Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
his project involves the creation of an interactive Excel dashboard for SwiftAuto Traders to analyze and visualize car sales data. The dashboard includes several visualizations to provide insights into car sales, profits, and performance across different models and manufacturers. The project makes use of various charts and slicers in Excel for the analysis.
Objective: The primary goal of this project is to showcase the ability to manipulate and visualize car sales data effectively using Excel. The dashboard aims to provide:
Profit and Sales Analysis for each dealer. Sales Performance across various car models and manufacturers. Resale Value Analysis comparing prices and resale values. Insights into Retention Percentage by car models. Files in this Project: Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx: The original dataset used to create the dashboard. dashboards.xlsx: The final Excel file that contains the complete dashboard with interactive charts and slicers. Key Visualizations: Average Price and Year Resale Value: A bar chart comparing the average price and resale value of various car models. Power Performance Factor: A column chart displaying the performance across different car models. Unit Sales by Model: A donut chart showcasing unit sales by car model. Retention Percentage: A pie chart illustrating customer retention by car model. Tools Used: Microsoft Excel for creating and organizing the visualizations and dashboard. Excel Slicers for interactive filtering. Charts: Bar charts, pie charts, column charts, and sunburst charts. How to Use: Download the Dataset: You can download the Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx file from Kaggle and follow the steps to create a similar dashboard in Excel. Open the Dashboard: The dashboards.xlsx file contains the final version of the dashboard. Simply open it in Excel and start exploring the interactive charts and slicers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterThis interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.
The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.
So, basically these are the four sheets mentioned above with different tasks.
However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.
A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.
Questions & Answers
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?
And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a dynamic Excel model for prioritizing projects based on Feasibility, Impact, and Size.
It visualizes project data on a Bubble Chart that updates automatically when new projects are added.
Use this tool to make data-driven prioritization decisions by identifying which projects are most feasible and high-impact.
Organizations often struggle to compare multiple initiatives objectively.
This matrix helps teams quickly determine which projects to pursue first by visualizing:
Example (partial data):
| Criteria | Project 1 | Project 2 | Project 3 | Project 4 | Project 5 | Project 6 | Project 7 | Project 8 |
|---|---|---|---|---|---|---|---|---|
| Feasibility | 7 | 9 | 5 | 2 | 7 | 2 | 6 | 8 |
| Impact | 8 | 4 | 4 | 6 | 6 | 7 | 7 | 7 |
| Size | 10 | 2 | 3 | 7 | 4 | 4 | 3 | 1 |
| Quadrant | Description | Action |
|---|---|---|
| High Feasibility / High Impact | Quick wins | Top Priority |
| High Impact / Low Feasibility | Valuable but risky | Plan carefully |
| Low Impact / High Feasibility | Easy but minor value | Optional |
| Low Impact / Low Feasibility | Low return | Defer or drop |
Project_Priority_Matrix.xlsx. You can use this for:
- Portfolio management
- Product or feature prioritization
- Strategy planning workshops
Project_Priority_Matrix.xlsxFree for personal and organizational use.
Attribution is appreciated if you share or adapt this file.
Author: [Asjad]
Contact: [m.asjad2000@gmail.com]
Compatible With: Microsoft Excel 2019+ / Office 365
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global graph database for security market size reached USD 2.1 billion in 2024. This dynamic sector is expanding rapidly, supported by a robust compound annual growth rate (CAGR) of 22.7% from 2025 to 2033. By the end of the forecast period in 2033, the market is expected to attain a value of USD 16.3 billion. This impressive trajectory is primarily driven by escalating cyber threats, the proliferation of complex digital ecosystems, and the increasing demand for advanced analytics in security operations.
One of the most significant growth factors for the graph database for security market is the exponential rise in cyberattacks and sophisticated threat vectors targeting organizations worldwide. As digital transformation accelerates across industries, enterprises are generating vast volumes of interconnected data, creating new vulnerabilities and attack surfaces. Traditional relational databases struggle to effectively manage and analyze such complex, highly connected datasets. In contrast, graph databases excel at mapping relationships and patterns, making them invaluable for identifying suspicious activities, tracking threat actors, and correlating diverse security events in real-time. The ability to visualize and traverse connections at scale empowers security teams to detect advanced persistent threats, insider attacks, and fraud schemes that would otherwise go unnoticed.
Another pivotal driver is the increasing regulatory pressure and compliance requirements faced by organizations in sectors such as BFSI, healthcare, and government. Regulations including GDPR, HIPAA, and PCI DSS demand robust data protection, rigorous access controls, and comprehensive audit trails. Graph database technologies enable organizations to model complex access hierarchies, monitor user behaviors, and ensure compliance with evolving legal frameworks. By providing granular visibility into user roles, permissions, and interactions, these solutions facilitate proactive risk management and timely incident response. The integration of artificial intelligence and machine learning with graph databases further enhances predictive analytics and automation in security operations, reducing the burden on human analysts and improving overall resilience.
The rapid adoption of cloud computing, IoT devices, and remote work models is reshaping the security landscape and fueling demand for graph database solutions. As organizations migrate workloads to multi-cloud and hybrid environments, the complexity of managing identities, access rights, and network flows increases exponentially. Graph databases provide a unified view of assets, users, and their interdependencies, enabling security teams to identify misconfigurations, detect lateral movement, and enforce zero-trust principles. The scalability and flexibility of cloud-based graph database offerings are particularly attractive to enterprises seeking to modernize their security infrastructure without incurring significant capital expenditures. Strategic investments in research and development, partnerships with cybersecurity vendors, and the emergence of managed graph database services are further propelling market growth.
Regionally, North America dominates the graph database for security market, accounting for the largest revenue share in 2024. This leadership is attributed to the presence of major technology providers, high cybersecurity spending, and early adoption of advanced analytics solutions. Europe follows closely, driven by stringent data privacy regulations and a strong focus on digital sovereignty. The Asia Pacific region is witnessing the fastest growth, supported by rapid digitalization, government initiatives, and increased awareness of cybersecurity risks. Latin America and the Middle East & Africa are emerging as promising markets, although challenges such as limited infrastructure and skills gaps persist. Overall, regional dynamics are shaped by varying regulatory landscapes, industry maturity, and investment levels in digital security.
The graph database for security market is segmented by component into software and services, each playing a critical role in the adoption and effectiveness of graph database solutions. The software segment comprises graph database management systems, visualization tools, analytics engines, and integration platforms. Thes
Facebook
TwitterThe Ontario government, generates and maintains thousands of datasets. Since 2012, we have shared data with Ontarians via a data catalogue. Open data is data that is shared with the public. Click here to learn more about open data and why Ontario releases it. Ontario’s Open Data Directive states that all data must be open, unless there is good reason for it to remain confidential. Ontario’s Chief Digital and Data Officer also has the authority to make certain datasets available publicly. Datasets listed in the catalogue that are not open will have one of the following labels: If you want to use data you find in the catalogue, that data must have a licence – a set of rules that describes how you can use it. A licence: Most of the data available in the catalogue is released under Ontario’s Open Government Licence. However, each dataset may be shared with the public under other kinds of licences or no licence at all. If a dataset doesn’t have a licence, you don’t have the right to use the data. If you have questions about how you can use a specific dataset, please contact us. The Ontario Data Catalogue endeavors to publish open data in a machine readable format. For machine readable datasets, you can simply retrieve the file you need using the file URL. The Ontario Data Catalogue is built on CKAN, which means the catalogue has the following features you can use when building applications. APIs (Application programming interfaces) let software applications communicate directly with each other. If you are using the catalogue in a software application, you might want to extract data from the catalogue through the catalogue API. Note: All Datastore API requests to the Ontario Data Catalogue must be made server-side. The catalogue's collection of dataset metadata (and dataset files) is searchable through the CKAN API. The Ontario Data Catalogue has more than just CKAN's documented search fields. You can also search these custom fields. You can also use the CKAN API to retrieve metadata about a particular dataset and check for updated files. Read the complete documentation for CKAN's API. Some of the open data in the Ontario Data Catalogue is available through the Datastore API. You can also search and access the machine-readable open data that is available in the catalogue. How to use the API feature: Read the complete documentation for CKAN's Datastore API. The Ontario Data Catalogue contains a record for each dataset that the Government of Ontario possesses. Some of these datasets will be available to you as open data. Others will not be available to you. This is because the Government of Ontario is unable to share data that would break the law or put someone's safety at risk. You can search for a dataset with a word that might describe a dataset or topic. Use words like “taxes” or “hospital locations” to discover what datasets the catalogue contains. You can search for a dataset from 3 spots on the catalogue: the homepage, the dataset search page, or the menu bar available across the catalogue. On the dataset search page, you can also filter your search results. You can select filters on the left hand side of the page to limit your search for datasets with your favourite file format, datasets that are updated weekly, datasets released by a particular organization, or datasets that are released under a specific licence. Go to the dataset search page to see the filters that are available to make your search easier. You can also do a quick search by selecting one of the catalogue’s categories on the homepage. These categories can help you see the types of data we have on key topic areas. When you find the dataset you are looking for, click on it to go to the dataset record. Each dataset record will tell you whether the data is available, and, if so, tell you about the data available. An open dataset might contain several data files. These files might represent different periods of time, different sub-sets of the dataset, different regions, language translations, or other breakdowns. You can select a file and either download it or preview it. Make sure to read the licence agreement to make sure you have permission to use it the way you want. Read more about previewing data. A non-open dataset may be not available for many reasons. Read more about non-open data. Read more about restricted data. Data that is non-open may still be subject to freedom of information requests. The catalogue has tools that enable all users to visualize the data in the catalogue without leaving the catalogue – no additional software needed. Have a look at our walk-through of how to make a chart in the catalogue. Get automatic notifications when datasets are updated. You can choose to get notifications for individual datasets, an organization’s datasets or the full catalogue. You don’t have to provide and personal information – just subscribe to our feeds using any feed reader you like using the corresponding notification web addresses. Copy those addresses and paste them into your reader. Your feed reader will let you know when the catalogue has been updated. The catalogue provides open data in several file formats (e.g., spreadsheets, geospatial data, etc). Learn about each format and how you can access and use the data each file contains. A file that has a list of items and values separated by commas without formatting (e.g. colours, italics, etc.) or extra visual features. This format provides just the data that you would display in a table. XLSX (Excel) files may be converted to CSV so they can be opened in a text editor. How to access the data: Open with any spreadsheet software application (e.g., Open Office Calc, Microsoft Excel) or text editor. Note: This format is considered machine-readable, it can be easily processed and used by a computer. Files that have visual formatting (e.g. bolded headers and colour-coded rows) can be hard for machines to understand, these elements make a file more human-readable and less machine-readable. A file that provides information without formatted text or extra visual features that may not follow a pattern of separated values like a CSV. How to access the data: Open with any word processor or text editor available on your device (e.g., Microsoft Word, Notepad). A spreadsheet file that may also include charts, graphs, and formatting. How to access the data: Open with a spreadsheet software application that supports this format (e.g., Open Office Calc, Microsoft Excel). Data can be converted to a CSV for a non-proprietary format of the same data without formatted text or extra visual features. A shapefile provides geographic information that can be used to create a map or perform geospatial analysis based on location, points/lines and other data about the shape and features of the area. It includes required files (.shp, .shx, .dbt) and might include corresponding files (e.g., .prj). How to access the data: Open with a geographic information system (GIS) software program (e.g., QGIS). A package of files and folders. The package can contain any number of different file types. How to access the data: Open with an unzipping software application (e.g., WinZIP, 7Zip). Note: If a ZIP file contains .shp, .shx, and .dbt file types, it is an ArcGIS ZIP: a package of shapefiles which provide information to create maps or perform geospatial analysis that can be opened with ArcGIS (a geographic information system software program). A file that provides information related to a geographic area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open using a GIS software application to create a map or do geospatial analysis. It can also be opened with a text editor to view raw information. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format for sharing data in a machine-readable way that can store data with more unconventional structures such as complex lists. How to access the data: Open with any text editor (e.g., Notepad) or access through a browser. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format to store and organize data in a machine-readable way that can store data with more unconventional structures (not just data organized in tables). How to access the data: Open with any text editor (e.g., Notepad). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A file that provides information related to an area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open with a geospatial software application that supports the KML format (e.g., Google Earth). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. This format contains files with data from tables used for statistical analysis and data visualization of Statistics Canada census data. How to access the data: Open with the Beyond 20/20 application. A database which links and combines data from different files or applications (including HTML, XML, Excel, etc.). The database file can be converted to a CSV/TXT to make the data machine-readable, but human-readable formatting will be lost. How to access the data: Open with Microsoft Office Access (a database management system used to develop application software). A file that keeps the original layout and
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data publication is part of the 'P³-Petrophysical Property Database' project, which was developed within the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553) and consists of a scientific paper, a full report on the database, the database as excel and .csv files and additional tables for a hierarchical classification of the petrography and stratigraphy of the investigated rock samples (see related references). This publication here provides a hierarchical interlinked stratigraphic classification according to the chronostratigraphical units of the international chronostratigraphic chart of the IUGS v2016/04 (Cohen et al. 2013, updated) according to international standardisation. As addition to this IUGS chart, which is also documented in GeoSciML, stratigraphic IDs and parent IDs were included to define the direct relationships between the stratigraphic terms. The P³ database aims at providing easily accessible, peer-reviewed information on physical rock properties relevant for geothermal exploration and reservoir characterization in one single compilation. Collected data include hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age and, most important, original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis, of which the stratigraphic catalogue is presented here. These chronostratigraphic units are compiled to ensure that formations of a certain age are connected to the corresponding stratigraphic epoch, period or erathem. Thus, the chronostratigraphic units are directly correlated to each other by their stratigraphic ID and stratigraphic parent ID and can thus be used for interlinked data assessment of the petrophysical properties of samples of an according stratigraphic unit.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Facebook
TwitterAnalyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:
1- Data Import and Transformation:
2- Data Quality Assessment:
3- Calculating COGS:
4- Discount Analysis:
5- Sales Metrics:
6- Visualization:
7- Report Generation:
Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
📊 Bank Transaction Analytics Dashboard – SQL + Excel
🔹 Overview
This project focuses on Bank Transaction Analysis using a combination of SQL scripts and Excel dashboards. The goal is to provide insights into customer spending patterns, payment modes, suspicious transactions, and overall financial trends.
The dataset and analysis files can help learners and professionals understand how SQL and Excel can be used together for business decision-making, customer behavior tracking, and data-driven insights.
🔹 Contents
The dataset includes the following resources:
📂 SQL Scripts:
Create & Insert tables
15 Basic Queries
15 Advanced Queries
📂 CSV File:
Bank Transaction Analytics.csv (main dataset)
📂 Excel Charts:
Pie, Bar, Column, Line, Doughnut charts
Final Interactive Dashboard
📂 Screenshots:
Query outputs, Charts, and Final Dashboard visualization
📂 PDF Reports:
Project Report
Dashboard Report
📄 README.md:
Complete documentation and step-by-step explanation
🔹 Key Insights
26–35 age group spent the most across categories.
Amazon identified as the top merchant.
NetBanking showed the highest share compared to POS/UPI.
Travel & Shopping emerged as dominant categories.
🔹 Applications
Detecting suspicious transactions.
Understanding customer behavior.
Identifying top merchants and categories.
Building business intelligence dashboards.
🔹 How to Use
Download the dataset and SQL scripts.
Run Bank_Transaction_Analytics.SQL to create and insert data.
Execute the queries (Basic + Advanced) for insights.
Open Excel files to explore interactive charts and dashboards.
Refer to Project Report PDF for documentation.
🔹 Author
👩💻 Created by: Prachi Singh
GitHub: Bank Transaction Analytics Dashboard(https://github.com/prachi-singh-ds/Bank-Transaction-Analytics-Dashboard)
⚡This project is a complete SQL + Excel integration case study and is suitable for Data Science, Business Analytics, and Data Engineering portfolios.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Health [source]
This dataset is a valuable resource for gaining insight into Inpatient Prospective Payment System (IPPS) utilization, average charges and average Medicare payments across the top 100 Diagnosis-Related Groups (DRG). With column categories such as DRG Definition, Hospital Referral Region Description, Total Discharges, Average Covered Charges, Average Medicare Payments and Average Medicare Payments 2 this dataset enables researchers to discover and assess healthcare trends in areas such as provider payment comparsons by geographic location or compare service cost across hospital. Visualize the data using various methods to uncover unique information and drive further hospital research
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a provider level summary of Inpatient Prospective Payment System (IPPS) discharges, average charges and average Medicare payments for the Top 100 Diagnosis-Related Groups (DRG). This data can be used to analyze cost and utilization trends across hospital DRGs.
To make the most use of this dataset, here are some steps to consider:
- Understand what each column means in the table: Each column provides different information from the DRG Definition to Hospital Referral Region Description and Average Medicare Payments.
- Analyze the data by looking for patterns amongst the relevant columns: Compare different aspects such as total discharges or average Medicare payments by hospital referral region or DRG Definition. This can help identify any potential trends amongst different categories within your analysis.
- Generate visualizations: Create charts, graphs, or maps that display your data in an easy-to-understand format using tools such as Microsoft Excel or Tableau. Such visuals may reveal more insights into patterns within your data than simply reading numerical values on a spreadsheet could provide alone.
- Identifying potential areas of cost savings by drilling down to particular DRGs and hospital regions with the highest average covered charges compared to average Medicare payments.
- Establishing benchmarks for typical charges and payments across different DRGs and hospital regions to help providers set market-appropriate prices.
- Analyzing trends in total discharges, charges and Medicare payments over time, allowing healthcare organizations to measure their performance against regional peers
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: 97k6-zzx3.csv | Column name | Description | |:-----------------------------------------|:------------------------------------------------------| | drg_definition | Diagnosis-Related Group (DRG) definition. (String) | | average_medicare_payments | Average Medicare payments for each DRG. (Numeric) | | hospital_referral_region_description | Description of the hospital referral region. (String) | | total_discharges | Total number of discharges for each DRG. (Numeric) | | average_covered_charges | Average covered charges for each DRG. (Numeric) | | average_medicare_payments_2 | Average Medicare payments for each DRG. (Numeric) |
**File: Inpatient_Prospective_Payment_System_IPPS_Provider_Summary_for_the_Top_100_Diagnosis-Related_Groups_DRG...
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
UPDATED EVERY WEEK Last Update - 26th July 2025
Disclaimer!!! Data uploaded here are collected from the internet and some google drive. The sole purposes of uploading these data are to provide this Kaggle community with a good source of data for analysis and research. I don't own these datasets and am also not responsible for them legally by any means. I am not charging anything (either money or any favor) for this dataset. RESEARCH PURPOSE ONLY
This data contains all the indices of NSE.
NIFTY 50,
NIFTY BANK,
NIFTY 100,
NIFTY COMMODITIES,
NIFTY CONSUMPTION,
NIFTY FIN SERVICE,
NIFTY IT,
NIFTY INFRA,
NIFTY ENERGY,
NIFTY FMCG,
NIFTY AUTO,
NIFTY 200,
NIFTY ALPHA 50,
NIFTY 500,
NIFTY CPSE,
NIFTY GS COMPSITE,
NIFTY HEALTHCARE,
NIFTY CONSR DURBL,
NIFTY LARGEMID250,
NIFTY INDIA MFG,
NIFTY IND DIGITAL,
INDIA VIX
Nifty 50 index data with 1 minute data. The dataset contains OHLC (Open, High, Low, and Close) prices from Jan 2015 to Aug 2024. - This dataset can be used for time series analysis, regression problems, and time series forecasting both for one step and multi-step ahead in the future. - Options data can be integrated with this minute data, to get more insight about this data. - Different backtesting strategies can be built on this data.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Amazon Financial Dataset: R&D, Marketing, Campaigns, and Profit
This dataset provides fictional yet insightful financial data of Amazon's business activities across all 50 states of the USA. It is specifically designed to help students, researchers, and practitioners perform various data analysis tasks such as log normalization, Gaussian distribution visualization, and financial performance comparisons.
Each row represents a state and contains the following columns:
- R&D Amount (in $): The investment made in research and development.
- Marketing Amount (in $): The expenditure on marketing activities.
- Campaign Amount (in $): The costs associated with promotional campaigns.
- State: The state in which the data is recorded.
- Profit (in $): The net profit generated from the state.
Additional features include log-normalized and Z-score transformations for advanced analysis.
This dataset is ideal for practicing:
1. Log Transformation: Normalize skewed data for better modeling and analysis.
2. Statistical Analysis: Explore relationships between financial investments and profit.
3. Visualization: Create compelling graphs such as Gaussian distributions and standard normal distributions.
4. Machine Learning Projects: Build regression models to predict profits based on R&D and marketing spend.
This dataset is synthetically generated and is not based on actual Amazon financial records. It is created solely for educational and practice purposes.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains 10,000 synthetic records simulating the migratory behavior of various bird species across global regions. Each entry represents a single bird tagged with a tracking device and includes detailed information such as flight distance, speed, altitude, weather conditions, tagging information, and migration outcomes.
The data was entirely synthetically generated using randomized yet realistic values based on known ranges from ornithological studies. It is ideal for practicing data analysis and visualization techniques without privacy concerns or real-world data access restrictions. Because it’s artificial, the dataset can be freely used in education, portfolio projects, demo dashboards, machine learning pipelines, or business intelligence training.
With over 40 columns, this dataset supports a wide array of analysis types. Analysts can explore questions like “Do certain species migrate in larger flocks?”, “How does weather impact nesting success?”, or “What conditions lead to migration interruptions?”. Users can also perform geospatial mapping of start and end locations, cluster birds by behavior, or build time series models based on migration months and environmental factors.
For data visualization, tools like Power BI, Python (Matplotlib/Seaborn/Plotly), or Excel can be used to create insightful dashboards and interactive charts.
Join the Fabric Community DataViz Contest | May 2025: https://community.fabric.microsoft.com/t5/Power-BI-Community-Blog/%EF%B8%8F-Fabric-Community-DataViz-Contest-May-2025/ba-p/4668560
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.