22 datasets found
  1. CBRS Map Panels

    • gis.data.alaska.gov
    • hub.marinecadastre.gov
    • +8more
    Updated Dec 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2016). CBRS Map Panels [Dataset]. https://gis.data.alaska.gov/datasets/fws::cbrs-map-panels
    Explore at:
    Dataset updated
    Dec 16, 2016
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This Coastal Barrier Resources System (CBRS) data set, produced by the U.S. Fish and Wildlife Service (Service), contains areas designated as undeveloped coastal barriers in accordance with the Coastal Barrier Resources Act (CBRA), 16 U.S.C. 3501 et seq., as amended. The boundaries used to create the polygons herein were compiled from the official John H. Chafee Coastal Barrier Resources System CBRS maps, which are accessible at the Service’s Headquarters office or https://www.fws.gov/program/coastal-barrier-resources-act/maps-and-data. These digital polygons are only representations of the CBRS boundaries shown on the official CBRS maps and are not to be considered authoritative. The Service is not responsible for any misuse or misinterpretation of this digital data set, including use of the data to determine eligibility for federal financial assistance such as federal flood insurance. As maps are revised, this data set will be updated with the new boundaries. CBRS boundaries viewed using the CBRS Mapper or the shapefile are subject to misrepresentations beyond the Service’s control, including misalignments of the boundaries with third party base layers and mis-projections of spatial data. The official CBRS map is the controlling document and should be consulted for all official determinations. Official determinations are recommended for all properties that are in close proximity (within 20 feet) of a CBRS boundary. For an official determination of whether or not an area or specific property is located within the CBRS, please follow the procedures found at https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation. For any questions regarding the CBRS, please contact your local Service field office or email CBRA@fws.gov. Contact information for Service field offices can be found at https://www.fws.gov/our-facilities.Data Set Contact: U.S. Fish and Wildlife Service Natural Resource Program Center, GIS Team Lead, richard_easterbrook@fws.gov

  2. Solar Footprints in California

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Solar Footprints in California [Dataset]. https://catalog.data.gov/dataset/solar-footprints-in-california-6251a
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    Area covered
    California
    Description

    Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)

  3. Enhanced Contrast Map

    • esriaustraliahub.com.au
    • share-open-data-njtpa.hub.arcgis.com
    • +7more
    Updated Jun 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Enhanced Contrast Map [Dataset]. https://www.esriaustraliahub.com.au/maps/084291b0ecad4588b8c8853898d72445
    Explore at:
    Dataset updated
    Jun 21, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Enhanced Contrast Map (World Edition) web map provides a detailed vector basemap for the world symbolized using enhanced contrast and a color-vision-deficient-safe palette. It is designed for use as part of a presentation that aims to meet the WCAG (Web Content Accessibility Guidelines) AA standard, and US Government Section 508 compliance. The base layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, and building footprints. The reference layer includes all labels and administrative boundary lines. Label size has been increased where possible, but not to the point where it conceals the map detail. The 'Ubuntu' font is used throughout, to be clear and legible while maintaining some character.This basemap, included in the ArcGIS Living Atlas of the World, uses the Enhanced Contrast Reference and Enhanced Contrast Base vector tile layers.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Working with Enhanced Contrast basemaps to improve accessibility.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.

  4. USGS Historical Topographic Map Explorer

    • data.amerigeoss.org
    • amerigeo.org
    • +2more
    Updated Oct 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USGS Historical Topographic Map Explorer [Dataset]. https://data.amerigeoss.org/dataset/usgs-historical-topographic-map-explorer1
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Description

    The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:

    • Find a location of interest.
    • View the maps.
    • Compare the maps.
    • Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location.
    • Save the maps in an ArcGIS Online web map.

    Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.


    Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.

    Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.

    We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.

  5. Textured Buildings from Footprint by Land Use

    • africageoportal.com
    • hub.arcgis.com
    • +1more
    Updated Jun 24, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Textured Buildings from Footprint by Land Use [Dataset]. https://www.africageoportal.com/content/7b8c9c8e74e24485ad17fafa8754fbe3
    Explore at:
    Dataset updated
    Jun 24, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Buildings are the foundation of any 3D city; they create a realistic visual context for understanding the built environment. This rule can help you quickly create 3D buildings using your existing 2D building footprint polygons. Create buildings for your whole city or specific areas of interest. Use the buildings for context surrounding higher-detail buildings or proposed future developments.Already have existing 3D buildings? Check out the Textured Buildings from Mass by Building Type rule.What you getA Rule Package file named Building_FromFootprint_Textured_ByLandUse.rpk Rule works with a polygon layerGet startedIn ArcGIS Pro Use this rule to create Procedural Symbols, which are 3D symbols drawn on 2D features Create 3D objects (Multipatch layer) for sharing on the webShare on the web via a Scene LayerIn CityEngine:CityEngine File Navigator HelpParametersBuilding Type: Eave_Height: Height from the ground to the eave, units controlled by the Units parameterFloor_Height: Height of each floor, units controlled by the Units parameterLand_Use: Use on the land and type of building, this helps in assigning appropriate building texturesRoof_Form: Style of the building roof (Gable, Hip, Flat, Green)Roof_Height: Height from the eave to the top of the roof, units controlled by the Units parameterDisplay:Color_Override: Setting this to True will allow you to define a specific color using the Override_Color parameter, and will disable photo-texturing.Override_Color: Allows you to specify a building color using the color palette. Note: you must change the Color_Override parameter from False to True for this parameter to take effect.Transparency: Sets the amount of transparency of the feature Units:Units: Controls the measurement units in the rule: Meters | FeetNote: You can hook up the rule parameters to attributes in your data by clicking on the database icon to the right of each rule parameter. The database icon will change to blue when the rule parameter is mapped to an attribute field. The rule will automatically connect when field names match rule parameter names. Use layer files to preserve rule configurations unique to your data.For those who want to know moreThis rule is part of a the 3D Rule Library available in the Living Atlas. Discover more 3D rules to help you perform your work.Learn more about ArcGIS Pro in the Getting to Know ArcGIS Pro lesson

  6. c

    FEMA National Flood Hazard Layer (NFHL)

    • data.cityofrochester.gov
    • hub.arcgis.com
    Updated Oct 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2024). FEMA National Flood Hazard Layer (NFHL) [Dataset]. https://data.cityofrochester.gov/maps/7c2a63ae78b34151b1bd575f7ae76337
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    FEMA provides access to the National Flood Hazards Layer (NFHL) through web mapping services. The maps depict effective flood hazard information and supporting data. The primary flood hazard classification is indicated in the Flood Hazard Zones layer.The NFHL layers include:Flood hazard zones and labelsRiver Miles MarkersCross-sections and coastal transects and their labelsLetter of Map Revision (LOMR) boundaries and case numbersFlood Insurance Rate Map (FIRM) boundaries, labels and effective datesCoastal Barrier Resources System (CBRS) and Otherwise Protected Area (OPA) unitsCommunity boundaries and namesLeveesHydraulic and flood control structuresProfile and coastal transect baselinesLimit of Moderate Wave Action(LiMWA)Not all effective Flood Insurance Rate Maps (FIRM) have GIS data available. To view a list of available county and single-jurisdiction flood study data in GIS format and check the status of the NFHL GIS services, please visit the NFHL Status Page.Preliminary & Pending National Flood Hazard LayersThe Preliminary and Pending NFHL dataset represents the current pre-effective flood data for the country. These layers are updated as new preliminary and pending data becomes available, and data is removed from these layers as it becomes effective.For more information, please visit FEMA's website.To download map panels or GIS Data, go to: NFHL on FEMA GeoPlatform.Preliminary & Pending DataPreliminary data are for review and guidance purposes only. By viewing preliminary data and maps, the user acknowledges that the information provided is preliminary and subject to change. Preliminary data are not final and are presented in this national layer as the best information available at this time. Additionally, preliminary data cannot be used to rate flood insurance policies or enforce the Federal mandatory purchase requirement. FEMA will remove preliminary data once pending data are available.Pending data are for early awareness of upcoming changes to regulatory flood map information. Until the data becomes effective, when it will appear in FEMA's National Flood Hazard Layer (NFHL), the data should not be used to rate flood insurance policies or enforce the Federal mandatory purchase requirement. FEMA will remove pending data once effective data are available.To better understand Preliminary data please see the View Your Community's Preliminary Flood Hazard Data webpage.FEMA GeoPlatformFEMA's GIS flood map services are available through FEMAs GeoPlatform, an ArcGIS Online portal containing a variety of FEMA-related data.To view the NFHL on the FEMA GeoPlatform go to NFHL on FEMA GeoPlatform.To view the Preliminary and Pending national layers on the FEMA Geoplatform go to FEMA's Preliminary & Pending National Flood Hazard Layer.Technical InformationFlood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the NFHL with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy.The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. United States Geological Survey (USGS) imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s FIRM databases. New data are added continually. The NFHL also contains map changes to FIRM data made by LOMRs.The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.Organization & DisplayThe NFHL is organized into many data layers. The layers display information at map scales appropriate for the data. A layer indicating the availability of NFHL data is displayed at map scales smaller than 1:250,000, regional overviews at map scales between 1:250,000 and 1:50,000, and detailed flood hazard maps at map scales of 1:50,000 and larger. The "Scalehint" item in the Capabilities file for the Web Map Service encodes the scale range for a layer.In addition, there are non-NFHL datasets provided in the GIS web services, such as information about the availability of flood data and maps, the national map panel scheme, and point locations for LOMA and LOMR-Fs. The LOMA are positioned less accurately than are the NFHL data.Layers in the public NFHL GIS services:Use the numbers shown below when referencing layers by number.0. NFHL Availability1. LOMRs2. LOMAs3. FIRM Panels4. Base Index5. PLSS6. Toplogical Low Confidence Areas7. River Mile Markers8. Datum Conversion Points9. Coastal Gages10. Gages11. Nodes12. High Water Marks13. Station Start Points14. Cross-Sections15. Coastal Transects16. Base Flood Elevations17. Profile Baselines18. Transect Baselines19. Limit of Moderate Wave Action20. Water Lines21. Coastal Barrier Resources System Area22. Political Jurisdictions23. Levees24. General Structures25. Primary Frontal Dunes26. Hydrologic Reaches27. Flood Hazard Boundaries28. Flood Hazard Zones29. Submittal Information30. Alluvial Fans31. Subbasins32. Water Areas

  7. a

    Stark County FEMA FIRM Panels

    • portal-starkcountyohio.opendata.arcgis.com
    • opendata.starkcountyohio.gov
    • +4more
    Updated Sep 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stark County Ohio (2021). Stark County FEMA FIRM Panels [Dataset]. https://portal-starkcountyohio.opendata.arcgis.com/datasets/stark-county-fema-firm-panels
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset authored and provided by
    Stark County Ohio
    Area covered
    Description

    Hardcopy map panels for the Flood Insurance Rate Map (FIRM) published by the Federal Emergency Management Agency (FEMA) within Stark County, Ohio. These FIRM panels are part of the National Flood Hazard Layer (NFHL). Each panel record corresponds to an individual hardcopy map. These panels serve as an index to obtain flood hazard information for a specific location.The FIRM is the basis for floodplain management, mitigation, and insurance activities for the National Flood Insurance Program (NFIP). Insurance applications include enforcement of the mandatory purchase requirement of the Flood Disaster Protection Act, which requires the purchase of flood insurance by the owners of properties within areas identified as having flood hazards. This layer was downloaded from https://msc.fema.gov/portal/advanceSearch in September, 2021. It was last updated and published on September14, 2018.

  8. c

    Tacoma Equity Index 2020 Layer Package (All Datasets)

    • geohub.cityoftacoma.org
    Updated May 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (2021). Tacoma Equity Index 2020 Layer Package (All Datasets) [Dataset]. https://geohub.cityoftacoma.org/content/1ab1d1ee72e24e04a1e8b8cc4ffa6fdf
    Explore at:
    Dataset updated
    May 21, 2021
    Dataset authored and provided by
    City of Tacoma GIS
    Area covered
    Description

    How did the City create the Equity IndexWorking with Ohio State University's Kirwan Institute of Race and Social Justice, the City complied the Equity/Opportunity Index to help facilitate data-driven decision-making processes and enable leaders to distribute resources better and plan to fund programs and services, minimize inequities and maximize opportunities.The indicators displayed in the Equity/Opportunity Index have been shown to have a direct correlation to equity. For more information, please reference the additional document on the evidence-based research determinant categories. The data is measured granularly by census block group.The list below comprise the Indicators per index: Accessibility Parks & Open SpaceVoter ParticipationHealthy Food Access IndexAverage Road QualityHome Internet AccessTransit Options & AccessVehicle AccessLivabilityTacoma Crime IndexESRI Crime IndexCost-Burdened HouseholdsAverage Life ExpectancyUrban Tree CanopyTacoma Nuisance IndexMedian Home ValueEducationAverage Student Test RateAverage Student Mobility4-Year High School Graduation RatePercent of 25+-Year-Olds with Bachelor's Degree or MoreEconomyPierce County Jobs IndexMedian Household Income200% of the Poverty line or LessUnemployment RateEnvironmental HealthEnvironmental ExposuresNOx- Diesel Emissions (Annual Tons/Km2)Ozone ConcentrationPM2.5 ConcentrationPopulations Near Heavy Traffic RoadwaysToxic Releases from Facilities (RSEI Model)Environmental EffectsLead Risk from Housing (%)Proximity to Hazardous Waste Treatment Storage and Disposal Facilities (TSDFs)Proximity to National Priorities List Facilities (Superfund Sites)Proximity to Risk Management Plan (RMP) FacilitiesWastewater DischargeWhat does Very High or Very Low Equity/Opportunity mean?Very High Equity/Opportunity represents locations that have access to better opportunities to succeed and excel in life. The data indicators would include high-performing schools, a safe environment, access to adequate transportation, safe neighborhoods, and sustainable employment. In contrast, Low Equity/Opportunity areas have more obstacles and barriers within the area. These communities have limited access to institutional or societal investments with limits their quality of life.Why is the North and West End labeled Red?When looking at data related to equity and social justice, we want to be mindful not to reinforce historical representations of low-income or communities of color as bad or negative. To help visualize the areas of high opportunity and call out the need for more equity, we chose to use red. We flipped the gradient to highlight disparities within the community. Besides, we refrained from using green or positive colors with referring to dominant communities (white communities).Can I add more data and indicators to the Equity Index?Yes, by downloading the file and uploading it to ArcGIS, you can add data and indicators to the Index, and you can import the shapefiles into your database. The indicators and standard deviations are available on ArcGIS online.Can I see additional or multiple map layers?Within the left navigation panel, you can aggregate the index layers by determinate social categories; Accessibility, Education, Economy, Livability

  9. SafeGraph Social Distancing (Block Group)

    • covid-hub.gio.georgia.gov
    • prep-response-portal.napsgfoundation.org
    • +1more
    Updated Apr 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). SafeGraph Social Distancing (Block Group) [Dataset]. https://covid-hub.gio.georgia.gov/datasets/684e9dc2d937492fbb35dfd117f1257c
    Explore at:
    Dataset updated
    Apr 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Area covered
    Description

    This layer was deprecated on 12/31The layer will still be publicly available, but no longer update. Information and links on how to access the new updated feature service in ArcGIS Marketplace will be posted here soonSafeGraph is just a data company. That's all we do.Social Distancing MetricsDue to the COVID-19 pandemic, people are currently engaging in social distancing. In order to understand what is actually occurring at a census block group level, SafeGraph is offering a temporary Social Distancing Metrics product. This product is delivered daily (3 days delayed from actual).The data was generated using a panel of GPS pings from anonymous mobile devices. We determine the common nighttime location of each mobile device over a 6 week period to a Geohash-7 granularity (~153m x ~153m). For ease of reference, we call this common nighttime location, the device's "home". We then aggregate the devices by home census block group and provide the metrics set out below for each census block group.To preserve privacy, we apply differential privacy to all of the device count metrics other than the device_count.SchemaColumn NameDescriptionTypeExampleorigin_census_block_groupThe unique 12-digit FIPS code for the Census Block Group. Please note that some CBGs have leading zeros.String131000000000date_range_startStart time for measurement period in ISO 8601 format of YYYY-MM-DDTHH:mm:SS±hh:mm (local time with offset from GMT). The start time will be 12 a.m. of any day.String2020-03-01T00:00:00-06:00date_range_endEnd time for measurement period in ISO 8601 format of YYYY-MM-DDTHH:mm:SS±hh:mm (local time with offset from GMT). The end time will be the following 12 a.m.String2020-03-02T00:00:00-06:00device_countNumber of devices seen in our panel during the date range whose home is in this census_block_group. Home is defined as the common nighttime location for the device over a 6 week period where nighttime is 6 pm - 7 am. Note that we do not include any census_block_groups where the count <5.Integer100distance_traveled_from_homeMedian distance traveled from the geohash-7 of the home by the devices included in the device_count during the time period (excluding any distances of 0). We first find the median for each device and then find the median for all of the devices.Integer200completely_home_device_countOut of the device_count, the number of devices which did not leave the geohash-7 in which their home is located during the time period.Integer40median_home_dwell_timeMedian dwell time at home geohash-7 ("home") in minutes for all devices in the device_count during the time period. For each device, we summed the observed minutes at home across the day (whether or not these were contiguous) to get the total minutes for each device. Then we calculate the median of all these devices.Integer1200part_time_work_behavior_devicesOut of the device_count, the number of devices that spent one period of between 3 and 6 hours at one location other than their geohash-7 home during the period of 8 am - 6 pm in local time. This does not include any device that spent 6 or more hours at a location other than home.Integer10full_time_work_behavior_devicesOut of the device_count, the number of devices that spent greater than 6 hours at a location other than their home geohash-7 during the period of 8 am - 6 pm in local time.Integer0For data definitions and complete documentation visit SafeGraph Developer and Data Scientist Docs.For statistics on the dataset, see SafeGraph Summary Statistics.Data is available as a hosted Feature Service to easily integrate with all ESRI products in the ArcGIS ecosystem.Want More? Want this POI data for use outside of ArcGIS Online? Want POI data for Canada? Want POI building footprints (Geometry)?Want more detailed category information (Core Places)?Want phone numbers or operating hours (Core Places)?Want POI visitor insights & foot-traffic data (Places Patterns)?To see more, preview & download all SafeGraph Places, Patterns, & Geometry data from SafeGraph’s Data Bar.Or drop us a line! Your data needs are our data delights. Contact: support-esri@safegraph.comView Terms of Use

  10. l

    LA County Flood Control District Feature Layer

    • geohub.lacity.org
    • data.lacounty.gov
    • +3more
    Updated Oct 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2020). LA County Flood Control District Feature Layer [Dataset]. https://geohub.lacity.org/datasets/691e20f770b04b9bbb9c4d54f7108bdb
    Explore at:
    Dataset updated
    Oct 7, 2020
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    The Los Angeles County Flood Control District (District) was established in 1915 and encompasses approximately 2,758 square miles. The District operates and maintains one of the most complex systems of flood control and water conservation in the Country. The District’s current infrastructure includes 14 major dams and reservoirs, 483 miles of concrete and soft-bottom channels, 3,380 miles of underground storm drain conduits, 82,275 catch basins, 48 pump stations, 173 debris basins, 181 crib dams, 29 sediment placement sites, 27 spreading grounds, 21 low-flow diversion structures, 3 seawater barrier systems with 290 seawater barrier injection wells, 1 constructed wetland, and 1 mitigation bank area. Employees of the Los Angeles County Public Works (PW) serve as staff for the District. The District is separate from PW and funds of each entity remain in separate accounts. PW pays the District for the use of District equipment, materials and property used for County purposes. The District is empowered to carry out the objectives of the Los Angeles County Flood Control Act of 1915, California Water Code, Appendix, Chapter 28 (the Act). The objectives are to provide for the control and conservation of flood, storm and other wastewater and to protect from damage such as flood or storm waters, the harbors, waterways, public highways and property within the District. These powers are exercised by the County Board of Supervisors (Board), which acts as the governing body of the District. The duties of the Board include approving the District’s budget, determining the District’s tax rates, approving contracts, and determining when to issue bonds authorized by the voters of the District.

  11. w

    Georgia - Solar irradiation and PV power potential maps

    • datacatalog.worldbank.org
    Updated Jan 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    http://globalsolaratlas.info/ (2018). Georgia - Solar irradiation and PV power potential maps [Dataset]. https://datacatalog.worldbank.org/dataset/georgia-solar-irradiation-and-pv-power-potential-maps
    Explore at:
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    http://globalsolaratlas.info/
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Area covered
    Georgia
    Description

    Map with solar irradiation and PV power potential in Georgia. The GIS data (AAIGRID and GEOTIFF) stems from the Global Solar Atlas (http://globalsolaratlas.info). The link also provides a poster size (.tif) and midsize map (.png). The Global Solar Atlas is continuously updated.

    Provided GIS data layers include long-term yearly average of: (1) PVOUT – Photovoltaic power potential [kWh/kWp] (2) GHI – Global horizontal irradiation [kWh/m2] (3) DIF – Diffuse horizontal irradiation [kWh/m2] (4) GTI – Global irradiation for optimally tilted surface [kWh/m2] (5) OPTA – Optimum tilt to maximize yearly yield [°] (6) DNI – Direct normal irradiation [kWh/m2].

  12. a

    Textured Buildings from Footprint by Building Type

    • hub.arcgis.com
    Updated Jun 24, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Textured Buildings from Footprint by Building Type [Dataset]. https://hub.arcgis.com/datasets/dc9ce364e18442debd7cf54ee4439067
    Explore at:
    Dataset updated
    Jun 24, 2016
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Buildings are the foundation of any 3D city; they create a realistic visual context for understanding the built environment. This rule can help you quickly create 3D buildings using your existing 2D building footprint polygons. Create buildings for your whole city or specific areas of interest. Use the buildings for context surrounding higher-detail buildings or proposed future developments. Already have existing 3D buildings? Check out the Textured Buildings from Mass by Building Type rule.What you getA Rule Package file named Building_FromFootprint_Textured_ByBuildingType.rpk Rule works with a polygon layerGet startedIn ArcGIS Pro Use this rule to create Procedural Symbols, which are 3D symbols drawn on 2D features Create 3D objects (Multipatch layer) for sharing on the webShare on the web via a Scene LayerIn CityEngineCityEngine File Navigator HelpParametersBuilding Type: Eave_Height: Height from the ground to the eave, units controlled by the Units parameterFloor_Height: Height of each floor, units controlled by the Units parameterRoof_Form: Style of the building roof (Gable, Hip, Flat, Green)Roof_Height: Height from the eave to the top of the roof, units controlled by the Units parameterType: Use activity within the building, this helps in assigning appropriate building texturesDisplay:Color_Override: Setting this to True will allow you to define a specific color using the Override_Color parameter, and will disable photo-texturing.Override_Color: Allows you to specify a building color using the color palette. Note: you must change the Color_Override parameter from False to True for this parameter to take effect.Transparency: Sets the amount of transparency of the feature Units:Units: Controls the measurement units in the rule: Meters | FeetImportant Note: You can hook up the rule parameters to attributes in your data by clicking on the database icon to the right of each rule parameter. The database icon will change to blue when the rule parameter is mapped to an attribute field. The rule will automatically connect when field names match rule parameter names. Use layer files to preserve rule configurations unique to your data.For those who want to know moreThis rule is part of a the 3D Rule Library available in the Living Atlas. Discover more 3D rules to help you perform your work.Learn more about ArcGIS Pro in the Getting to Know ArcGIS Pro lesson

  13. a

    Solar Footprints in California

    • hub.arcgis.com
    Updated Jan 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2023). Solar Footprints in California [Dataset]. https://hub.arcgis.com/maps/CAEnergy::solar-footprints-in-california
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset authored and provided by
    California Energy Commission
    License

    https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use

    Area covered
    Description

    Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)

  14. National Weather Service Wind Forecast

    • hub.arcgis.com
    • openenergyhub.ornl.gov
    • +3more
    Updated Jun 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). National Weather Service Wind Forecast [Dataset]. https://hub.arcgis.com/maps/33820e818ebc4661b01bcd47e5f2a57e
    Explore at:
    Dataset updated
    Jun 7, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the wind forecast over the next 72 hours across the contiguous United States, in 3 hour increments, including wind direction, wind gust, and sustained wind speed.Zoom in on the Map to refine the detail for a desired area. The Wind Gust is the maximum 3-second wind speed (in mph) forecast to occur within a 2-minute interval within a 3 hour period at a height of 10 meters Above Ground Level (AGL). The Wind Speed is the expected sustained wind speed (in mph) for the indicated 3 hour period at a height of 10 meters AGL. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Wind Speed Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wspd.binWind Gust Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wgust.binWind Direction Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wdir.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.Alternate SymbologyFeature Layer item that uses Vector Marker Symbols to render point arrows, easily altered by user. The color palette uses the Beaufort Scale for Wind Speed. https://www.arcgis.com/home/item.html?id=45cd2d4f5b9a4f299182c518ffa15977 This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  15. a

    CSDCIOP Structure Points

    • maine.hub.arcgis.com
    Updated Feb 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2020). CSDCIOP Structure Points [Dataset]. https://maine.hub.arcgis.com/maps/maine::csdciop-structure-points
    Explore at:
    Dataset updated
    Feb 26, 2020
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    Feature class that compare the elevations between seawall crests (extracted from available LiDAR datasets from 2010 and 2013) with published FEMA Base Flood Elevations (BFEs) from preliminary FEMA DFIRMS (Panels issued in 2018 and 2019) in coastal York and Cumberland counties (up through Willard Beach in South Portland). The dataset included the development of an inventory of coastal armor structures from a range of different datasets. Feature classes include the following:Steps to create the dataset included:Shoreline structures from the most recent NOAA EVI LANDWARD_SHORETYPE feature class were extracted using the boundaries of York and Cumberland counties. This included 1B: Exposed, Solid Man-Made structures, 8B: Sheltered, Solid Man-Made Structures; 6B: Riprap, and 8C: Sheltered Riprap. This resulted in the creation of Cumberland_ESIL_Structures and York_ESIL_Structures. Note that ESIL uses the MHW line as the feature base.Shoreline structures from the work by Rice (2015) were extracted using the York and Cumberland county boundaries. This resulted in the creation of Cumberland_Rice_Structures and York_Rice_Structures.Additional feature classes for structures were created for York and Cumberland county structures that were missed. This was Slovinsky_York_Structures and Slovinsky_Cumberland_Structures. GoogleEarth imagery was inspected while additional structures were being added to the GIS. 2012 York and Cumberland County imagery was used as the basemap, and structures were classified as bulkheads, rip rap, or dunes (if known). Also, whether or not the structure was in contact with the 2015 HAT was noted.MEDEP was consulted to determine which permit data (both PBR and Individual Permit, IP, data) could be used to help determine where shoreline stabilization projects may have been conducted adjacent to or on coastal bluffs. A file was received for IP data and brought into GIS (DEP_Licensing_Points). This is a point file for shoreline stabilization permits under NRPA.Clip GISVIEW.MEDEP.Permit_By_Rule_Locations to the boundaries of the study area and output DEP_PBR_Points.Join GISVIEW.sde>GISVIEW.MEDEP.PBR_ACTIVITY to the DEP_PBR_Points using the PBR_ID Field. Then, export this file as DEP_PBR_Points2. Using the new ACTIVITY_DESC field, select only those activities that relate to shoreline stabilization projects:PBR_ACTIVITY ACTIVITY_DESC02 Act. Adjacent to a Protected Natural Resource04 Maint Repair & Replacement of Structure08 Shoreline StabilizationSelect by Attributes > PBR_ACTIVITY IN (‘02’, ‘04’, ‘08’) select only those activities likely to be related to shoreline stabilization, and export the selected data as a DEP_PBR_Points3. Then delete 1 and 2, and rename this final product as DEP_PBR_Points.Next, visually inspect the Licensing and PBR files using ArcMap 2012, 2013 imagery, along with Google Earth imagery to determine the extents of armoring along the shoreline.Using EVI and Rice data as indicators, manually inspect and digitize sections of the coastline that are armored. Classify the seaward shoreline type (beach, mudflat, channel, dune, etc.) and the armor type (wall or bulkhead). Bring in the HAT line and, using that and visual indicators, identify whether or not the armored sections are in contact with HAT. Use Google Earth at the same time as digitizing in order to help constrain areas. Merge digitized armoring into Cumberland_York_Merged.Bring the preliminary FEMA DFIRM data in and use “intersect” to assign the different flood zones and elevations to the digitized armored sections. This was done first for Cumberland, then for York Counties. Delete ancillary attributes, as needed. Resulting layer is Cumberland_Structure_FloodZones and York_Structure_FloodZones.Go to NOAA Digital Coast Data Layers and download newest LiDAR data for York and Cumberland county beach, dune, and just inland areas. This includes 2006 and newer topobathy data available from 2010 (entire coast), and selected areas from 2013 and 2014 (Wells, Scarborough, Kennebunk).Mosaic the 2006, 2010, 2013 and 2014 data (with 2013 and 2014 being the first dataset laying on top of the 2010 data) Mosaic this dataset into the sacobaydem_ftNAVD raster (this is from the MEGIS bare-earth model). This will cover almost all of the study area except for armor along several areas in York. Resulting in LidAR206_2010_2013_Mosaic.tif.Using the LiDAR data as a proxy, create a “seaward crest” line feature class which follows along the coast and extracts the approximate highest point (cliff, bank, dune) along the shoreline. This will be used to extract LiDAR data and compare with preliminary flood zone information. The line is called Dune_Crest.Using an added tool Points Along Line, create points at 5 m spacing along each of the armored shoreline feature lines and the dune crest lines. Call the outputs PointsonLines and PointsonDunes.Using Spatial Analyst, Extract LIDAR elevations to the points using the 2006_2010_2013 Mosaic first. Call this LidarPointsonLines1. Select those points which have NULL values, export as this LiDARPointsonLines2. Then rerun Extract Values to Points using just the selected data and the state MEGIS DEM. Convert RASTERVALU to feet by multiplying by 3.2808 (and rename as Elev_ft). Select by Attributes, find all NULL values, and in an edit session, delete them from LiDARPointsonLines. Then, merge the 2 datasets and call it LidarPointsonLines. Do the same above with dune lines and create LidarPointsonDunes.Next, use the Cumberland and York flood zone layers to intersect the points with the appropriate flood zone data. Create ….CumbFIRM and …YorkFIRM files for the dunes and lines.Select those points from the Dunes feature class that are within the X zone – these will NOT have an associated BFE for comparison with the Lidar data. Export the Dune Points as Cumberland_York_Dunes_XZone. Run NEAR and use the merged flood zone feature class (with only V, AE, and AO zones selected). Then, join the flood zone data to the feature class using FID (from the feature class) and OBJECTID (from the flood zone feature class). Export as Cumberland_York_Dunes_XZone_Flood. Delete ancillary columns of data, leaving the original FLD_ZONE (X), Elev_ft, NEAR_DIST (distance, in m, to the nearest flood zone), FLD_ZONE_1 (the near flood zone), and the STATIC_BFE_1 (the nearest static BFE).Do the same as above, except with the Structures file (Cumberland_York_Structures_Lidar_DFIRM_Merged), but also select those features that are within the X zone and the OPEN WATER. Export the points as Cumberland_York_Structures_XZone. Again, run the NEAR using the merged flood zone and only AE, VE, and AO zones selected. Export the file as Cumberland_York_Structures_XZone_Flood.Merge the above feature classes with the original feature classes. Add a field BFE_ELEV_COMPARE. Select all those features whose attributes have a VE or AE flood zone and use field calculator to calculate the difference between the Elev_ft and the BFE (subtracting the STATIC_BFE from Elev_ft). Positive values mean the maximum wall value is higher than the BFE, while negative values mean the max is below the BFE. Then, select the remaining values with switch selection. Calculate the same value but use the NEAR_STATIC_BFE value instead. Select by Attributes>FLD_ZONE=AO, and use the DEPTH value to enter into the above created fields as negative values. Delete ancilary attribute fields, leaving those listed in the _FINAL feature classes described above the process steps section.

  16. a

    MILLER VEG DISTURBANCE

    • mapdirect-fdep.opendata.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Apr 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). MILLER VEG DISTURBANCE [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/nps::miller-veg-disturbance
    Explore at:
    Dataset updated
    Apr 5, 2025
    Dataset authored and provided by
    National Park Service
    Area covered
    Description

    This is a vector polygon file showing the historic range forest types at Great Smoky Mountains National Park. The data was collected from a historic map drawn by Frank Miller, Assistant Forester, in 1938. The map was scanned using a Vidar color scanner and the digital images were brought into ArcMap. The map was originally divided into 4 separate panels, thus there were 4 separate image files. Each image was Georectified, Clipped and then the Mosaic tool was employed to create one large map image. Two feature classes, one a point feature class and the other a polyline feature class, were then created. The polyline class was used to digitize the boundary of each area of vegetation and a point containing the attributes of each area was placed within. After digitizing, the polyline layer was converted to a polygon feature class and the attribute table from the point layer was joined to the corresponding polygon within the feature class.The corresponding Integration of Resource Management Applications (IRMA) NPS Data Store reference is Great Smoky Mountains National Park Miller Vegetation Map.

  17. a

    CSDCIOP Dune Crest Points

    • maine.hub.arcgis.com
    Updated Feb 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2020). CSDCIOP Dune Crest Points [Dataset]. https://maine.hub.arcgis.com/maps/csdciop-dune-crest-points
    Explore at:
    Dataset updated
    Feb 26, 2020
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    Feature class that compares the elevations between sand dune crests (extracted from available LiDAR datasets from 2010 and 2013) with published FEMA Base Flood Elevations (BFEs) from preliminary FEMA DFIRMS (Panels issued in 2018 and 2019) in coastal York and Cumberland counties (up through Willard Beach in South Portland). Steps to create the dataset included:Shoreline structures from the most recent NOAA EVI LANDWARD_SHORETYPE feature class were extracted using the boundaries of York and Cumberland counties. This included 1B: Exposed, Solid Man-Made structures, 8B: Sheltered, Solid Man-Made Structures; 6B: Riprap, and 8C: Sheltered Riprap. This resulted in the creation of Cumberland_ESIL_Structures and York_ESIL_Structures. Note that ESIL uses the MHW line as the feature base.Shoreline structures from the work by Rice (2015) were extracted using the York and Cumberland county boundaries. This resulted in the creation of Cumberland_Rice_Structures and York_Rice_Structures.Additional feature classes for structures were created for York and Cumberland county structures that were missed. This was Slovinsky_York_Structures and Slovinsky_Cumberland_Structures. GoogleEarth imagery was inspected while additional structures were being added to the GIS. 2012 York and Cumberland County imagery was used as the basemap, and structures were classified as bulkheads, rip rap, or dunes (if known). Also, whether or not the structure was in contact with the 2015 HAT was noted.MEDEP was consulted to determine which permit data (both PBR and Individual Permit, IP, data) could be used to help determine where shoreline stabilization projects may have been conducted adjacent to or on coastal bluffs. A file was received for IP data and brought into GIS (DEP_Licensing_Points). This is a point file for shoreline stabilization permits under NRPA.Clip GISVIEW.MEDEP.Permit_By_Rule_Locations to the boundaries of the study area and output DEP_PBR_Points.Join GISVIEW.sde>GISVIEW.MEDEP.PBR_ACTIVITY to the DEP_PBR_Points using the PBR_ID Field. Then, export this file as DEP_PBR_Points2. Using the new ACTIVITY_DESC field, select only those activities that relate to shoreline stabilization projects:PBR_ACTIVITY ACTIVITY_DESC02 Act. Adjacent to a Protected Natural Resource04 Maint Repair & Replacement of Structure08 Shoreline StabilizationSelect by Attributes > PBR_ACTIVITY IN (‘02’, ‘04’, ‘08’) select only those activities likely to be related to shoreline stabilization, and export the selected data as a DEP_PBR_Points3. Then delete 1 and 2, and rename this final product as DEP_PBR_Points.Next, visually inspect the Licensing and PBR files using ArcMap 2012, 2013 imagery, along with Google Earth imagery to determine the extents of armoring along the shoreline.Using EVI and Rice data as indicators, manually inspect and digitize sections of the coastline that are armored. Classify the seaward shoreline type (beach, mudflat, channel, dune, etc.) and the armor type (wall or bulkhead). Bring in the HAT line and, using that and visual indicators, identify whether or not the armored sections are in contact with HAT. Use Google Earth at the same time as digitizing in order to help constrain areas. Merge digitized armoring into Cumberland_York_Merged.Bring the preliminary FEMA DFIRM data in and use “intersect” to assign the different flood zones and elevations to the digitized armored sections. This was done first for Cumberland, then for York Counties. Delete ancillary attributes, as needed. Resulting layer is Cumberland_Structure_FloodZones and York_Structure_FloodZones.Go to NOAA Digital Coast Data Layers and download newest LiDAR data for York and Cumberland county beach, dune, and just inland areas. This includes 2006 and newer topobathy data available from 2010 (entire coast), and selected areas from 2013 and 2014 (Wells, Scarborough, Kennebunk).Mosaic the 2006, 2010, 2013 and 2014 data (with 2013 and 2014 being the first dataset laying on top of the 2010 data) Mosaic this dataset into the sacobaydem_ftNAVD raster (this is from the MEGIS bare-earth model). This will cover almost all of the study area except for armor along several areas in York. Resulting in LidAR206_2010_2013_Mosaic.tif.Using the LiDAR data as a proxy, create a “seaward crest” line feature class which follows along the coast and extracts the approximate highest point (cliff, bank, dune) along the shoreline. This will be used to extract LiDAR data and compare with preliminary flood zone information. The line is called Dune_Crest.Using an added tool Points Along Line, create points at 5 m spacing along each of the armored shoreline feature lines and the dune crest lines. Call the outputs PointsonLines and PointsonDunes.Using Spatial Analyst, Extract LIDAR elevations to the points using the 2006_2010_2013 Mosaic first. Call this LidarPointsonLines1. Select those points which have NULL values, export as this LiDARPointsonLines2. Then rerun Extract Values to Points using just the selected data and the state MEGIS DEM. Convert RASTERVALU to feet by multiplying by 3.2808 (and rename as Elev_ft). Select by Attributes, find all NULL values, and in an edit session, delete them from LiDARPointsonLines. Then, merge the 2 datasets and call it LidarPointsonLines. Do the same above with dune lines and create LidarPointsonDunes.Next, use the Cumberland and York flood zone layers to intersect the points with the appropriate flood zone data. Create ….CumbFIRM and …YorkFIRM files for the dunes and lines.Select those points from the Dunes feature class that are within the X zone – these will NOT have an associated BFE for comparison with the Lidar data. Export the Dune Points as Cumberland_York_Dunes_XZone. Run NEAR and use the merged flood zone feature class (with only V, AE, and AO zones selected). Then, join the flood zone data to the feature class using FID (from the feature class) and OBJECTID (from the flood zone feature class). Export as Cumberland_York_Dunes_XZone_Flood. Delete ancillary columns of data, leaving the original FLD_ZONE (X), Elev_ft, NEAR_DIST (distance, in m, to the nearest flood zone), FLD_ZONE_1 (the near flood zone), and the STATIC_BFE_1 (the nearest static BFE).Do the same as above, except with the Structures file (Cumberland_York_Structures_Lidar_DFIRM_Merged), but also select those features that are within the X zone and the OPEN WATER. Export the points as Cumberland_York_Structures_XZone. Again, run the NEAR using the merged flood zone and only AE, VE, and AO zones selected. Export the file as Cumberland_York_Structures_XZone_Flood.Merge the above feature classes with the original feature classes. Add a field BFE_ELEV_COMPARE. Select all those features whose attributes have a VE or AE flood zone and use field calculator to calculate the difference between the Elev_ft and the BFE (subtracting the STATIC_BFE from Elev_ft). Positive values mean the maximum wall value is higher than the BFE, while negative values mean the max is below the BFE. Then, select the remaining values with switch selection. Calculate the same value but use the NEAR_STATIC_BFE value instead. Select by Attributes>FLD_ZONE=AO, and use the DEPTH value to enter into the above created fields as negative values. Delete ancilary attribute fields, leaving those listed in the _FINAL feature classes described above the process steps section.

  18. a

    Operations-Layer Package

    • the-preplan-project-napsg.hub.arcgis.com
    Updated Jul 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2023). Operations-Layer Package [Dataset]. https://the-preplan-project-napsg.hub.arcgis.com/datasets/operations-layer-package
    Explore at:
    Dataset updated
    Jul 23, 2023
    Dataset authored and provided by
    NAPSG Foundation
    Area covered
    Description

    Even though there are a lot of sources of data that can help with a departments pre-incident planning efforts, there still is a need for firefighters to go and conduct pre-incident surveys. However with a lot of the leg work complete in developing the foundation of a preplan, the focus can be on the operation, access, and hazard information that is an important part of a preplan. A part of the preplanning process is identifying locations that firefighters are likely to operate. Operational features are locations that are used to fix, access, shutoff, or indicate something useful for responders. This includes • Key access location such as stairwell and main doorways ○ Some features map be co located at these areas such as area of refuge, intercom, standpipe discharge • Fire suppression features such as fire department connections and sprinkler valves • Utility shutoff such as electrical switches, natural gas shutoff, or water shutoff • Control panels such as fire alarm control panels, building intercom, HVAC or air management control panels • Key box whether it is stand alone or attached to existing This feature can also include locations with a bias toward emergency operation such as a stairwell with an area of refuge, standpipe discharge, and sprinkler control valve

  19. a

    Water Electrical

    • openmaps-waimakariri.hub.arcgis.com
    Updated Nov 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waimakariri District Council (2022). Water Electrical [Dataset]. https://openmaps-waimakariri.hub.arcgis.com/datasets/water-electrical
    Explore at:
    Dataset updated
    Nov 3, 2022
    Dataset authored and provided by
    Waimakariri District Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    While the Waimakariri District Council has taken all reasonable care in providing correct information, all information should be considered as being illustrative and indicative only. Your use of this information is entirely at your own risk. You should independently verify the accuracy of any information before taking any action in reliance upon it.If you are planning on undertaking any excavation work, please request service plans via beforeUdig to ensure you receive all the required information.Read full disclaimer here.A full description is available in the Metadata and 3 Waters Asset Information Metadata Standard.AbstractThis dataset displays water supply electrical assets within the Waimakariri District (WDC) area. This data is collected to support the maintenance and management of WDC's water supply network. This layer includes fields that classify, e.g., locality, power rating, input voltage etc.An Electrical asset, in general terms, represents a group of asset types that can be categorised by the following term – ‘Any electrical network component not covered by another asset group’.Electrical assets can be used for a variety of purposes including:- Cooling or heating network components- Powering pumping stations, treatment plants or control systemsElectrical asset types include air conditioner, control panel, generator, generator inlet, power cable, signal cable, pump junction box, soft starter, switchboard, transformer, treatment room heater, ultraviolet disinfection unit, ventilation fan, variable speed drive, UPS/batteries and control cabinet.Please refer to the 3 Waters Asset Information Metadata Standard Data Standard for further information.Update FrequencyDailyPoint of ContactWaimakariri District CouncilLineageData has been compiled from a number of sources and its accuracy may vary (e.g. Field Verification, Deposited Plans, AsBuilt plans and forms, sketches, aerial photo, Google Street View). Attribute information is stored in Waimakariri District Council's Asset Management System. This is joined to a spatial dataset containing the location of each asset and published as a GIS feature layer for use within WDC GIS applications, Before U Dig, and open data portal. There may be delays before data is updated to reflect changes in an area.

  20. Chart Viewer

    • anla-esp-esri-co.hub.arcgis.com
    Updated Sep 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2021). Chart Viewer [Dataset]. https://anla-esp-esri-co.hub.arcgis.com/datasets/be4582b38d764de0a970b986c824acde
    Explore at:
    Dataset updated
    Sep 21, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Chart Viewer allows app viewers to explore your map beside charts related to your data. App authors can display multiple data-based graphics configured in Map Viewer to compliment information in the map. Up to ten charts can be included in the app and each can be viewed alongside your map or side by side with other charts for comparison.Examples:Present a bar chart representing average property value by county for a given areaCompare charts based on multiple population statistics in your datasetDisplay an interactive scatter plot based on two values in your dataset along with an essential set of map exploration toolsData RequirementsThis app requires a map with at least one chart configured. For more information, see the Charts help topic.Key App CapabilitiesMultiple layout options - Choose to display your charts stacked with the map or side by side with the mapManage charts - Reorder, rename, or turn off and on charts in the appMultiselect chart - Compare two charts in the panel at the same timeBookmarks - Enable bookmarks configured in the Map Viewer to include a collection of preset extentsHome, Zoom Controls, Legend, Layer List, SearchSupportabilityThis web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Fish & Wildlife Service (2016). CBRS Map Panels [Dataset]. https://gis.data.alaska.gov/datasets/fws::cbrs-map-panels
Organization logo

CBRS Map Panels

Explore at:
Dataset updated
Dec 16, 2016
Dataset provided by
U.S. Fish and Wildlife Servicehttp://www.fws.gov/
Authors
U.S. Fish & Wildlife Service
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Area covered
Description

This Coastal Barrier Resources System (CBRS) data set, produced by the U.S. Fish and Wildlife Service (Service), contains areas designated as undeveloped coastal barriers in accordance with the Coastal Barrier Resources Act (CBRA), 16 U.S.C. 3501 et seq., as amended. The boundaries used to create the polygons herein were compiled from the official John H. Chafee Coastal Barrier Resources System CBRS maps, which are accessible at the Service’s Headquarters office or https://www.fws.gov/program/coastal-barrier-resources-act/maps-and-data. These digital polygons are only representations of the CBRS boundaries shown on the official CBRS maps and are not to be considered authoritative. The Service is not responsible for any misuse or misinterpretation of this digital data set, including use of the data to determine eligibility for federal financial assistance such as federal flood insurance. As maps are revised, this data set will be updated with the new boundaries. CBRS boundaries viewed using the CBRS Mapper or the shapefile are subject to misrepresentations beyond the Service’s control, including misalignments of the boundaries with third party base layers and mis-projections of spatial data. The official CBRS map is the controlling document and should be consulted for all official determinations. Official determinations are recommended for all properties that are in close proximity (within 20 feet) of a CBRS boundary. For an official determination of whether or not an area or specific property is located within the CBRS, please follow the procedures found at https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation. For any questions regarding the CBRS, please contact your local Service field office or email CBRA@fws.gov. Contact information for Service field offices can be found at https://www.fws.gov/our-facilities.Data Set Contact: U.S. Fish and Wildlife Service Natural Resource Program Center, GIS Team Lead, richard_easterbrook@fws.gov

Search
Clear search
Close search
Google apps
Main menu