and fourth rows sums up the numbers and percentages for each property, as reported in Figure 5.### RQ3: 'ActivationProperties-Graph.pdf'This file shows combinations of the individual properties listed in 'ActivationProperties.xlsx' in a graph format, extending the combinations described in Table IV with data (types and format) and reasons for unreachability.### BeyondGUIThis folder includes:- 'ToolInfo.xlsx': an excel sheet listing the identified 22 beyond-GUI papers, the date of publication, availability, invasiveness (Source code, Bytecode, framework, OS) and their targeting strategy (None, Manual or Automated).- ToolClassification.pdf': a pdf file describing our paper selection methodology as well as a classication of the techniques in terms of Invocation Strategy, Navigation Strategy, Value Generation Strategy, and Value Generation Types. We fully introduced these categories in the pdf file.## Requirements & technology skills assumed by the reviewer evaluating the artifactThe artifact entirely consists of Excel sheets which can be opened with common Excel visualization software, i.e., Microsoft Excel, coverage plots as PNG files and PDF files. It requires about 15MB of storage in total.No other specific technology skills are required of the reviewer evaluating the artifact.

  13. m

    Data for: Peritectic assemblage entrainment as the main compositional driver...

    • data.mendeley.com
    Updated Apr 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Russell Bailie (2021). Data for: Peritectic assemblage entrainment as the main compositional driver in the I-type Vredenburg Granite, north-western Pan-African Saldania Belt, South Africa: A lithogeochemical perspective [Dataset]. http://doi.org/10.17632/c9v6gyrxxw.1
    Explore at:
    Dataset updated
    Apr 26, 2021
    Authors
    Russell Bailie
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Area covered
    South Africa, Vredenburg
    Description

    These are Excel spreadsheets which include the experimental data from melt experiments along with the proposed source for the Vredenburg Granite magmas. From the spreadsheets the restite composition is determined. Peritectic assemblage entrainment models can be determined by making use of graph functions in the Excel spreadsheet

  14. f

    Data file.

    • figshare.com
    xlsx
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marie Gorreti Zalwango; Caroline Kyozira; Mariam Nambuya; Martin Bulamu; Allan Muruta (2025). Data file. [Dataset]. http://doi.org/10.1371/journal.pgph.0003722.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    PLOS Global Public Health
    Authors
    Marie Gorreti Zalwango; Caroline Kyozira; Mariam Nambuya; Martin Bulamu; Allan Muruta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mortality surveillance aids in identifying and addressing causes of death allowing health systems to adapt and respond effectively. An assessment of mortality surveillance in Uganda was conducted from November 2023 to June 2024 through data reviews and plenary discussions engaging various stakeholders in Uganda. Eight (8) workshops/meetings were conducted over a period of eight months to generate information on mortality data sources, processes of data generation and challenges affecting the system. Responses from the meetings and workshops were recorded and transcribed. Data were thematically analysed and presented as descriptive narratives. Quantitative data from district health information system version. 2 (DHIS2) was analyzed using excel and presented using charts and tables. The rapid assessment of mortality surveillance in Uganda highlighted opportunities for improved mortality surveillance through the existence of various sources of data. It was highlighted that 66.9% of the death occur in communities, however, there is a major data completeness gaps where suboptimal data from the community is feed into the national health statistics database (DHIS2) to enable stakeholder analysis and utilization. Furthermore, a number of data quality issues were identified in the health facility generated data where 33% of the deaths occur. These include: data completeness where the national referral specialized health institutes do not feed their data into the national data base, late reporting and the lack of coordination and standardisation of reporting among the various partners. The existence of structures to conduct mortality surveillance in Uganda presents an opportunity for improved mortality surveillance despite the highlighted gaps and challenges. Adoption of strategies aimed to enable the successful implementation of an efficient mortality surveillance program like: strengthening governance and operations of death reporting activities, establishing a clear definition of institutional roles and responsibilities, raising awareness and advocacy at all levels, building technical capacities, improving allocation of resources, and leveraging on shared interests by both implementing and development partners could improve mortality surveillance and the health of the population through utilisation of the generated data.

  15. ROAD ACCIDENT DASHBOARD

    • kaggle.com
    zip
    Updated Jan 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ANJALI KB (2024). ROAD ACCIDENT DASHBOARD [Dataset]. https://www.kaggle.com/datasets/anjalikb/road-accident-dashboard/code
    Explore at:
    zip(72609359 bytes)Available download formats
    Dataset updated
    Jan 23, 2024
    Authors
    ANJALI KB
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    📊 Road Accident Data Analysis: Interactive Excel Dashboard 🚗

    Excited to share my Kaggle project focusing on road accident data analysis. Leveraging Excel's power, I've developed an interactive dashboard offering comprehensive insights for safer roads.

    Key Aspects:

    Data Processing & Cleaning: Ensured data reliability through meticulous processing. KPIs: Primarily focused on Total Casualties, with detailed breakdowns for Fatal, Serious, Slight, and by Car type. Visualizations: Engaging charts - Doughnuts, Line, Bar, and Pie - offering a holistic view of accident trends. Interactivity: User-friendly features include Urban/Rural and Year filters for dynamic exploration. Unique Insights:

    Monthly Trends: Line chart for a nuanced comparison of current vs. previous year casualties. Road Type Breakdown: Bar chart to showcase casualties distributed across different road types. Geospatial Analysis: Doughnut charts detailing casualties by location and area. Call for Collaboration: Seeking Kaggle community input for refinement and optimization. Let's collectively contribute to making our roads safer through data-driven insights!

    DataAnalysis #RoadSafety #InteractiveDashboard #KaggleProject #Excel #DataVisualization #CollaborationOpportunity

    Looking forward to your feedback and contributions! 🚀🌐

  16. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-12-02 to 2025-12-01 about stock market, average, industry, and USA.

  17. F

    Canadian Dollars to U.S. Dollar Spot Exchange Rate

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Canadian Dollars to U.S. Dollar Spot Exchange Rate [Dataset]. https://fred.stlouisfed.org/series/EXCAUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Canada
    Description

    Graph and download economic data for Canadian Dollars to U.S. Dollar Spot Exchange Rate (EXCAUS) from Jan 1971 to Nov 2025 about Canada, exchange rate, currency, rate, and USA.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
Organization logoOrganization logo

Graph Input Data Example.xlsx

Explore at:
xlsxAvailable download formats
Dataset updated
Dec 26, 2018
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Dr Corynen
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

Search
Clear search
Close search
Google apps
Main menu