55 datasets found
  1. f

    SPSS files for experiment

    • figshare.com
    bin
    Updated Jan 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). SPSS files for experiment [Dataset]. http://doi.org/10.23644/uu.11659344.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 19, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis SPSS files used in the paper to analyze the experiment results. The tests we executed in the paper are as follows, in the SPSS syntax:** PreQuestionnaire.sav, leading to Table 2T-TEST GROUPS=form(1 2) /MISSING=ANALYSIS /VARIABLES=grade USLEC UCLEC /CRITERIA=CI(.95).NPAR TESTS /M-W= CDFAM UCFAM USFAM UCHW USHW CDHW BY form(1 2) /MISSING ANALYSIS.** Anova.sav, leading to the decision of analyzing the two case studies independentlyGLM EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre BY Domain Form /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=Domain Form(TUKEY) /PLOT=PROFILE(Domain*Form) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /DESIGN= Domain Form Domain*Form.** DH.sav, leading to Table 3T-TEST GROUPS=Form(1 2) /MISSING=ANALYSIS /VARIABLES=EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre /CRITERIA=CI(.95).** PH.sav, leading to Table 4T-TEST GROUPS=Form(1 2) /MISSING=ANALYSIS /VARIABLES=EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre /CRITERIA=CI(.95).** Preferences.sav, leading to Table 5 and Table 6NPAR TESTS /M-W= UCCM USCM UCCDID USCDID UCRID USRID USSTRUCT UCSTRUCT UCOVER USOVER UCREQ USREQ BY Form(1 2) /MISSING ANALYSIS.EXAMINE VARIABLES=UCCM USCM UCCDID USCDID UCRID USRID USSTRUCT UCSTRUCT UCOVER USOVER UCREQ USREQ BY Form /PLOT HISTOGRAM NPPLOT /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.NPAR TESTS /M-W= UCCM USCM UCCDID USCDID UCRID USRID USSTRUCT UCSTRUCT UCOVER USOVER UCREQ USREQ BY Form(1 2) /STATISTICS=DESCRIPTIVES /MISSING ANALYSIS.GLM EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre BY Domain Form /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=Domain Form(TUKEY) /PLOT=PROFILE(Domain*Form) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /DESIGN= Domain Form Domain*Form.

  2. g

    Statistical Computing: SPSS

    • search.gesis.org
    • dataverse.unc.edu
    • +1more
    Updated Oct 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zimmer, Catherine (2021). Statistical Computing: SPSS [Dataset]. https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-2911631
    Explore at:
    Dataset updated
    Oct 29, 2021
    Dataset provided by
    GESIS search
    UNC Dataverse
    Authors
    Zimmer, Catherine
    License

    https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-2911631https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-2911631

    Description

    Part 1 of the course will offer an introduction to SPSS and teach how to work with data saved in SPSS format. Part 2 will demonstrate how to work with SPSS syntax, how to create your own SPSS data files, and how to convert data in other formats to SPSS. Part 3 will teach how to append and merge SPSS files, demonstrate basic analytical procedures, and show how to work with SPSS graphics.

  3. Z

    Dataset for the Instagram and TikTok problematic use

    • data.niaid.nih.gov
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Limniou, Maria; Hendrikse, Calanthe (2023). Dataset for the Instagram and TikTok problematic use [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8159159
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    University of Liverpool
    Authors
    Limniou, Maria; Hendrikse, Calanthe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset supports research on how engagement with social media (Instagram and TikTok) was related to problematic social media use (PSMU) and mental well-being. There are three different files. The SPSS and Excel spreadsheet files include the same dataset but in a different format. The SPSS output presents the data analysis in regard to the difference between Instagram and TikTok users.

  4. H

    Current Population Survey (CPS)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  5. B

    V-Dem v 12 dataset, all variables, trimmed to 12 countries

    • borealisdata.ca
    Updated Mar 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wally Seccombe (2024). V-Dem v 12 dataset, all variables, trimmed to 12 countries [Dataset]. http://doi.org/10.5683/SP3/988EOU
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 27, 2024
    Dataset provided by
    Borealis
    Authors
    Wally Seccombe
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    From the massive set of V-Dem v 12 variables, we have inserted 27 in the main CPEDB dataset. Here is the entire set, organized in an excel file to match their country/year rows in the main SPSS file. This precise correspondence makes it easy to insert other variables from the V-Dem dataset into the main file where they can be statistically combined with a wide variety of variables from other sources.

  6. r

    Designing engaging academic support: PhD datasets

    • researchdata.edu.au
    Updated May 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bornschlegl Madeleine (2022). Designing engaging academic support: PhD datasets [Dataset]. http://doi.org/10.25903/AQNB-7G25
    Explore at:
    Dataset updated
    May 17, 2022
    Dataset provided by
    James Cook University
    Authors
    Bornschlegl Madeleine
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2020 - Oct 31, 2020
    Description

    Data was collected for a PhD research project. The project investigated factors related to academic help-seeking behaviour in higher education using quantitative and qualitative methods. Quantitative data was collected via an online survey. Qualitative data was collected via semi-structured interviews. These were conducted via video calls.

    It was found that reducing stigma, increasing positive attitudes and subjective norm, ensuring satisfaction, and providing timely and targeted promotion increase engagement with academic support. Universities can use these findings to improve academic support and ultimately student success.

    The data methods are available in the Open Access publications from the Related publications link below.

    The de-identified quantitative dataset is stored as an SPSS file (.sav). The SPSS files have also been exported in MS Excel (.xlxs) and CSV formats with the value labels. These files are available via conditional access i.e. negotiation with the Data Manager. The SPSS variable information and labels (codebook) are saved as a PDF file and can be downloaded and viewed (for context) via the link below.

    The interview recordings (.m4a) and transcripts (MS Word and PDF), SPSS Amos files (.amw) and Nvivo project (.nvp) have been archived in secure storage. Access to these files is restricted.

    Software/equipment used to create/collect the data: Qualtrics, Zoom

    Software/equipment used to manipulate/analyse the data: SPSS, SPSS Amos, NVivo

  7. Z

    Dataset for Instagram influencers and females' consumer behaviour

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    • +1more
    Updated Jan 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Limniou, Maria; Lovatt, Ellen; Graham, Harriet (2024). Dataset for Instagram influencers and females' consumer behaviour [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_10467061
    Explore at:
    Dataset updated
    Jan 7, 2024
    Dataset provided by
    University of Liverpool
    Authors
    Limniou, Maria; Lovatt, Ellen; Graham, Harriet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset supports research on how Instagram Influencers impact female consumer behaviour to purchase products and the role of factors such as envy, scepticism towards advertising, satisfaction with life, social comparison and maternalism on consumer behaviour. There are two different files. The SPSS and CVS spreadsheet files include the same dataset but in a different format.

  8. H

    Infant Health and Development Program, Phase IV Electronic Records,...

    • dataverse.harvard.edu
    Updated Aug 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marie C. McCormick (2017). Infant Health and Development Program, Phase IV Electronic Records, 2000-2016 [Dataset]. http://doi.org/10.7910/DVN/UFXW2X
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 22, 2017
    Dataset provided by
    Harvard Dataverse
    Authors
    Marie C. McCormick
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/UFXW2Xhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/UFXW2X

    Time period covered
    2000 - 2016
    Description

    This dataset represents a group of paper records (a "series") within the Marie C. McCormick papers, 1956-2016 (inclusive), 1968-2009 (bulk), which can be accessed on-site at the Center for the History of Medicine at the Francis A. Countway Library of Medicine in Boston, Massachusetts. The series consists of research administrative and regulatory records, research data, publishing records, and correspondence, generated and compiled by Marie C. McCormick during her tenure as Principal Investigator for Phase IV of the Infant Health and Development Program. Phase IV of the program revisited low-birthweight subjects at 18 years of age (between 2001 and 2004), some of whom had participated in early childhood educational intervention as part of the study. Research during this phase addressed the health, social functioning, mental health, and mental ability of young adult subjects and their siblings; subjects’ family composition, environment, and socio-economic background; and the parenting philosophies and practices of parents or caregivers. More IHDP records may be found in the “Infant Health and Development Program, Phases I-III Records, 1984-2002” and “Infant Health and Development Program, Phase IV Paper Records, 1990-2009” datasets. More publishing records may be found in the “Writings and Publications, 1971-2013 dataverse”. Research administrative records include: Institutional Review Board (IRB) safety plans, confidentiality certificates, and consent forms drafted for various participant categories; site directors’ meeting minutes and agendas; financial and grant funding records; reports; presentations; and administrative correspondence. Research regulatory records consist of: survey instruments and interview schedules; codebooks; and protocols and methodologies. Research data include: coded and analyzed databases and datasets (SAS, SPSS, Microsoft Access, comma-separated value files, tab-delimited files, and spreadsheets); and summarized and analyzed data tables and graphs. Publishing records include manuscript drafts, bibliographies, and correspondence for publications related to IHDP research findings from multiple phases of the program. Correspondence consists of emails and attachments received by McCormick during Phase IV, concerning: research administration (such as research protocols, policies, IRB approval, and grant funding); publishing; and research data results. Email attachments include: manuscript drafts and publishing correspondence; grant funding records; IRB records; and SPSS dataset files. Topics in the subseries include: behavior; academic performance; physical health; nutrition and eating habits; peer and family relationships; household composition and environment; substance abuse and suicidal thoughts; criminal activity; safety and danger; and maternal parenting philosophy and involvement in child’s education and social activities, among other topics. Series also includes collected publications related to the focuses of IHDP research. Data and associated records are accessible onsite at the Center for the History of Medicine per the conditions governing access described below. Conditions Governing Access to Original Collection Materials: The series represented by this dataset includes longitudinal patient information that is restricted for 80 years from the most recently dated records in the “Infant Health and Development Program, Phase IV Paper Records, 1990-2009” series, personnel information that is restricted for 80 years from the date of record creation, and Harvard University and Children’s Hospital Boston institutional records that are restricted for 50 years from the date of record creation. Access to electronic records is also premised on the availability of a computer station, requisite software, and/or the ability of Public Services staff to review and/or print out records of interest in advance of an on-site visit. Researchers should contact Public Services for more information. The Marie C. McCormick papers were processed with grant funding from the Andrew W. Mellon Foundation, as awarded and administered by the Council on Library and Information Resources (CLIR) in 2016. View the Marie C. McCormick Papers finding aid for a full collection inventory of both paper and digital records, and for more information about accessing and using the collection.

  9. H

    Data from: Managers' and physicians’ perception of palm vein technology...

    • datasetcatalog.nlm.nih.gov
    • dataverse.harvard.edu
    • +1more
    Updated Oct 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cerda III, Cruz (2019). Data from: Managers' and physicians’ perception of palm vein technology adoption in the healthcare industry (Preprint) and Medical Identity Theft and Palm Vein Authentication: The Healthcare Manager's Perspective (Doctoral Dissertation) [Dataset]. http://doi.org/10.7910/DVN/RSPAZQ
    Explore at:
    Dataset updated
    Oct 31, 2019
    Authors
    Cerda III, Cruz
    Description

    Data from: Doctoral dissertation; Preprint article entitled: Managers' and physicians’ perception of palm vein technology adoption in the healthcare industry. Formats of the files associated with dataset: CSV; SAV. SPSS setup files can be used to generate native SPSS file formats such as SPSS system files and SPSS portable files. SPSS setup files generally include the following SPSS sections: DATA LIST: Assigns the name, type, decimal specification (if any), and specifies the beginning and ending column locations for each variable in the data file. Users must replace the "physical-filename" with host computer-specific input file specifications. For example, users on Windows platforms should replace "physical-filename" with "C:\06512-0001-Data.txt" for the data file named "06512-0001-Data.txt" located on the root directory "C:". VARIABLE LABELS: Assigns descriptive labels to all variables. Variable labels and variable names may be identical for some variables. VALUE LABELS: Assigns descriptive labels to codes in the data file. Not all variables necessarily have assigned value labels. MISSING VALUES: Declares user-defined missing values. Not all variables in the data file necessarily have user-defined missing values. These values can be treated specially in data transformations, statistical calculations, and case selection. MISSING VALUE RECODE: Sets user-defined numeric missing values to missing as interpreted by the SPSS system. Only variables with user-defined missing values are included in the statements. ABSTRACT: The purpose of the article is to examine the factors that influence the adoption of palm vein technology by considering the healthcare managers’ and physicians’ perception, using the Unified Theory of Acceptance and Use of Technology theoretical foundation. A quantitative approach was used for this study through which an exploratory research design was utilized. A cross-sectional questionnaire was distributed to responders who were managers and physicians in the healthcare industry and who had previous experience with palm vein technology. The perceived factors tested for correlation with adoption were perceived usefulness, complexity, security, peer influence, and relative advantage. A Pearson product-moment correlation coefficient was used to test the correlation between the perceived factors and palm vein technology. The results showed that perceived usefulness, security, and peer influence are important factors for adoption. Study limitations included purposive sampling from a single industry (healthcare) and limited literature was available with regard to managers’ and physicians’ perception of palm vein technology adoption in the healthcare industry. Researchers could focus on an examination of the impact of mediating variables on palm vein technology adoption in future studies. The study offers managers insight into the important factors that need to be considered in adopting palm vein technology. With biometric technology becoming pervasive, the study seeks to provide managers with the insight in managing the adoption of palm vein technology. KEYWORDS: biometrics, human identification, image recognition, palm vein authentication, technology adoption, user acceptance, palm vein technology

  10. S

    Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on...

    • scidb.cn
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Luo (2025). Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on Trust: Evidence from Six Experimental Studies [Dataset]. http://doi.org/10.57760/sciencedb.psych.00565
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Yang Luo
    Description

    This dataset originates from a series of experimental studies titled “Tough on People, Tolerant to AI? Differential Effects of Human vs. AI Unfairness on Trust” The project investigates how individuals respond to unfair behavior (distributive, procedural, and interactional unfairness) enacted by artificial intelligence versus human agents, and how such behavior affects cognitive and affective trust.1 Experiment 1a: The Impact of AI vs. Human Distributive Unfairness on TrustOverview: This dataset comes from an experimental study aimed at examining how individuals respond in terms of cognitive and affective trust when distributive unfairness is enacted by either an artificial intelligence (AI) agent or a human decision-maker. Experiment 1a specifically focuses on the main effect of the “type of decision-maker” on trust.Data Generation and Processing: The data were collected through Credamo, an online survey platform. Initially, 98 responses were gathered from students at a university in China. Additional student participants were recruited via Credamo to supplement the sample. Attention check items were embedded in the questionnaire, and participants who failed were automatically excluded in real-time. Data collection continued until 202 valid responses were obtained. SPSS software was used for data cleaning and analysis.Data Structure and Format: The data file is named “Experiment1a.sav” and is in SPSS format. It contains 28 columns and 202 rows, where each row corresponds to one participant. Columns represent measured variables, including: grouping and randomization variables, one manipulation check item, four items measuring distributive fairness perception, six items on cognitive trust, five items on affective trust, three items for honesty checks, and four demographic variables (gender, age, education, and grade level). The final three columns contain computed means for distributive fairness, cognitive trust, and affective trust.Additional Information: No missing data are present. All variable names are labeled in English abbreviations to facilitate further analysis. The dataset can be directly opened in SPSS or exported to other formats.2 Experiment 1b: The Mediating Role of Perceived Ability and Benevolence (Distributive Unfairness)Overview: This dataset originates from an experimental study designed to replicate the findings of Experiment 1a and further examine the potential mediating role of perceived ability and perceived benevolence.Data Generation and Processing: Participants were recruited via the Credamo online platform. Attention check items were embedded in the survey to ensure data quality. Data were collected using a rolling recruitment method, with invalid responses removed in real time. A total of 228 valid responses were obtained.Data Structure and Format: The dataset is stored in a file named Experiment1b.sav in SPSS format and can be directly opened in SPSS software. It consists of 228 rows and 40 columns. Each row represents one participant’s data record, and each column corresponds to a different measured variable. Specifically, the dataset includes: random assignment and grouping variables; one manipulation check item; four items measuring perceived distributive fairness; six items on perceived ability; five items on perceived benevolence; six items on cognitive trust; five items on affective trust; three items for attention check; and three demographic variables (gender, age, and education). The last five columns contain the computed mean scores for perceived distributive fairness, ability, benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be analyzed directly in SPSS or exported to other formats as needed.3 Experiment 2a: Differential Effects of AI vs. Human Procedural Unfairness on TrustOverview: This dataset originates from an experimental study aimed at examining whether individuals respond differently in terms of cognitive and affective trust when procedural unfairness is enacted by artificial intelligence versus human decision-makers. Experiment 2a focuses on the main effect of the decision agent on trust outcomes.Data Generation and Processing: Participants were recruited via the Credamo online survey platform from two universities located in different regions of China. A total of 227 responses were collected. After excluding those who failed the attention check items, 204 valid responses were retained for analysis. Data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2a.sav in SPSS format and can be directly opened in SPSS software. It contains 204 rows and 30 columns. Each row represents one participant’s response record, while each column corresponds to a specific variable. Variables include: random assignment and grouping; one manipulation check item; seven items measuring perceived procedural fairness; six items on cognitive trust; five items on affective trust; three attention check items; and three demographic variables (gender, age, and education). The final three columns contain computed average scores for procedural fairness, cognitive trust, and affective trust.Additional Notes: The dataset contains no missing values. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be directly analyzed in SPSS or exported to other formats as needed.4 Experiment 2b: Mediating Role of Perceived Ability and Benevolence (Procedural Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 2a and to further examine the potential mediating roles of perceived ability and perceived benevolence in shaping trust responses under procedural unfairness.Data Generation and Processing: Participants were working adults recruited through the Credamo online platform. A rolling data collection strategy was used, where responses failing attention checks were excluded in real time. The final dataset includes 235 valid responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2b.sav, which is in SPSS format and can be directly opened using SPSS software. It contains 235 rows and 43 columns. Each row corresponds to a single participant, and each column represents a specific measured variable. These include: random assignment and group labels; one manipulation check item; seven items measuring procedural fairness; six items for perceived ability; five items for perceived benevolence; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final five columns contain the computed average scores for procedural fairness, perceived ability, perceived benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to support future reuse and secondary analysis. The dataset can be directly analyzed in SPSS and easily converted into other formats if needed.5 Experiment 3a: Effects of AI vs. Human Interactional Unfairness on TrustOverview: This dataset comes from an experimental study that investigates how interactional unfairness, when enacted by either artificial intelligence or human decision-makers, influences individuals’ cognitive and affective trust. Experiment 3a focuses on the main effect of the “decision-maker type” under interactional unfairness conditions.Data Generation and Processing: Participants were college students recruited from two universities in different regions of China through the Credamo survey platform. After excluding responses that failed attention checks, a total of 203 valid cases were retained from an initial pool of 223 responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3a.sav, in SPSS format and compatible with SPSS software. It contains 203 rows and 27 columns. Each row represents a single participant, while each column corresponds to a specific measured variable. These include: random assignment and condition labels; one manipulation check item; four items measuring interactional fairness perception; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final three columns contain computed average scores for interactional fairness, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variable names are provided using standardized English abbreviations to facilitate secondary analysis. The data can be directly analyzed using SPSS and exported to other formats as needed.6 Experiment 3b: The Mediating Role of Perceived Ability and Benevolence (Interactional Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 3a and further examine the potential mediating roles of perceived ability and perceived benevolence under conditions of interactional unfairness.Data Generation and Processing: Participants were working adults recruited via the Credamo platform. Attention check questions were embedded in the survey, and responses that failed these checks were excluded in real time. Data collection proceeded in a rolling manner until a total of 227 valid responses were obtained. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3b.sav, in SPSS format and compatible with SPSS software. It includes 227 rows and

  11. 2019 Farm to School Census v2

    • agdatacommons.nal.usda.gov
    xlsx
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Food and Nutrition Service, Office of Policy Support (2025). 2019 Farm to School Census v2 [Dataset]. http://doi.org/10.15482/USDA.ADC/1523106
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Food and Nutrition Servicehttps://www.fns.usda.gov/
    Authors
    USDA Food and Nutrition Service, Office of Policy Support
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: This version supersedes version 1: https://doi.org/10.15482/USDA.ADC/1522654. In Fall of 2019 the USDA Food and Nutrition Service (FNS) conducted the third Farm to School Census. The 2019 Census was sent via email to 18,832 school food authorities (SFAs) including all public, private, and charter SFAs, as well as residential care institutions, participating in the National School Lunch Program. The questionnaire collected data on local food purchasing, edible school gardens, other farm to school activities and policies, and evidence of economic and nutritional impacts of participating in farm to school activities. A total of 12,634 SFAs completed usable responses to the 2019 Census. Version 2 adds the weight variable, “nrweight”, which is the Non-response weight. Processing methods and equipment used The 2019 Census was administered solely via the web. The study team cleaned the raw data to ensure the data were as correct, complete, and consistent as possible. This process involved examining the data for logical errors, contacting SFAs and consulting official records to update some implausible values, and setting the remaining implausible values to missing. The study team linked the 2019 Census data to information from the National Center of Education Statistics (NCES) Common Core of Data (CCD). Records from the CCD were used to construct a measure of urbanicity, which classifies the area in which schools are located. Study date(s) and duration Data collection occurred from September 9 to December 31, 2019. Questions asked about activities prior to, during and after SY 2018-19. The 2019 Census asked SFAs whether they currently participated in, had ever participated in or planned to participate in any of 30 farm to school activities. An SFA that participated in any of the defined activities in the 2018-19 school year received further questions. Study spatial scale (size of replicates and spatial scale of study area) Respondents to the survey included SFAs from all 50 States as well as American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and Washington, DC. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) No sampling was involved in the collection of this data. Level of subsampling (number and repeat or within-replicate sampling) No sampling was involved in the collection of this data. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains SFA-level responses to the Census questionnaire for SFAs that responded. This file includes information from only SFAs that clicked “Submit” on the questionnaire. (The dataset used to create the 2019 Farm to School Census Report includes additional SFAs that answered enough questions for their response to be considered usable.) In addition, the file contains constructed variables used for analytic purposes. The file does not include weights created to produce national estimates for the 2019 Farm to School Census Report. The dataset identified SFAs, but to protect individual privacy the file does not include any information for the individual who completed the questionnaire. Description of any gaps in the data or other limiting factors See the full 2019 Farm to School Census Report [https://www.fns.usda.gov/cfs/farm-school-census-and-comprehensive-review] for a detailed explanation of the study’s limitations. Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: 2019 Farm to School Codebook with Weights. File Name: Codebook_Update_02SEP21.xlsxResource Description: 2019 Farm to School Codebook with WeightsResource Title: 2019 Farm to School Data with Weights CSV. File Name: census2019_public_use_with_weight.csvResource Description: 2019 Farm to School Data with Weights CSVResource Title: 2019 Farm to School Data with Weights SAS R Stata and SPSS Datasets. File Name: Farm_to_School_Data_AgDataCommons_SAS_SPSS_R_STATA_with_weight.zipResource Description: 2019 Farm to School Data with Weights SAS R Stata and SPSS Datasets

  12. Federal Court Cases: Integrated Data Base, 1970-2000 - Version 6

    • search.gesis.org
    Updated May 22, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Judicial Center (2012). Federal Court Cases: Integrated Data Base, 1970-2000 - Version 6 [Dataset]. http://doi.org/10.3886/ICPSR08429.v6
    Explore at:
    Dataset updated
    May 22, 2012
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    GESIS search
    Authors
    Federal Judicial Center
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de456864https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de456864

    Description

    Abstract (en): The purpose of this data collection is to provide an official public record of the business of the federal courts. The data originate from 94 district and 12 appellate court offices throughout the United States. Information was obtained at two points in the life of a case: filing and termination. The termination data contain information on both filing and terminations, while the pending data contain only filing information. For the appellate and civil data, the unit of analysis is a single case. The unit of analysis for the criminal data is a single defendant. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Performed consistency checks.; Standardized missing values.; Checked for undocumented or out-of-range codes.. All federal court cases, 1970-2000. 2012-05-22 All parts are being moved to restricted access and will be available only using the restricted access procedures.2005-04-29 The codebook files in Parts 57, 94, and 95 have undergone minor edits and been incorporated with their respective datasets. The SAS files in Parts 90, 91, 227, and 229-231 have undergone minor edits and been incorporated with their respective datasets. The SPSS files in Parts 92, 93, 226, and 228 have undergone minor edits and been incorporated with their respective datasets. Parts 15-28, 34-56, 61-66, 70-75, 82-89, 96-105, 107, 108, and 115-121 have had identifying information removed from the public use file and restricted data files that still include that information have been created. These parts have had their SPSS, SAS, and PDF codebook files updated to reflect the change. The data, SPSS, and SAS files for Parts 34-37 have been updated from OSIRIS to LRECL format. The codebook files for Parts 109-113 have been updated. The case counts for Parts 61-66 and 71-75 have been corrected in the study description. The LRECL for Parts 82, 100-102, and 105 have been corrected in the study description.2003-04-03 A codebook was created for Part 105, Civil Pending, 1997. Parts 232-233, SAS and SPSS setup files for Civil Data, 1996-1997, were removed from the collection since the civil data files for those years have corresponding SAS and SPSS setup files.2002-04-25 Criminal data files for Parts 109-113 have all been replaced with updated files. The updated files contain Criminal Terminations and Criminal Pending data in one file for the years 1996-2000. Part 114, originally Criminal Pending 2000, has been removed from the study and the 2000 pending data are now included in Part 113.2001-08-13 The following data files were revised to include plaintiff and defendant information: Appellate Terminations, 2000 (Part 107), Appellate Pending, 2000 (Part 108), Civil Terminations, 1996-2000 (Parts 103, 104, 115-117), and Civil Pending, 2000 (Part 118). The corresponding SAS and SPSS setup files and PDF codebooks have also been edited.2001-04-12 Criminal Terminations (Parts 109-113) data for 1996-2000 and Criminal Pending (Part 114) data for 2000 have been added to the data collection, along with corresponding SAS and SPSS setup files and PDF codebooks.2001-03-26 Appellate Terminations (Part 107) and Appellate Pending (Part 108) data for 2000 have been added to the data collection, along with corresponding SAS and SPSS setup files and PDF codebooks.1997-07-16 The data for 18 of the Criminal Data files were matched to the wrong part numbers and names, and now have been corrected. Funding insitution(s): United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics. (1) Several, but not all, of these record counts include a final blank record. Researchers may want to detect this occurrence and eliminate this record before analysis. (2) In July 1984, a major change in the recording and disposition of an appeal occurred, and several data fields dealing with disposition were restructured or replaced. The new structure more clearly delineates mutually exclusive dispositions. Researchers must exercise care in using these fields for comparisons. (3) In 1992, the Administrative Office of the United States Courts changed the reporting period for statistical data. Up to 1992, the reporting period...

  13. u

    SPSS file of data on handaxes from the sites of Tabun, Khall Amayshan 4, and...

    • rdr.ucl.ac.uk
    tar
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ceri Shipton (2023). SPSS file of data on handaxes from the sites of Tabun, Khall Amayshan 4, and Khabb Musayyib [Dataset]. http://doi.org/10.5522/04/22698625.v1
    Explore at:
    tarAvailable download formats
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    University College London
    Authors
    Ceri Shipton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SPSS file containing variables recorded on handaxes from the later Acheulean sites of Tabun, Khall Amayshan, and Khabb Musayyib in southwest Asia. The variables include weight, surface area, material, blank type, and number of scars.

  14. i

    Household Health Survey 2012-2013, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Organization (CSO) (2017). Household Health Survey 2012-2013, Economic Research Forum (ERF) Harmonization Data - Iraq [Dataset]. https://catalog.ihsn.org/index.php/catalog/6937
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Economic Research Forum
    Central Statistical Organization (CSO)
    Kurdistan Regional Statistics Office (KRSO)
    Time period covered
    2012 - 2013
    Area covered
    Iraq
    Description

    Abstract

    The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.

    ----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:

    Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    The survey has six main objectives. These objectives are:

    1. Provide data for poverty analysis and measurement and monitor, evaluate and update the implementation Poverty Reduction National Strategy issued in 2009.
    2. Provide comprehensive data system to assess household social and economic conditions and prepare the indicators related to the human development.
    3. Provide data that meet the needs and requirements of national accounts.
    4. Provide detailed indicators on consumption expenditure that serve making decision related to production, consumption, export and import.
    5. Provide detailed indicators on the sources of households and individuals income.
    6. Provide data necessary for formulation of a new consumer price index number.

    The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.

    Geographic coverage

    National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    ----> Design:

    Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.

    ----> Sample frame:

    Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.

    ----> Sampling Stages:

    In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    ----> Preparation:

    The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.

    ----> Questionnaire Parts:

    The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job

    Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.

    Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days

    Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.

    Cleaning operations

    ----> Raw Data:

    Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.

    ----> Harmonized Data:

    • The SPSS package is used to harmonize the Iraq Household Socio Economic Survey (IHSES) 2007 with Iraq Household Socio Economic Survey (IHSES) 2012.
    • The harmonization process starts with raw data files received from the Statistical Office.
    • A program is generated for each dataset to create harmonized variables.
    • Data is saved on the household and individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).

  15. n

    Substance Abuse and Mental Health Data Archive

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Substance Abuse and Mental Health Data Archive [Dataset]. http://identifiers.org/RRID:SCR_007002
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database of the nation''s substance abuse and mental health research data providing public use data files, file documentation, and access to restricted-use data files to support a better understanding of this critical area of public health. The goal is to increase the use of the data to most accurately understand and assess substance abuse and mental health problems and the impact of related treatment systems. The data include the U.S. general and special populations, annual series, and designs that produce nationally representative estimates. Some of the data acquired and archived have never before been publicly distributed. Each collection includes survey instruments (when provided), a bibliography of related literature, and related Web site links. All data may be downloaded free of charge in SPSS, SAS, STATA, and ASCII formats and most studies are available for use with the online data analysis system. This system allows users to conduct analyses ranging from cross-tabulation to regression without downloading data or relying on other software. Another feature, Quick Tables, provides the ability to select variables from drop down menus to produce cross-tabulations and graphs that may be customized and cut and pasted into documents. Documentation files, such as codebooks and questionnaires, can be downloaded and viewed online.

  16. g

    CHECK (Cohort Hip & Cohort Knee) data of baseline (T0)

    • datasearch.gesis.org
    • lifesciences.datastations.nl
    Updated Jan 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bijlsma, MD, PhD, Professor J.W.J. (University Medical Center Utrecht); Wesseling, PhD J. (University Medical Center Utrecht) (2020). CHECK (Cohort Hip & Cohort Knee) data of baseline (T0) [Dataset]. http://doi.org/10.17026/dans-xs3-ws3s
    Explore at:
    Dataset updated
    Jan 23, 2020
    Dataset provided by
    DANS (Data Archiving and Networked Services)
    Authors
    Bijlsma, MD, PhD, Professor J.W.J. (University Medical Center Utrecht); Wesseling, PhD J. (University Medical Center Utrecht)
    Description

    The Cohort Hip & Cohort Knee (CHECK) is a population-based observational multicenter cohort study of 1002 individuals with early symptomatic osteoarthritis (OA) of knee and/or hip in the Netherlands. The participants were followed for 10 years. The study evaluated clinical, radiographic and biochemical variables in order to establish the course, prognosis and underlying mechanisms of early symptomatic osteoarthritis. The Dutch Artritis Foundation initiated and funded this inception cohort.

    This dataset covers the data collection of baseline (T0) without the variable 'Subject identification number'. Included is a Kellgren-Lawrence radiographic classification covering T0,T2,T5, T8 and T10. Also X-rays of hips and knees of baseline are available. More information on the variables can be found in the documentation. In the description file you can find an overview of the data belonging to this dataset and more information about the format and kind of view of the X rays.

    The complete data are available via three separate datasets, each containing again the baseline T0 data of this current dataset. All SPSS data files of these three datasets include the variable 'Subject identification number'.

    The X-ray data are not included in the dataset, they are stored outside of EASY. If you wish to use this data, please contact DANS via info@dans.knaw.nl. Or consult the X-ray_data_request.pdf document for more information.

    If you wish to make use of the complete CHECK data, please see the see relations for the other CHECK datasets and for the overview 'Thematic collection: CHECK (Cohort Hip & Cohort Knee)'.

  17. d

    Understanding Society through Secondary Data Analysis: Wave One to Three...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McKay, Steve; Adkins, Michael; Williams, Helen (2023). Understanding Society through Secondary Data Analysis: Wave One to Three Teaching Datasets [Dataset]. http://doi.org/10.7910/DVN/26177
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    McKay, Steve; Adkins, Michael; Williams, Helen
    Description

    This study contains script files to create teaching versions of Understanding Society: Waves 1-3, the new UK household panel survey. Specifically, the user can focus on individual waves, or can create a panel survey dataset for use in teaching undergraduates and postgraduates. Core areas of focus are attitudes to voting and political parties, to the environment, and to ethnicity and migration. Script files are available for SPSS, STATA and R. Individuals wishing to make use of this resource will need to apply separately to the UK data archive for access to the original datasets: http://discover.ukdataservice.ac.uk/catalogue/?sn=6614 &type=Data%20catalogue

  18. d

    Replication Data for: Toddler skills predict moderate-to-late preterm born...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bogicevic, Lilly (2023). Replication Data for: Toddler skills predict moderate-to-late preterm born children’s cognition and behaviour at 6 years of age [Dataset]. http://doi.org/10.7910/DVN/ISJCHW
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bogicevic, Lilly
    Description

    Data package corresponding to 'Toddler skills predict moderate-to-late preterm born children’s cognition and behaviour at 6 years of age'. Files provided include 1) datasets, 2) code (SPSS syntax), and 3) output (SPSS).

  19. m

    SPSS syntax script to create graphs of spinal motion relative to phases of...

    • data.mendeley.com
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jürgen Konradi (2022). SPSS syntax script to create graphs of spinal motion relative to phases of gait [Dataset]. http://doi.org/10.17632/5766pxrwh2.1
    Explore at:
    Dataset updated
    May 4, 2022
    Authors
    Jürgen Konradi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains a SPSS (v23) syntax file (.sps) and the relating graph template (.sgt) that can be used to create anonymized graphs of spinal motion in the transversal plane relative to phases of gait. All sections are commented within the script. The algebraic sign of the pelvis gets corrected. It required correction since the pelvis is in alignment of surface rotation, and in order to be in parallel with the vertebral body’s rotation it has to be reversed. So, if the surface above the spinous process runs to the right, this implies a rotation to left of the vertebral body beneath.

  20. d

    General Household Survey: Time Series Dataset, 1972-2004

    • datamed.org
    Updated Feb 28, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). General Household Survey: Time Series Dataset, 1972-2004 [Dataset]. https://datamed.org/display-item.php?repository=0012&idName=ID&id=56d4b817e4b0e644d312f657
    Explore at:
    Dataset updated
    Feb 28, 2012
    Description

    The General Household Survey (GHS) is a continuous national survey of people living in private households conducted on an annual basis, by the Social Survey Division of the Office for National Statistics (ONS). The main aim of the survey is to collect data on a range of core topics, covering household, family and individual information. This information is used by government departments and other organisations for planning, policy and monitoring purposes, and to present a picture of house holds, family and people in Great Britain. From 2008, the General Household Survey became a module of the Integrated Household Survey (IHS). In recognition, the survey was renamed the General Lifestyle Survey (GLF/GLS). The GHS started in 1971 and has been carried out continuously since then, except for breaks in 1997-1998 when the survey was reviewed, and 1999-2000 when the survey was redeveloped. Following the 1997 review, the survey was relaunched from April 2000 with a different design. The relevant development work and the changes made are fully described in the Living in Britain report for the 2000-2001 survey. Following its review, the GHS was changed to comprise two elements: the continuous survey and extra modules, or 'trailers'. The continuous survey remained unchanged from 2000 to 2004, apart from essential adjustments to take account of, for example, changes in benefits and pensions. The GHS retained its modular structure and this allowed a number of different trailers to be included for each of those years, to a plan agreed by sponsoring government departments. Further changes to the GHS methodology from 2005: From April 1994 to 2005, the GHS was conducted on a financial year basis, with fieldwork spread evenly from April of one year to March the following year. However, in 2005 the survey period reverted to a calendar year and the whole of the annual sample was surveyed in the nine months from April to December 2005. Future surveys will run from January to December each year, hence the title date change to single year from 2005 onwards. Since the 2005 GHS (held under SN 5640) does not cover the January-March quarter, this affects annual estimates for topics which are subject to seasonal variation. To rectify this, where the questions were the same in 2005 as in 2004-2005, the final quarter of the latter survey was added (weighted in the correct proportion) to the nine months of the 2005 survey. Furthermore, in 2005, the European Union (EU) made a legal obligation (EU-SILC) for member states to collect additional statistics on income and living conditions. In addition to this the EU-SILC data cover poverty and social exclusion. These statistics are used to help plan and monitor European social policy by comparing poverty indicators and changes over time across the EU. The EU-SILC requirement has been integrated into the GHS, leading to large-scale changes in the 2005 survey questionnaire. The trailers on 'Views of your Local Area' and 'Dental Health' have been removed. Other changes have been made to many of the standard questionnaire sections, details of which may be found in the GHS 2005 documentation. Further changes to the GLF/GHS methodology from 2008 As noted above, the General Household Survey (GHS) was renamed the General Lifestyle Survey (GLF/GLS) in 2008. The sample design of the GLF/GLS is the same as the GHS before, and the questionnaire remains largely the same. The main change is that the GLF now includes the IHS core questions, which are common to all of the separate modules that together comprise the IHS. Some of these core questions are simpl y questions that were previously asked in the same or a similar format on all of the IHS component surveys (including the GLF/GLS). The core questions cover employment, smoking prevalence, general health, ethnicity, citizenship and national identity. These questions are asked by proxy if an interview is not possible with the selected respondent (that is a member of the household can answer on behalf of other respondents in the household). This is a departure from the GHS which did not ask smoking prevalence and general health questions by proxy, whereas the GLF/GLS does from 2008. For details on other changes to the GLF/GLS questionnaire, please see the GLF/GLS 2008: Special Licence Access documentation held with SN 6414. Currently, the UK Data Archive holds only the SL (and not the EUL) version of the GLF/GLS for 2008. Changes to the drinking section There have been a number of revisions to the methodology that is used to produce the alcohol consumption estimates. In 2006, the average number of units assigned to the different drink types and the assumption around the average size of a wine glass was updated, resulting in significantly increased consumption estimates. In addition to the revised method, a new question about wine glass size was included in the survey in 2008. Respondents were asked whether they have consumed small (125 ml), standard (175 ml) or large (250 ml) glasses of wine. The data from this question are used when calculating the number of units of alcohol consumed by the respondent. It is assumed that a small glass contains 1.5 units, a standard glass contains 2 units and a large glass contains 3 units. (In 2006 and 2007 it was assumed that all respondents drank from a standard 175 ml glass containing 2 units.) The datasets contain the original set of variables based on the original methodology, as well as those based on the revised and (for 2008 onwards) updated methodologies. Further details on these changes are provided in the Guidelines documents held in SN 5804 - GHS 2006; and SN 6414 - GLF/GLS 2008: Special Licence Access. Special Licence GHS/GLF/GLS Special Licence (SL) versions of the GHS/GLF/GLS are available from 1998-1999 onwards. The SL versions include all variables held in the standard 'End User Licence' (EUL) version, plus extra variables covering cigarette codes and descriptions, and some birthdate information for respondents and household members. Prospective SL users will need to complete an extra application form and demonstrate to the data owners exactly why they need access to t he extra variables, in order to get permission to use the SL version. Therefore, most users should order the EUL version of the data. In order to help users choose the correct dataset, 'Special Licence Access' has been added to the dataset titles for the SL versions of the data. A list of all GHS/GLF/GLS studies available from the UK Data Archive may be found on the GHS/GLF/GLS major studies web page. See below for details of SL datasets for the corresponding GHS/GLF/GLS year (1998-1999 onwards only). UK Data Archive data holdings and formats The UK Data Archive GHS/GLF/GLS holdings begin with the 1971 study for EUL data, and from 1998-1999 for SL versions (see above). Users should note that data for the 1971 study are currently only available as ASCII files without accompanying SPSS set-up files. SPSS files for the 1972 study were created by John Simister, and redeposited at the Archive in 2000. Currently, the UK Data Archive holds only the SL versions of the GHS/GLF/GLS for 2007 and 2008. Reformatted Data 1973 to 1982 - Surrey SPSS Files SPSS files have been created by the University of Surrey for all study years from 1973 to 1982 inclusive. These early files were restructured and the case changed from the household to the individual with all of the household information duplicated for each individual. The Surrey SPSS files contain all the original variabl es as well as some extra derived variables (a few variables were omitted from the data files for 1973-76). In 1973 only, the section on leisure was not included in the Surrey SPSS files. This has subsequently been made available, however, and is now held in a separate study, General Household Survey, 1973: Leisure Questions (held under SN 3982). Records for the original GHS 1973-1982 ASCII files have been removed from the UK Data Archive catalogue, but the data are still preserved and available upon request. Users should note that GHS/GLF/GLS data are also available in formats other than SPSS.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
F. (Fabiano) Dalpiaz (2020). SPSS files for experiment [Dataset]. http://doi.org/10.23644/uu.11659344.v1

SPSS files for experiment

Explore at:
binAvailable download formats
Dataset updated
Jan 19, 2020
Dataset provided by
Utrecht University
Authors
F. (Fabiano) Dalpiaz
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Analysis SPSS files used in the paper to analyze the experiment results. The tests we executed in the paper are as follows, in the SPSS syntax:** PreQuestionnaire.sav, leading to Table 2T-TEST GROUPS=form(1 2) /MISSING=ANALYSIS /VARIABLES=grade USLEC UCLEC /CRITERIA=CI(.95).NPAR TESTS /M-W= CDFAM UCFAM USFAM UCHW USHW CDHW BY form(1 2) /MISSING ANALYSIS.** Anova.sav, leading to the decision of analyzing the two case studies independentlyGLM EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre BY Domain Form /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=Domain Form(TUKEY) /PLOT=PROFILE(Domain*Form) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /DESIGN= Domain Form Domain*Form.** DH.sav, leading to Table 3T-TEST GROUPS=Form(1 2) /MISSING=ANALYSIS /VARIABLES=EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre /CRITERIA=CI(.95).** PH.sav, leading to Table 4T-TEST GROUPS=Form(1 2) /MISSING=ANALYSIS /VARIABLES=EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre /CRITERIA=CI(.95).** Preferences.sav, leading to Table 5 and Table 6NPAR TESTS /M-W= UCCM USCM UCCDID USCDID UCRID USRID USSTRUCT UCSTRUCT UCOVER USOVER UCREQ USREQ BY Form(1 2) /MISSING ANALYSIS.EXAMINE VARIABLES=UCCM USCM UCCDID USCDID UCRID USRID USSTRUCT UCSTRUCT UCOVER USOVER UCREQ USREQ BY Form /PLOT HISTOGRAM NPPLOT /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.NPAR TESTS /M-W= UCCM USCM UCCDID USCDID UCRID USRID USSTRUCT UCSTRUCT UCOVER USOVER UCREQ USREQ BY Form(1 2) /STATISTICS=DESCRIPTIVES /MISSING ANALYSIS.GLM EntRec EntPre RelRec RelPre TotRec TotPre AdjRelRec AdjRelPre AdjTotRec AdjTotPre BY Domain Form /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=Domain Form(TUKEY) /PLOT=PROFILE(Domain*Form) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /DESIGN= Domain Form Domain*Form.

Search
Clear search
Close search
Google apps
Main menu