15 datasets found
  1. TopoBathy 3D

    • hub-oceanos-osal.hub.arcgis.com
    • cacgeoportal.com
    • +3more
    Updated May 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). TopoBathy 3D [Dataset]. https://hub-oceanos-osal.hub.arcgis.com/datasets/esri::topobathy-3d/about
    Explore at:
    Dataset updated
    May 13, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The TopoBathy 3D layer provides a global seamless topography (land elevation) and bathymetry (water depths) surface to use as a ground in ArcGIS 3D applications.What can you do with this layer?This layer is meant to be used as a ground in ArcGIS Online Web Scenes, ArcGIS Earth, and ArcGIS Pro to help visualize your maps and data in 3D.How do I use this layer?In the ArcGIS Online Web Scene Viewer:Sign-in with ArcGIS Online accountOn the Designer toolbar, click Add LayersClick Browse layersand choose Living Atlas.Search for TopoBathy 3DAdd TopoBathy 3D (Elevation Layer)The TopoBathy 3D will get added under Ground.Change basemap to OceansOptionally, add any other operational layers to visualize in 3D In ArcGIS Pro:Ensure you are logged in with an ArcGIS Online accountOpen a Global SceneOn the Map tab, click Add Data > Elevation Source LayerUnder Portal, click Living Atlas and search for TopoBathy 3DSelect TopoBathy 3D (Elevation Layer) and click OKThe TopoBathy 3D will get added under GroundOptionally, remove other elevation layers from ground and choose the desired basemap Dataset CoverageTo see the coverage and sources of various datasets comprising this elevation layer, view the World Elevation Coverage Map. Additionally, this layer contains data from Vantor’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  2. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  3. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  4. Terrain 3D

    • cacgeoportal.com
    • pacificgeoportal.com
    • +4more
    Updated Dec 9, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Terrain 3D [Dataset]. https://www.cacgeoportal.com/maps/7029fb60158543ad845c7e1527af11e4
    Explore at:
    Dataset updated
    Dec 9, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Terrain 3D layer provides global elevation surface to use as a ground in ArcGIS 3D applications.What can you do with this layer? Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro.Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset CoverageTo see the coverage and sources of various datasets comprising this elevation layer, view the World Elevation Coverage Map. Additionally, this layer contains data from Vantor’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  5. Viewshed

    • hub.arcgis.com
    • cartong-esriaiddev.opendata.arcgis.com
    • +1more
    Updated Jul 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://hub.arcgis.com/content/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 5, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  6. n

    Sea level rise, groundwater rise, and contaminated sites in the San...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristina Hill; Daniella Hirschfeld; Caroline Lindquist; Forest Cook; Scott Warner (2023). Sea level rise, groundwater rise, and contaminated sites in the San Francisco Bay Area, and Superfund Sites in the contiguous United States [Dataset]. http://doi.org/10.6078/D15X4N
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 22, 2023
    Dataset provided by
    Utah State University
    University of California, Berkeley
    UNSW Sydney
    Authors
    Kristina Hill; Daniella Hirschfeld; Caroline Lindquist; Forest Cook; Scott Warner
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    San Francisco Bay Area, United States, Contiguous United States
    Description

    Rising sea levels (SLR) will cause coastal groundwater to rise in many coastal urban environments. Inundation of contaminated soils by groundwater rise (GWR) will alter the physical, biological, and geochemical conditions that influence the fate and transport of existing contaminants. These transformed products can be more toxic and/or more mobile under future conditions driven by SLR and GWR. We reviewed the vulnerability of contaminated sites to GWR in a US national database and in a case comparison with the San Francisco Bay region to estimate the risk of rising groundwater to human and ecosystem health. The results show that 326 sites in the US Superfund program may be vulnerable to changes in groundwater depth or flow direction as a result of SLR, representing 18.1 million hectares of contaminated land. In the San Francisco Bay Area, we found that GWR is predicted to impact twice as much coastal land area as inundation from SLR alone, and 5,297 state-managed sites of contamination may be vulnerable to inundation from GWR in a 1-meter SLR scenario. Increases of only a few centimeters of elevation can mobilize soil contaminants, alter flow directions in a heterogeneous urban environment with underground pipes and utility trenches, and result in new exposure pathways. Pumping for flood protection will elevate the salt water interface, changing groundwater salinity and mobilizing metals in soil. Socially vulnerable communities are more exposed to this risk at both the national scale and in a regional comparison with the San Francisco Bay Area. Methods Data Dryad This data set includes data from the California State Water Resources Control Board (WRCB), the California Department of Toxic Substances Control (DTSC), the USGS, the US EPA, and the US Census. National Assessment Data Processing: For this portion of the project, ArcGIS Pro and RStudio software applications were used. Data processing for superfund site contaminants in the text and supplementary materials was done in RStudio using R programming language. RStudio and R were also used to clean population data from the American Community Survey. Packages used include: Dplyr, data.table, and tidyverse to clean and organize data from the EPA and ACS. ArcGIS Pro was used to compute spatial data regarding sites in the risk zone and vulnerable populations. DEM data processed for each state removed any elevation data above 10m, keeping anything 10m and below. The Intersection tool was used to identify superfund sites within the 10m sea level rise risk zone. The Calculate Geometry tool was used to calculate the area within each coastal state that was occupied by the 10m SLR zone and used again to calculate the area of each superfund site. Summary Statistics were used to generate the total proportion of superfund site surface area / 10m SLR area for each state. To generate population estimates of socially vulnerable households in proximity to superfund sites, we followed methods similar to that of Carter and Kalman (2020). First, we generated buffers at the 1km, 3km, and 5km distance of superfund sites. Then, using Tabulate Intersection, the estimated population of each census block group within each buffer zone was calculated. Summary Statistics were used to generate total numbers for each state. Bay Area Data Processing: In this regional study, we compared the groundwater elevation projections by Befus et al (2020) to a combined dataset of contaminated sites that we built from two separate databases (Envirostor and GeoTracker) that are maintained by two independent agencies of the State of California (DTSC and WRCB). We used ArcGIS to manage both the groundwater surfaces, as raster files, from Befus et al (2020) and the State’s point datasets of street addresses for contaminated sites. We used SF BCDC (2020) as the source of social vulnerability rankings for census blocks, using block shapefiles from the US Census (ACS) dataset. In addition, we generated isolines that represent the magnitude of change in groundwater elevation in specific sea level rise scenarios. We compared these isolines of change in elevation to the USGS geological map of the San Francisco Bay region and noted that groundwater is predicted to rise farther inland where Holocene paleochannels meet artificial fill near the shoreline. We also used maps of historic baylands (altered by dikes and fill) from the San Francisco Estuary Institute (SFEI) to identify the number of contaminated sites over rising groundwater that are located on former mudflats and tidal marshes. The contaminated sites' data from the California State Water Resources Control Board (WRCB) and the Department of Toxic Substances (DTSC) was clipped to our study area of nine-bay area counties. The study area does not include the ocean shorelines or the north bay delta area because the water system dynamics differ in deltas. The data was cleaned of any duplicates within each dataset using the Find Identical and Delete Identical tools. Then duplicates between the two datasets were removed by running the intersect tool for the DTSC and WRCB point data. We chose this method over searching for duplicates by name because some sites change names when management is transferred from DTSC to WRCB. Lastly, the datasets were sorted into open and closed sites based on the DTSC and WRCB classifications which are shown in a table in the paper's supplemental material. To calculate areas of rising groundwater, we used data from the USGS paper “Projected groundwater head for coastal California using present-day and future sea-level rise scenarios” by Befus, K. M., Barnard, P., Hoover, D. J., & Erikson, L. (2020). We used the hydraulic conductivity of 1 condition (Kh1) to calculate areas of rising groundwater. We used the Raster Calculator to subtract the existing groundwater head from the groundwater head under a 1-meter of sea level rise scenario to find the areas where groundwater is rising. Using the Reclass Raster tool, we reclassified the data to give every cell with a value of 0.1016 meters (4”) or greater a value of 1. We chose 0.1016 because groundwater rise of that little can leach into pipes and infrastructure. We then used the Raster to Poly tool to generate polygons of areas of groundwater rise.

  7. n

    Effect of data source on estimates of regional bird richness in northeastern...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roi Ankori-Karlinsky; Ronen Kadmon; Michael Kalyuzhny; Katherine F. Barnes; Andrew M. Wilson; Curtis Flather; Rosalind Renfrew; Joan Walsh; Edna Guk (2021). Effect of data source on estimates of regional bird richness in northeastern United States [Dataset]. http://doi.org/10.5061/dryad.m905qfv0h
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 4, 2021
    Dataset provided by
    New York State Department of Environmental Conservation
    University of Vermont
    Hebrew University of Jerusalem
    University of Michigan
    Massachusetts Audubon Society
    Gettysburg College
    Columbia University
    Agricultural Research Service
    Authors
    Roi Ankori-Karlinsky; Ronen Kadmon; Michael Kalyuzhny; Katherine F. Barnes; Andrew M. Wilson; Curtis Flather; Rosalind Renfrew; Joan Walsh; Edna Guk
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Northeastern United States, United States
    Description

    Standardized data on large-scale and long-term patterns of species richness are critical for understanding the consequences of natural and anthropogenic changes in the environment. The North American Breeding Bird Survey (BBS) is one of the largest and most widely used sources of such data, but so far, little is known about the degree to which BBS data provide accurate estimates of regional richness. Here we test this question by comparing estimates of regional richness based on BBS data with spatially and temporally matched estimates based on state Breeding Bird Atlases (BBA). We expected that estimates based on BBA data would provide a more complete (and therefore, more accurate) representation of regional richness due to their larger number of observation units and higher sampling effort within the observation units. Our results were only partially consistent with these predictions: while estimates of regional richness based on BBA data were higher than those based on BBS data, estimates of local richness (number of species per observation unit) were higher in BBS data. The latter result is attributed to higher land-cover heterogeneity in BBS units and higher effectiveness of bird detection (more species are detected per unit time). Interestingly, estimates of regional richness based on BBA blocks were higher than those based on BBS data even when differences in the number of observation units were controlled for. Our analysis indicates that this difference was due to higher compositional turnover between BBA units, probably due to larger differences in habitat conditions between BBA units and a larger number of geographically restricted species. Our overall results indicate that estimates of regional richness based on BBS data suffer from incomplete detection of a large number of rare species, and that corrections of these estimates based on standard extrapolation techniques are not sufficient to remove this bias. Future applications of BBS data in ecology and conservation, and in particular, applications in which the representation of rare species is important (e.g., those focusing on biodiversity conservation), should be aware of this bias, and should integrate BBA data whenever possible.

    Methods Overview

    This is a compilation of second-generation breeding bird atlas data and corresponding breeding bird survey data. This contains presence-absence breeding bird observations in 5 U.S. states: MA, MI, NY, PA, VT, sampling effort per sampling unit, geographic location of sampling units, and environmental variables per sampling unit: elevation and elevation range from (from SRTM), mean annual precipitation & mean summer temperature (from PRISM), and NLCD 2006 land-use data.

    Each row contains all observations per sampling unit, with additional tables containing information on sampling effort impact on richness, a rareness table of species per dataset, and two summary tables for both bird diversity and environmental variables.

    The methods for compilation are contained in the supplementary information of the manuscript but also here:

    Bird data

    For BBA data, shapefiles for blocks and the data on species presences and sampling effort in blocks were received from the atlas coordinators. For BBS data, shapefiles for routes and raw species data were obtained from the Patuxent Wildlife Research Center (https://databasin.org/datasets/02fe0ebbb1b04111b0ba1579b89b7420 and https://www.pwrc.usgs.gov/BBS/RawData).

    Using ArcGIS Pro© 10.0, species observations were joined to respective BBS and BBA observation units shapefiles using the Join Table tool. For both BBA and BBS, a species was coded as either present (1) or absent (0). Presence in a sampling unit was based on codes 2, 3, or 4 in the original volunteer birding checklist codes (possible breeder, probable breeder, and confirmed breeder, respectively), and absence was based on codes 0 or 1 (not observed and observed but not likely breeding). Spelling inconsistencies of species names between BBA and BBS datasets were fixed. Species that needed spelling fixes included Brewer’s Blackbird, Cooper’s Hawk, Henslow’s Sparrow, Kirtland’s Warbler, LeConte’s Sparrow, Lincoln’s Sparrow, Swainson’s Thrush, Wilson’s Snipe, and Wilson’s Warbler. In addition, naming conventions were matched between BBS and BBA data. The Alder and Willow Flycatchers were lumped into Traill’s Flycatcher and regional races were lumped into a single species column: Dark-eyed Junco regional types were lumped together into one Dark-eyed Junco, Yellow-shafted Flicker was lumped into Northern Flicker, Saltmarsh Sparrow and the Saltmarsh Sharp-tailed Sparrow were lumped into Saltmarsh Sparrow, and the Yellow-rumped Myrtle Warbler was lumped into Myrtle Warbler (currently named Yellow-rumped Warbler). Three hybrid species were removed: Brewster's and Lawrence's Warblers and the Mallard x Black Duck hybrid. Established “exotic” species were included in the analysis since we were concerned only with detection of richness and not of specific species.

    The resultant species tables with sampling effort were pivoted horizontally so that every row was a sampling unit and each species observation was a column. This was done for each state using R version 3.6.2 (R© 2019, The R Foundation for Statistical Computing Platform) and all state tables were merged to yield one BBA and one BBS dataset. Following the joining of environmental variables to these datasets (see below), BBS and BBA data were joined using rbind.data.frame in R© to yield a final dataset with all species observations and environmental variables for each observation unit.

    Environmental data

    Using ArcGIS Pro© 10.0, all environmental raster layers, BBA and BBS shapefiles, and the species observations were integrated in a common coordinate system (North_America Equidistant_Conic) using the Project tool. For BBS routes, 400m buffers were drawn around each route using the Buffer tool. The observation unit shapefiles for all states were merged (separately for BBA blocks and BBS routes and 400m buffers) using the Merge tool to create a study-wide shapefile for each data source. Whether or not a BBA block was adjacent to a BBS route was determined using the Intersect tool based on a radius of 30m around the route buffer (to fit the NLCD map resolution). Area and length of the BBS route inside the proximate BBA block were also calculated. Mean values for annual precipitation and summer temperature, and mean and range for elevation, were extracted for every BBA block and 400m buffer BBS route using Zonal Statistics as Table tool. The area of each land-cover type in each observation unit (BBA block and BBS buffer) was calculated from the NLCD layer using the Zonal Histogram tool.

  8. d

    Data from: Map data from landslides triggered by Hurricane Maria in select...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Map data from landslides triggered by Hurricane Maria in select areas of San Lorenzo, Puerto Rico [Dataset]. https://catalog.data.gov/dataset/map-data-from-landslides-triggered-by-hurricane-maria-in-select-areas-of-san-lorenzo-puert
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    San Lorenzo, Puerto Rico
    Description

    Hurricane Maria brought intense rainfall and caused widespread landsliding throughout Puerto Rico during September 2017. Previous detailed landslide inventories following the hurricane include Bessette-Kirton et al. (2017, 2019). Here we continue that work with an in-depth look at two areas in San Lorenzo, which is a municipality in the east-central part of the main island. To study a characteristic sample of landslides in San Lorenzo, we mapped all visible landslides in two physiographically diverse areas, but all within the San Lorenzo Formation. We used aerial imagery collected between 9-15 October 2017 (Quantum Spatial, Inc., 2017) to map landslide source and runout areas, and 1-m-resolution pre-event and post-event lidar (U.S. Geological Survey, 2018, 2020) as a digital base map for mapping. Difficulties with using these tools arose when aerial imagery was not correctly georeferenced to the lidar, when cloud cover was present in all images of an area, and in interpreting failure modes using only two-dimensional aerial photos. These difficulties with aerial imagery were partially resolved using the lidar. The map data comprises headscarp points, travel distance lines, source area polygons, and affected area polygons that are provided as point, line, and polygon shapefiles that may be viewed using common geographic information systems. Various characteristics of the landslides and their geomorphic settings are included in attribute tables of the mapped features, and this information is described in the "Attribute Summary" document in the accompanying files. Quantitative attributes (e.g., failure travel distance, failure fall height, watershed contributing area, etc.) were determined using tools available with the ESRI ArcGIS Pro v. 3.0.36056 geographic information system. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. References Bessette-Kirton, E.K., Cerovski-Darrian, C., Schulz, W.H., Coe, J.A., Kean, J.W., Godt, J.W., Thomas, M.A. and Hughes, K.S., 2019, Landslides triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico: GSA Today, v. 29, no. 6. Bessette-Kirton, E.K., Coe, J.A., Godt, J.W., Kean, J.W., Rengers, F.K., Schulz, W.H., Baum, R.L., Jones, E.S., and Staley, D.M., 2017, Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico: U.S. Geological Survey data release, https://doi.org/10.5066/F7JD4VRF. Quantum Spatial, Inc., 2017 FEMA PR Imagery: https://s3amazonaws.com/fema-cap-imagery/Others/Maria (accessed October 2017). U.S. Geological Survey, 2018, USGS NED Original Product Resolution PR Puerto Rico 2015: http://nationalmap.gov/elevation.html (accessed October 2018). U.S. Geological Survey, 2020, USGS NED Original Product Resolution PR Puerto Rico 2015: http://nationalmap.gov/elevation.html (accessed October 2018).

  9. Data for modeling American chestnut distribution circa 1940 in Monroe...

    • figshare.com
    csv
    Updated Apr 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen Tulowiecki (2025). Data for modeling American chestnut distribution circa 1940 in Monroe County, New York State, US [Dataset]. http://doi.org/10.6084/m9.figshare.28827971.v1
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Stephen Tulowiecki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Monroe County, New York, United States
    Description

    Contained in this item are data to perform species distribution modeling or related analysis of American chestnut distribution in the mid-20th century in Monroe County, New York State, US. Modeling in the associated study was original performed using MaxEnt 3.4.4 software, but the data in this item could be used for training a species distribution model using any presence-only modeling technique. This item contains two files:"castanea_dentata_1940.csv" is a CSV file containing the estimated locations of woodlots 1938-1940 where American chestnut was observed. It contains latitude and longitude columns, with coordinates stored in the State Plane New York West coordinate reference system (NAD 1983, meters, WKID 32117). Data are based on maps from the following publication:Shanks, R.E., 1966. An ecological survey of the vegetation of Monroe County, New York. Proceedings of the Rochester Academy of Science 11, 105–255."predictors_ascii_10m.zip" contains zipped ASCII gridded data layers for 11 environmental variables. Data are provided at 10 m resolution, and are stored in the State Plane New York West coordinate reference system (NAD 1983, meters, WKID 32117). Sources for the data, and software to create the data layers, are as follows:NRCS, 2014. Description of SSURGO database [WWW Document]. URL http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627 (accessed 12.1.23).USGS, 2023. 3D Elevation Program 1/3 Arc-Second Resolution Digital Elevation Model [WWW Document]. The National Map Download. URL https://www.sciencebase.gov/catalog/item/63fd9914d34e70052b9b6738 (accessed 3.31.25).Esri, 2023. ArcGIS Pro 3.1. Redlands, CA USA.

  10. USA Protected from Land Cover Conversion

    • ilcn-lincolninstitute.hub.arcgis.com
    Updated Feb 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Protected from Land Cover Conversion [Dataset]. https://ilcn-lincolninstitute.hub.arcgis.com/datasets/be68f60ca82944348fb030ca7b028cba
    Explore at:
    Dataset updated
    Feb 1, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3) Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022 ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/ This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster. The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4 What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.

  11. a

    High resolution vector contours for Antarctica

    • hub.arcgis.com
    Updated May 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Antarctic Survey (2022). High resolution vector contours for Antarctica [Dataset]. https://hub.arcgis.com/maps/BAS::high-resolution-vector-contours-for-antarctica/about
    Explore at:
    Dataset updated
    May 6, 2022
    Dataset authored and provided by
    British Antarctic Survey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Antarctica,
    Description

    AbstractA continuous contour dataset at 100 m intervals for all land south of 60°S, excluding the Balleny Islands. The vertical datum of the contours is EGM2008. Contours are extracted primarily from the PGC Reference Elevation Model of Antarctica (REMA) v1.1 with certain islands filled from Copernicus WorldDEM. Further small areas are interpreted from satellite imagery, and Peter I Øy contours are from the Norwegian Polar Institute. Sources of individual line segments are contained in the attribute table and full compilation information is given in the lineage statement.Note: contours overlap the coastline in small areas, due to resolution of the data used in creation of the lines, and potential errors in coastline and/or contour data. Certain areas are known to contain erroneous data due to faults in the original DEM data.Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.Further information and useful linksMap projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap.The currency of this dataset is November 2022 and will be reviewed every 6 months. This feature layer will always reflect the most recent version.For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue.A related medium resolution dataset at 500 m intervals is also published via Living Atlas.For background information on the ADD project, please see the British Antarctic Survey ADD project page.LineageAll processing described here was performed in ArcGIS Pro version 2.6.A composite Digital Elevation Model (DEM) was created comprising of three datasets from the Reference Elevation Model of Antarctica v1.1: ‘REMA_100m_peninsula_dem_filled’, ‘REMA_100m_dem’ and ‘REMA_200m_dem_filled’. These DEMs were first converted from ellipsoidal height to height above EGM2008 geoid and then mosaicked together in respective order at 100 m spatial resolution. This 100 m DEM was smoothed by performing ‘Focal Statistics’ using a 3x3 cell size.100 m contours were extracted and all contours with a height <1m were deleted, as well as erroneous offshore contours. All contour ‘dangles’ were identified and then fixed to create a continuous dataset. They were fixed either by interpreting the correct line from satellite imagery or from ‘Copernicus WorldDEM 90m’ contours. Such lines are attributed with ‘interpreted’ in the source field and should be treated with caution. In other locations where the contours significantly overlapped the coastline, contours were redrawn/interpreted to not go offshore. In certain locations, primarily some islands on the Antarctic Peninsula, REMA data was insufficient to produce contours. In these places, contours were produced from the ‘Copernicus WorldDEM 90m’ DEM and smoothed by 300 m using a PAEK smoothing algorithm. Contours for Peter I Øy were incorporated from the Norwegian Polar Institute Data at 100 m intervals. The source of every line is written in the attribute table.All contours were merged together and lines <150 m in length were deleted. Further lines <1500 m were deleted in ‘non-mountainous’ regions, so as to avoid deleting small mountain peak contours but to still simplify the main dataset. These regions were interpreted manually using the hillshade of the DEM used to produce the contours.Original DEM sources and citations:REMA: Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665-674, https://doi.org/10.5194/tc-13-665-2019, 2019.Copernicus WorldDEM: produced using Copernicus WorldDEM™-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved.Norwegian Polar Institute (2014). Map data / kartdata Peter I Øy 1:50 000 (P50 Kartdata). Norwegian Polar Institute. https://doi.org/10.21334/npolar.2014.29105abcCitationPlease cite this item as: 'Gerrish, L., Fretwell, P., & Cooper, P. (2020). High resolution vector contours for Antarctica (7.3) [Data set]. UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation. https://doi.org/10.5285/4bd20a2b-df7d-46a2-acdf-5104c82ff4c7'If using for a graphic or if short on space, please cite as 'data from the SCAR Antarctic Digital Database, accessed [year]'

  12. a

    ETOP01 Land Elevation, Northwest Atlantic Region

    • data-with-cpaws-nl.hub.arcgis.com
    Updated Jan 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canadian Parks and Wilderness Society (2022). ETOP01 Land Elevation, Northwest Atlantic Region [Dataset]. https://data-with-cpaws-nl.hub.arcgis.com/datasets/etop01-land-elevation-northwest-atlantic-region-
    Explore at:
    Dataset updated
    Jan 30, 2022
    Dataset authored and provided by
    Canadian Parks and Wilderness Society
    Area covered
    Description

    ETOPO1 data was downloaded from the ETOPO1 is a 1 arc-minute global relief model provides a complete topographic and bathymetric coverage between -90° and +90°. Integrating land topography and ocean bathymetry. Built from global and regional data sets. It s available in "Ice Surface" (top of Antarctica and Greenland ice sheets) and "Bedrock" (base of the icesheets). Data can be downloaded directly from the source at the NOAA website. The data is available in either grid-registered or cell-registered files in netCDF and geotiff formats. A grid extraction tool is available to download a user selected area. Several versions of the data have been styled for public viewing by CPAWS-NL as part of a project to compile useful data within the Newfoundland and Labrador region into a data hub. The ETOPO1 Bedrock data was downloaded in grid registered geotiff format from the NOAA website. Newfoundland and Labrador are located between 46°N latitude and 60°N degrees latitude, the resolution of the data is latitude dependent and an ArcSecond converter may be a useful pre-analysis tool, https://www.opendem.info/arc2meters.html.More details can be found in the ETOPO1 Global Relief Model Report, ETOPO1: Procedures, Data Sources and AnalysisHillshade was also processed and can be found here. Hillshade was processed in ArcGIS Pro 2.8.1 using Raster function "Hillshade", default options were applied with the only modification being a z value of 0.00001792(m), the appropriate z value for 60° Longitude. Hillshade symbology was then set to stretch using standard deviations with a value of 1, with gamma set to 1 (although 4 is the recommended value). Other viewing options include:A web map of Digital Elevations Models for Newfoundland and Labrador (Watershed Regions)A web map of the ETOPO1 Global Relief Model for the Northwest Atlantic RegionA web hosted layer for the ETOPO1 Land Elevation, Northwest Atlantic RegionA web hosted layer of the Land Elevation in the Newfoundland and Labrador Watersheds. Please note that this data has been subject to some processing and it is advisable to access and use source data.Please note that additional data options are available from the source and it was not feasible to prepare and present all possible data options.Please refer to the CPAWS Data Record for Elevation and Bathymetry across Newfoundland and Labrador for options. Please note that the ETOPO1 Global Relief Model is a surface that has been interpreted from best available data sources at the time of creation (2008).

  13. USA Unprotected Areas

    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    Updated Feb 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Unprotected Areas [Dataset]. https://a-public-data-collection-for-nepa-sandbox.hub.arcgis.com/datasets/55c4ba03344446f495d2b974a5f6c510
    Explore at:
    Dataset updated
    Feb 1, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the lowest two levels of protection known as GAP Status 3 and Gap Status 4. Because designations may overlap, some areas such as where Wilderness Areas overlap National Forests, may have a higher level of protection than indicated in this layer. See the USA Protected Areas or the USA Protected Areas - GAP 1-4 layers for the highest level of protection for a specific area.Dataset SummaryPhenomenon Mapped: Areas managed for multiple-use where extractive activities may occur (GAP Status 3 and 4)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgisThis layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 3 and 4 - areas subject to mulitple-use management where extractive activities may occur.The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Protected from Land Cover ConversionUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Unprotected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Unprotected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  14. World Topographic Map (with Contours and Hillshade)

    • hub.arcgis.com
    Updated Jul 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). World Topographic Map (with Contours and Hillshade) [Dataset]. https://hub.arcgis.com/maps/18d32a699af64bfba4e78eba5a4dd705
    Explore at:
    Dataset updated
    Jul 6, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This vector tile layer presents the World Topographic Map (with Contours and Hillshade) style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style, including both vector contour lines and vector hillshade. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. This vector tile layer provides unique capabilities for customization and high-resolution display.This is a multisource vector map style. The root.json style file calls three vector tile services to display all the data in the map. The "esri" source contains all the basemap tiles for this layer. The other two sources are "contours" and "hillshade". Click the View style button on right to see the json. The multisource section of this code is shown below."sources": { "esri": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer" }, "contours": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Contours_v2/VectorTileServer" }, "hillshade": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Hillshade_v2/VectorTileServer" } },This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic (Vector) web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.

  15. a

    ETOPO1 Bathymetry Northwest Atlantic Fisheries Region (NAFO)

    • data-with-cpaws-nl.hub.arcgis.com
    Updated Jan 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canadian Parks and Wilderness Society (2022). ETOPO1 Bathymetry Northwest Atlantic Fisheries Region (NAFO) [Dataset]. https://data-with-cpaws-nl.hub.arcgis.com/maps/etopo1-bathymetry-northwest-atlantic-fisheries-region-nafo
    Explore at:
    Dataset updated
    Jan 30, 2022
    Dataset authored and provided by
    Canadian Parks and Wilderness Society
    Area covered
    Description

    ETOPO1 is a 1 arc-minute global relief model of Earth's surface that integrates land topography and ocean bathymetry. Built from global and regional data sets. It s available in "Ice Surface" (top of Antarctica and Greenland ice sheets) and "Bedrock" (base of the icesheets). Data can be downloaded directly from the source at the NOAA website. The data is available in either grid-registered or cell-registered files in netCDF and geotiff formats. A grid extraction tool is available to download a user selected area. More details can be found in the ETOPO1 Global Relief Model Report, ETOPO1: Procedures, Data Sources and AnalysisThe data is presented using an aesthetic color palette (symbology) created in data processing. The official colormap associated with the ETOPO1 can be found here and an additional source can be found here. Hillshade was also processed and can be found here. Hillshade was processed in ArcGIS Pro 2.8.1 using Raster function "Hillshade", default options were applied with the only modification being a z value of 0.00001792(m), the appropriate z value for 60° Longitude. Hillshade symbology was then set to stretch using standard deviations with a value of 1, with gamma set to 1 (although 4 is the recommended value). Other viewing options include:A web map of Bathymetry for the Newfoundland and Labrador RegionA web map of the ETOPO1 Global Relief Model for the Northwest Atlantic RegionPlease note that this data has been subject to some processing and it is advisable to access and use source data.Please note that additional data options are available from the source and it was not feasible to prepare and present all possible data options.Please refer to the CPAWS Data Record for Elevation and Bathymetry across Newfoundland and Labrador for options. Please note that the ETOPO1 Global Relief Model is a surface that has been interpreted from best available data sources at the time of creation (2008).

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2016). TopoBathy 3D [Dataset]. https://hub-oceanos-osal.hub.arcgis.com/datasets/esri::topobathy-3d/about
Organization logo

TopoBathy 3D

Explore at:
Dataset updated
May 13, 2016
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

The TopoBathy 3D layer provides a global seamless topography (land elevation) and bathymetry (water depths) surface to use as a ground in ArcGIS 3D applications.What can you do with this layer?This layer is meant to be used as a ground in ArcGIS Online Web Scenes, ArcGIS Earth, and ArcGIS Pro to help visualize your maps and data in 3D.How do I use this layer?In the ArcGIS Online Web Scene Viewer:Sign-in with ArcGIS Online accountOn the Designer toolbar, click Add LayersClick Browse layersand choose Living Atlas.Search for TopoBathy 3DAdd TopoBathy 3D (Elevation Layer)The TopoBathy 3D will get added under Ground.Change basemap to OceansOptionally, add any other operational layers to visualize in 3D In ArcGIS Pro:Ensure you are logged in with an ArcGIS Online accountOpen a Global SceneOn the Map tab, click Add Data > Elevation Source LayerUnder Portal, click Living Atlas and search for TopoBathy 3DSelect TopoBathy 3D (Elevation Layer) and click OKThe TopoBathy 3D will get added under GroundOptionally, remove other elevation layers from ground and choose the desired basemap Dataset CoverageTo see the coverage and sources of various datasets comprising this elevation layer, view the World Elevation Coverage Map. Additionally, this layer contains data from Vantor’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

Search
Clear search
Close search
Google apps
Main menu