Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.
https://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt
Network of 46 papers and 55 citation links related to "PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel".
Excel tables include all values used to generate graphs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In "Sample Student Data", there are 6 sheets. There are three sheets with sample datasets, one for each of the three different exercise protocols described (CrP Sample Dataset, Glycolytic Dataset, Oxidative Dataset). Additionally, there are three sheets with sample graphs created using one of the three datasets (CrP Sample Graph, Glycolytic Graph, Oxidative Graph). Each dataset and graph pairs are from different subjects. · CrP Sample Dataset and CrP Sample Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the creatine phosphate system. Here, the subject was a track and field athlete who threw the shot put for the DeSales University track team. The NIRS monitor was placed on the right triceps muscle, and the student threw the shot put six times with a minute rest in between throws. Data was collected telemetrically by the NIRS device and then downloaded after the student had completed the protocol. · Glycolytic Dataset and Glycolytic Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the glycolytic energy system. In this example, the subject performed continuous squat jumps for 30 seconds, followed by a 90 second rest period, for a total of three exercise bouts. The NIRS monitor was place on the left gastrocnemius muscle. Here again, data was collected telemetrically by the NIRS device and then downloaded after he had completed the protocol. · Oxidative Dataset and Oxidative Graph: In this example, the dataset and graph are from an exercise protocol designed to stress the oxidative system. Here, the student held a sustained, light-intensity, isometric biceps contraction (pushing against a table). The NIRS monitor was attached to the left biceps muscle belly. Here, data was collected by a student observing the SmO2 values displayed on a secondary device; specifically, a smartphone with the IPSensorMan APP displaying data. The recorder student observed and recorded the data on an Excel Spreadsheet, and marked the times that exercise began and ended on the Spreadsheet.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the user manual provided at the end of the research manuscript, and the Graph Input Data Example.xlsx as a reference, the user provides all the graph semantic data required to evaluate all the performance criteria for the system.These criteria include the probability that the principal target can be reached, and the costs, elapsed times and total vulnerability resulting from a penetration attempt by one or more intruders.This performance computation is accurate and efficient, requiring an insignificant amount of computation time.It also resolves all the statistical dependencies and probabilistic uncertainties believed to be an important challenge to a risk manager and his or her analysts.User enters the Graph Topological data in this excel file, thereby creating a topological model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data publication is part of the 'P³-Petrophysical Property Database' project, which was developed within the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553) and consists of a scientific paper, a full report on the database, the database as excel and .csv files and additional tables for a hierarchical classification of the petrography and stratigraphy of the investigated rock samples (see related references). This publication here provides a hierarchical interlinked stratigraphic classification according to the chronostratigraphical units of the international chronostratigraphic chart of the IUGS v2016/04 (Cohen et al. 2013, updated) according to international standardisation. As addition to this IUGS chart, which is also documented in GeoSciML, stratigraphic IDs and parent IDs were included to define the direct relationships between the stratigraphic terms. The P³ database aims at providing easily accessible, peer-reviewed information on physical rock properties relevant for geothermal exploration and reservoir characterization in one single compilation. Collected data include hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age and, most important, original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis, of which the stratigraphic catalogue is presented here. These chronostratigraphic units are compiled to ensure that formations of a certain age are connected to the corresponding stratigraphic epoch, period or erathem. Thus, the chronostratigraphic units are directly correlated to each other by their stratigraphic ID and stratigraphic parent ID and can thus be used for interlinked data assessment of the petrophysical properties of samples of an according stratigraphic unit.
This data set was derived from experimental and numerical studies of sediment transport and the topographic evolution of a coupled river and rive-plume system. Data files are Microsoft Excel format and include data and graphs of experimental topographic cross sections, centerline profiles and numerical model runs used to produce the figures in Chatanantavet and Lamb, 2014. Funding was provided by NSF grant(s): OCE12-33685.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data correspond to the main figures of the manuscript titled, "TCF-1-dependent and -independent restriction of the memory fate of CD8+ T cells enforced by BLIMP1."
Within the Figure_1.zip file, files include raw qPCR data with calculated delta Ct values, raw MFI values for in vitro stimulated WT and KO CD8+ T cells corresponding to Figure 1E and F, and fcs files of flow data presented in figures 1 E and F.
Within the Figure_2.zip file, files include the raw fcs files corresponding to panels A, C, and D. Sample information pertaining to each panel is provided in an excel file enumerating the cell culture conditions and genotypes of each sample. An excel file containing the raw numerical data of percent TCF1 positive for each sample in panel 2B is also provided.
Within the Figure_3.zip file, files include the raw fcs files corresponding to the representative plots in panels B, C, E, H, and J. Excel files containing the raw numerical data for graphs in panels B, C, D, F, G, H, and K are also included.
Within the Figure_4.zip file, files include the raw fcs files corresponding to the representative plots in panel G. An Excel file containing the raw numerical data for graphs in panel G. The genomic data have been separately uploaded to the NCBI GEO database.
Within the Figure_5.zip file, files include the raw fcs files corresponding to the representative plots in panels A, B, E, and G. Excel files containing the raw numerical data for graphs in panels A, B, C, E, F, G, H, and I are also included.
Within the Figure_6.zip file, files include the raw fcs files corresponding to the representative plots in panels A, B, and E. Excel files containing the raw numerical data for graphs in panels A, B, C, F, and H.
Within the Figure_7.zip file, files include the raw fcs files corresponding to the representative plots in panel A. Excel files containing the raw numerical data for graphs in panels B, F, and H are also included. The genomic data have been separately uploaded to the NCBI GEO database.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Graph Database market size will be USD 7.3 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 20.2% from 2024 to 2031. Market Dynamics of Graph Database Market
Key Drivers for Graph Database Market
Increasing demand for solutions with the capability to process low-latency queries-One of the main reasons the Graph Database market is extensively being used all over the globe, to the extent that numerous legacy database providers are endeavoring to assimilate graph database schemas into their main relational database infrastructures. Whereas, in theory, the strategy might save money, it might degrade and slow down the performance of queries run beside the database. A graph database is altering traditional brick-and-mortar trades into digital business powerhouses in terms of digital business activities.
Growing usage of graph database technology to drive the Graph Database market's expansion in the years ahead.
Key Restraints for Graph Database Market
Complex programming and standardization pose a serious threat to the Graph Database industry.
The market also faces significant difficulties related to low-cost clusters.
Introduction of the Graph Database Market
The graph database market has experienced significant growth due to the increasing need for efficient data management and complex relationship mapping in various industries. Unlike traditional relational databases, graph databases excel in handling interconnected data, making them ideal for applications such as social networks, fraud detection, recommendation engines, and supply chain management. Key drivers of this market include the rising adoption of big data analytics, advancements in artificial intelligence, and the proliferation of connected devices. Leading players, such as Neo4j, Amazon Web Services, and Microsoft, continue to innovate, offering scalable and robust graph database solutions. The growing demand for real-time, low-latency data processing capabilities further propels the market's expansion.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains in-air hand-written numbers and shapes data used in the paper:B. Alwaely and C. Abhayaratne, "Graph Spectral Domain Feature Learning With Application to in-Air Hand-Drawn Number and Shape Recognition," in IEEE Access, vol. 7, pp. 159661-159673, 2019, doi: 10.1109/ACCESS.2019.2950643.The dataset contains the following:-Readme.txt- InAirNumberShapeDataset.zip containing-Number Folder (With 2 sub folders for Matlab and Excel)-Shapes Folder (With 2 sub folders for Matlab and Excel)The datasets include the in-air drawn number and shape hand movement path captured by a Kinect sensor. The number sub dataset includes 500 instances per each number 0 to 9, resulting in a total of 5000 number data instances. Similarly, the shape sub dataset also includes 500 instances per each shape for 10 different arbitrary 2D shapes, resulting in a total of 5000 shape instances. The dataset provides X, Y, Z coordinates of the hand movement path data in Matlab (M-file) and Excel formats and their corresponding labels.This dataset creation has received The University of Sheffield ethics approval under application #023005 granted on 19/10/2018.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Original image files for submitting paper, which include tiffs, pngs, excel sheet (for quantification, graph)
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-09-28 to 2025-09-25 about stock market, average, industry, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Canadian Dollars to U.S. Dollar Spot Exchange Rate (EXCAUS) from Jan 1971 to Aug 2025 about Canada, exchange rate, currency, rate, and USA.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.