9 datasets found
  1. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  2. a

    Flowlines NHD Plus High Resolution Okanagan

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Oct 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Joint Commission of Canada and the U.S. (2025). Flowlines NHD Plus High Resolution Okanagan [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/a09e7ebce4a94233b2ff3dff956ad192
    Explore at:
    Dataset updated
    Oct 4, 2025
    Dataset authored and provided by
    International Joint Commission of Canada and the U.S.
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution. Dataset Summary Phenomenon Mapped: Surface waters and related features of the United States and associated territories Geographic Extent: Shared Drainage Basins- Canada and the U.S. Projection: Web Mercator Auxiliary Sphere  Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000 Source: USGS Update Frequency: Annual Publication Date: July 2022 This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema. Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values. What can you do with this layer? Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro. ArcGIS Online Add this layer to a map in the map viewer. The layer or a map containing it can be used in an application.  Change the layer’s transparency and set its visibility range Open the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table. Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbology Add labels and set their properties Customize the pop-up Use as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data. ArcGIS Pro Add this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the data Open table and make interactive selections with the map Modify the pop-ups Apply Definition Queries to create sub-sets of the layer This layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  3. Data from: Responses to environmental variability by herbivorous insects and...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Responses to environmental variability by herbivorous insects and their natural enemies within a bioenergy crop, Miscanthus x giganteus [Dataset]. https://catalog.data.gov/dataset/data-from-responses-to-environmental-variability-by-herbivorous-insects-and-their-natural--e1e1d
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    Description: This dataset consists of field data (arthropods, nematodes and NDVI) collected over the course of 6 field excursions in 2015 and 2016 near TyTy, GA, in a field used for growing Miscanthus x giganteus. It also includes interpolated values of soil measurements collected in 2015 and meteorological data collected on an adjacent farm. Point-in-time measurements include all meteorological, NDVI, arthropod and nematode measurements and their derivatives. Fixed values were measurements that were held constant across all sampling dates, including location, terrain and soils measurements and their derivatives. Dawn Olson and Jason Schmidt collected and processed arthropod count data. Jason Schmidt collected and processed spider count data and computed spider diversity. Richard Davis collected and processed nematode count data. Alisa Coffin collected and processed NDVI data and positional locations. Tim Strickland collected and processed soils data and Alisa Coffin interpolated soils values using kriging to derive values at arthropod sample locations. David Bosch collected and processed meteorological data. Lynne Seymour provided statistical expertise in deriving any estimated values (phloem feeders, parasitoids, spiders, and natural enemies). Alisa Coffin derived terrain data (elevation, slope, aspect, and distances) from publicly available datasets, transformed values (SI, WI, etc), carried out the geographically weighted regression analysis and calculated C:SE values, harmonized the full dataset, and compiled it using Esri's ArcGIS Pro 2.5. Methods for most data are published in the accompanying paper and associated supplements. Questions about dataset development and management should be directed to Alisa Coffin (alisa.coffin@usda.gov). This work was accomplished as a joint USDA and University of Georgia project funded by a cooperative agreement (#6048-13000-026-21S). This research was a contribution from the Long-Term Agroecosystem Research (LTAR) network. LTAR is supported by the United States Department of Agriculture. At request of the author, the data resources are under embargo. The embargo will expire on Fri, Jan 01, 2021. Resources in this dataset:Resource Title: Spreadsheet of data. File Name: GibbsMisFarm_Arthrop_Env_DepVar_201516_final.xlsxResource Description: This workbook contains all of the data used in this analysis. The first worksheet contains data dictionary information.Resource Software Recommended: Microsoft Excel, Office 365,url: https://www.microsoft.com/en-us/microsoft-365/excel Resource Title: GeoJSON. File Name: MiscanthusXGiganteusGeoJSON.json

  4. a

    Flowlines

    • pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pend Oreille County (2024). Flowlines [Dataset]. https://pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com/datasets/flowlines
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    Pend Oreille County
    Area covered
    Description

    *This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  5. d

    Data from: Digital Elevation Model (DEM) Derived Topographic Indices Across...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Digital Elevation Model (DEM) Derived Topographic Indices Across Sequoia Groves in Sequoia-Kings Canyon National Park and Yosemite National Park [Dataset]. https://catalog.data.gov/dataset/digital-elevation-model-dem-derived-topographic-indices-across-sequoia-groves-in-sequoia-k
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset provides topographic indices derived from 1 m resolution DEMs for sequoia groves in both Sequoia-Kings Canyon and Yosemite National Parks. All mapped sequoia groves in Sequoia-Kings Canyon National Park and two groves from Yosemite National Park, Merced and Mariposa, are included. For each grove, aspect, slope, the stream network, height above nearest drainage (HAND), depth to water (DTW), maximum elevation deviation (DEVmax), and heat load index (HLI) are calculated. These indices were chosen because of their relevance in determining soil moisture across a landscape. Derived topographic parameters were calculated using 1 m DEMs generated in 2016 resampled to 3 m and a combination of ArcGIS Pro Tools, ArcPy Scripts, Whitebox GAT tools, and R scripts. The stream networks, which are further used in the calculation of HAND and DTW, were determined using a flow accumulation threshold of 2000 meters squared based on a literature-accepted range, chosen specifically based on knowledge of the areas of interest. The neighborhood size range for DEVmax was chosen on two scales, allowing for the identification of both local and more global minima and maxima: squares centered at each pixel ranging from 9 to 303 meters and 9 to 1203 meters wide. The neighborhood size chosen by the algorithm at each pixel maximizes the deviation from the average. Files that include the neighborhood size chosen are included for reference. All files are included as GeoTIFF files.

  6. Data from: Antibiotics in the Global River System Arising from Human...

    • figshare.com
    zip
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heloisa Ehalt Macedo; Jim A. Nicell; Bernhard Lehner (2025). Antibiotics in the Global River System Arising from Human Consumption [Dataset]. http://doi.org/10.6084/m9.figshare.25829464.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Heloisa Ehalt Macedo; Jim A. Nicell; Bernhard Lehner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Antibiotics in the Global River System Arising from Human ConsumptionData repositoryLast updated: April 2025prepared byHeloisa Ehalt Macedo (heloisa.ehaltmacedo@mail.mcgill.ca) and Bernhard Lehner (bernhard.lehner@mcgill.ca)1. Overview and backgroundThis repository contains the Python code, input, and output data for the research article: Ehalt Macedo, H., Lehner, B., Nicell, J., Khan, U., Klein, E. (2025). Antibiotics in the global river system arising from human consumption. PNAS Nexus. Further information and description of the model can be found in the same publication.The data repository includes 3 datasets:1. Python code: python project repository including the structure necessary for the model to run.2. Input data:a. A table containing information on all river segments associated with geometric attributes from RiverATLAS (Linke et al., 2019) and HydroROUT (Lehner and Grill, 2013), and attributes used in the HydroFATE model (Ehalt Macedo et al., 2024) based on underlying data such as HydroLAKES (Messager et al., 2016), and HydroWASTE (Ehalt Macedo et al., 2022).b. A table of parameters for the model run. The literature sources of the parameters for all substances and the scenarios are described in the research paper.c. A table of country-level consumption per capita of all contaminants being analyzed, as provided by Klein et al. (2018).3. Output data:a. A table including the unique river reach identifier associated with the river network, the resulting concentration and risk quotient for each contaminant, and totals using HydroFATE as described in the research paper.2. Repository contentThe data repository has the following structure:HydroFATE_v1_1.zip/: repository containing:|---------Main_script/:|---------------------Input/: empty folder to add input data from “Input_data.gdb.zip”|---------------------Output/: empty folder where results will be saved after model run|---------------------HydroFATE_v1_1.py : python code with HydroFATE model version 1.1|---------------------config.py: config file with model parameters|---------LICENSE: license file for python code|---------README.md: readme file for code description and compilation instructions|---------Technical_documentation_Antibiotics: technical documentation for the code and datasetsInput_data.gdb.zip/: file geodatabase in ESRI® geodatabase format containing 3 feature classes (zipped):|---------streams: table including global river network attributes.|---------parameters: table including parameters and configuration settings.|---------consumption: table including country-level consumption per capita of all substances.Output.gdb.zip/: file geodatabase in ESRI® geodatabase format containing 1 feature class (zipped):|---------Total_results: table with model predictions for every river reach of the global river network.3. Data format and projectionA license for the software ArcGIS Pro is required to run the provided scripts. These datasets are available electronically in compressed zip file format. To use the data files, the zip files must first be decompressed. All data layers are provided in geographic (latitude/longitude) projection, referenced to datum WGS84. In ESRI® software this projection is defined by the geographic coordinate system GCS_WGS_1984 and datum D_WGS_1984 (EPSG: 4326). Full descriptions of dataset attributes can be found in the Technical documentation in this repository.4. License and citations4.1 License AgreementThis documentation and datasets are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-4.0 License). For all regulations regarding license grants, copyright, redistribution restrictions, required attributions, disclaimer of warranty, indemnification, liability, waiver of damages, and a precise definition of licensed materials, please refer to the License Agreement (https://creativecommons.org/licenses/by/4.0/legalcode). For a human-readable summary of the license, please see https://creativecommons.org/licenses/by/4.0/.4.2 Citations and Acknowledgements.Citations and acknowledgements of this dataset should be made as follows:Ehalt Macedo, H., Lehner, B., Nicell, J., Khan, U., Klein, E. (2025). Antibiotics in the global river system arising from human consumption. PNAS Nexus.We kindly ask users to cite this study in any published material produced using it. Onlineclass links to this repository (https://doi.org/10.6084/m9.figshare.25829464) should also be provided.5. ReferencesEhalt Macedo, H., Lehner, B., Nicell, J. & Grill, G. HydroFATE (v1): a high-resolution contaminant fate model for the global river system. Geosci. Model Dev. 17, 2877-2899, doi:10.5194/gmd-17-2877-2024 (2024).Ehalt Macedo, H., Lehner, B., Nicell, J., Grill, G., Li, J., Limtong, A., and Shakya, R.: Distribution and characteristics of wastewater treatment plants within the global river network, Earth Syst. Sci. Data, 14, 559-577, doi: 10.5194/essd-14-559-2022, 2022.Klein, E. Y., Boeckel, T. P. V., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., Goossens, H., and Laxminarayan, R.: Global increase and geographic convergence in antibiotic consumption between 2000 and 2015, Proceedings of the National Academy of Sciences, 115, E3463-E3470, doi: 10.1073/pnas.1717295115, 2018.Lehner, B. and Grill, G.: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems, Hydrol Process, 27, 2171-2186, doi: 10.1002/hyp.9740, 2013.Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and Thieme, M.: Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution, Scientific Data, 6, 283, doi: 10.1038/s41597-019-0300-6, 2019.Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nature Communications, 7, 13603, doi: 10.1038/ncomms13603, 2016.

  7. a

    Percent change in annual precipitation (CONUS) (Image Service)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Nov 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2017). Percent change in annual precipitation (CONUS) (Image Service) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/429428633a5e486289f6111d9cbe7065
    Explore at:
    Dataset updated
    Nov 22, 2017
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metadata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.Currently, the below links are not accessible.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  8. a

    Flowlines NHD Plus High Resolution Souris River Basin

    • hub.arcgis.com
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Joint Commission of Canada and the U.S. (2025). Flowlines NHD Plus High Resolution Souris River Basin [Dataset]. https://hub.arcgis.com/content/f28aa32a6e74487f967eb1a5b144ab4b
    Explore at:
    Dataset updated
    Oct 3, 2025
    Dataset authored and provided by
    International Joint Commission of Canada and the U.S.
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution. Dataset Summary Phenomenon Mapped: Surface waters and related features of the United States and associated territories Geographic Extent: Shared Drainage Basins- Canada and the U.S. Projection: Web Mercator Auxiliary Sphere  Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000 Source: USGS Update Frequency: Annual Publication Date: July 2022 This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema. Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values. What can you do with this layer? Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro. ArcGIS Online Add this layer to a map in the map viewer. The layer or a map containing it can be used in an application.  Change the layer’s transparency and set its visibility range Open the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table. Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbology Add labels and set their properties Customize the pop-up Use as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data. ArcGIS Pro Add this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the data Open table and make interactive selections with the map Modify the pop-ups Apply Definition Queries to create sub-sets of the layer This layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  9. Absolute change in summer precipitation (CONUS) (Image Service)

    • hub.arcgis.com
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Mar 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Absolute change in summer precipitation (CONUS) (Image Service) [Dataset]. https://hub.arcgis.com/datasets/fd4b9ee75d934a5c9f785e78b707aa1f
    Explore at:
    Dataset updated
    Mar 5, 2019
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.Currently, the below links are not accessible. Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
Organization logo

National Hydrography Dataset Plus Version 2.1

Explore at:
53 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 16, 2022
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Search
Clear search
Close search
Google apps
Main menu