10 datasets found
  1. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  2. Nuclear Medicine National Headquarter System

    • s.cnmilf.com
    • data.va.gov
    • +6more
    Updated May 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2021). Nuclear Medicine National Headquarter System [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/nuclear-medicine-national-headquarter-system
    Explore at:
    Dataset updated
    May 1, 2021
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all Veterans Affairs Medical Centers (VAMCs) performing or contracting nuclear medicine services in Veterans Affairs medical facilities. The medical centers are required to complete questionnaires annually (RCS 10-0010-Nuclear Medicine Service Annual Report). The information is then manually entered into the Access Tables, which includes: * Distribution and cost of in-house VA - Contract Physician Services, whether contracted services are made via sharing agreement (with another VA medical facility or other government medical providers) or with private providers. * Workload data for the performance and/or purchase of PET/CT studies. * Organizational structure of services. * Updated changes in key imaging service personnel (chiefs, chief technicians, radiation safety officers). * Workload data on the number and type of studies (scans) performed, including Medicare Relative Value Units (RVUs), also referred to as Weighted Work Units (WWUs). WWUs are a workload measure calculated as the product of a study's Current Procedural Terminology (CPT) code, which consists of total work costs (the cost of physician medical expertise and time), and total practice costs (the costs of running a practice, such as equipment, supplies, salaries, utilities etc). Medicare combines WWUs together with one other parameter to derive RVUs, a workload measure widely used in the health care industry. WWUs allow Nuclear Medicine to account for the complexity of each study in assessing workload, that some studies are more time consuming and require higher levels of expertise. This gives a more accurate picture of workload; productivity etc than using just 'total studies' would yield. * A detailed Full-Time Equivalent Employee (FTEE) grid, and staffing distributions of FTEEs across nuclear medicine services. * Information on Radiation Safety Committees and Radiation Safety Officers (RSOs). Beginning in 2011 this will include data collection on part-time and non VA (contract) RSOs; other affiliations they may have and if so to whom they report (supervision) at their VA medical center.Collection of data on nuclear medicine services' progress in meeting the special needs of our female veterans. Revolving documentation of all major VA-owned gamma cameras (by type) and computer systems, their specifications and ages. * Revolving data collection for PET/CT cameras owned or leased by VA; and the numbers and types of PET/CT studies performed on VA patients whether produced on-site, via mobile PET/CT contract or from non-VA providers in the community. Types of educational training/certification programs available at VA sites * Ongoing funded research projects by Nuclear Medicine (NM) staff, identified by source of funding and research purpose. * Data on physician-specific quality indicators at each nuclear medicine service. Academic achievements by NM staff, including published books/chapters, journals and abstracts. * Information from polling field sites re: relevant issues and programs Headquarters needs to address. * Results of a Congressionally mandated contracted quality assessment exercise, also known as a Proficiency study. Study results are analyzed for comparison within VA facilities (for example by mission or size), and against participating private sector health care groups. * Information collected on current issues in nuclear medicine as they arise. Radiation Safety Committee structures and membership, Radiation Safety Officer information and information on how nuclear medicine services provided for female Veterans are examples of current issues.The database is now stored completely within MS Access Database Tables with output still presented in the form of Excel graphs and tables.

  3. d

    Data from: The Bronson Files, Dataset 6, Field 13, 2014

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2024). The Bronson Files, Dataset 6, Field 13, 2014 [Dataset]. https://catalog.data.gov/dataset/the-bronson-files-dataset-6-field-13-2014-e1c41
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    Agricultural Research Service
    Description

    Dr. Kevin Bronson provides a unique nitrogen and water management in cotton agricultural research dataset for compute, including notation of field events and operations, an intermediate analysis mega-table of correlated and calculated parameters, and laboratory analysis results generated during the experimentation, plus high-resolution plot level intermediate data analysis tables of SAS process output, as well as the complete raw data sensor recorded logger outputs. This data was collected using a Hamby rig as a high-throughput proximal plant phenotyping platform. The Hamby 6000 rig Ellis W. Chenault, & Allen F. Wiese. (1989). Construction of a High-Clearance Plot Sprayer. Weed Technology, 3(4), 659–662. http://www.jstor.org/stable/3987560 Dr. Bronson modified an old high-clearance Hamby 6000 rig, adding a tank and pump with a rear boom, to perform precision liquid N applications. A Raven control unit with GPS supplied variable rate delivery options. The 12 volt Holland Scientific GeoScoutX data recorder and associated CropCircle ACS-470 sensors with GPS signal, was easy to mount and run on the vehicle as an attached rugged data acquisition module, and allowed the measuring of plants using custom proximal active optical reflectance sensing. The HS data logger was positioned near the operator, and sensors were positioned in front of the rig, on forward protruding armature attached to a hydraulic front boom assembly, facing downward in nadir view 1 m above the average canopy height. A 34-size class AGM battery sat under the operator and provided the data system electrical power supply. Data suffered reduced input from Conley. Although every effort was afforded to capture adequate quality across all metrics, experiment exterior considerations were such that canopy temperature data is absent, and canopy height is weak due to technical underperformance. Thankfully, reflectance data quality was maintained or improved through the implementation of new hardware by Bronson. See included README file for operational details and further description of the measured data signals. Summary: Active optical proximal cotton canopy sensing spatial data and including few additional related metrics and weak low-frequency ultrasonic derived height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2014 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled using a modified high-clearance Hamby spray-rig. Acquired data conforms to location standard methodologies of the plant phenotyping. SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. Additional ultrasonic data signal explanation is offered as annotated time-series charts. The weekly proximal sensing data collected include the primary canopy reflectance at six wavelengths. Lint and seed yields, first open boll biomass, and nitrogen uptake were also determined. Soil profile nitrate to 1.8 m depth was determined in 30-cm increments, before planting and after harvest. Nitrous oxide emissions were determined with 1-L vented chambers (samples taken at 0, 12, and 24 minutes). Nitrous oxide was determined by gas chromatography (electron detection detector).

  4. Data from: Epilepsy-iEEG-Multicenter-Dataset

    • openneuro.org
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Li; Sara Inati; Kareem Zaghloul; Nathan Crone; William Anderson; Emily Johnson; Iahn Cajigas; Damian Brusko; Jonathan Jagid; Angel Claudio; Andres Kanner; Jennifer Hopp; Stephanie Chen; Jennifer Haagensen; Sridevi Sarma (2020). Epilepsy-iEEG-Multicenter-Dataset [Dataset]. http://doi.org/10.18112/openneuro.ds003029.v1.0.2
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    OpenNeurohttps://openneuro.org/
    Authors
    Adam Li; Sara Inati; Kareem Zaghloul; Nathan Crone; William Anderson; Emily Johnson; Iahn Cajigas; Damian Brusko; Jonathan Jagid; Angel Claudio; Andres Kanner; Jennifer Hopp; Stephanie Chen; Jennifer Haagensen; Sridevi Sarma
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Fragility Multi-Center Retrospective Study

    iEEG and EEG data from 5 centers is organized in our study with a total of 100 subjects. We publish 4 centers' dataset here due to data sharing issues.

    Acquisitions include ECoG and SEEG. Each run specifies a different snapshot of EEG data from that specific subject's session. For seizure sessions, this means that each run is a EEG snapshot around a different seizure event.

    For additional clinical metadata about each subject, refer to the clinical Excel table in the publication.

    Data Availability

    NIH, JHH, UMMC, and UMF agreed to share. Cleveland Clinic did not, so requires an additional DUA.

    All data, except for Cleveland Clinic was approved by their centers to be de-identified and shared. All data in this dataset have no PHI, or other identifiers associated with patient. In order to access Cleveland Clinic data, please forward all requests to Amber Sours, SOURSA@ccf.org:

    Amber Sours, MPH Research Supervisor | Epilepsy Center Cleveland Clinic | 9500 Euclid Ave. S3-399 | Cleveland, OH 44195 (216) 444-8638

    You will need to sign a data use agreement (DUA).

    Sourcedata

    For each subject, there was a raw EDF file, which was converted into the BrainVision format with mne_bids. Each subject with SEEG implantation, also has an Excel table, called electrode_layout.xlsx, which outlines where the clinicians marked each electrode anatomically. Note that there is no rigorous atlas applied, so the main points of interest are: WM, GM, VENTRICLE, CSF, and OUT, which represent white-matter, gray-matter, ventricle, cerebrospinal fluid and outside the brain. WM, Ventricle, CSF and OUT were removed channels from further analysis. These were labeled in the corresponding BIDS channels.tsv sidecar file as status=bad. The dataset uploaded to openneuro.org does not contain the sourcedata since there was an extra anonymization step that occurred when fully converting to BIDS.

    Derivatives

    Derivatives include: * fragility analysis * frequency analysis * graph metrics analysis * figures

    These can be computed by following the following paper: Neural Fragility as an EEG Marker for the Seizure Onset Zone

    Events and Descriptions

    Within each EDF file, there contain event markers that are annotated by clinicians, which may inform you of specific clinical events that are occuring in time, or of when they saw seizures onset and offset (clinical and electrographic).

    During a seizure event, specifically event markers may follow this time course:

    * eeg onset, or clinical onset - the onset of a seizure that is either marked electrographically, or by clinical behavior. Note that the clinical onset may not always be present, since some seizures manifest without clinical behavioral changes.
    * Marker/Mark On - these are usually annotations within some cases, where a health practitioner injects a chemical marker for use in ICTAL SPECT imaging after a seizure occurs. This is commonly done to see which portions of the brain are active metabolically.
    * Marker/Mark Off - This is when the ICTAL SPECT stops imaging.
    * eeg offset, or clinical offset - this is the offset of the seizure, as determined either electrographically, or by clinical symptoms.
    

    Other events included may be beneficial for you to understand the time-course of each seizure. Note that ICTAL SPECT occurs in all Cleveland Clinic data. Note that seizure markers are not consistent in their description naming, so one might encode some specific regular-expression rules to consistently capture seizure onset/offset markers across all dataset. In the case of UMMC data, all onset and offset markers were provided by the clinicians on an Excel sheet instead of via the EDF file. So we went in and added the annotations manually to each EDF file.

    Seizure Electrographic and Clinical Onset Annotations

    For various datasets, there are seizures present within the dataset. Generally there is only one seizure per EDF file. When seizures are present, they are marked electrographically (and clinically if present) via standard approaches in the epilepsy clinical workflow.

    Clinical onset are just manifestation of the seizures with clinical syndromes. Sometimes the maker may not be present.

    Seizure Onset Zone Annotations

    What is actually important in the evaluation of datasets is the clinical annotations of their localization hypotheses of the seizure onset zone.

    These generally include:

    * early onset: the earliest onset electrodes participating in the seizure that clinicians saw
    * early/late spread (optional): the electrodes that showed epileptic spread activity after seizure onset. Not all seizures has spread contacts annotated.
    

    Surgical Zone (Resection or Ablation) Annotations

    For patients with the post-surgical MRI available, then the segmentation process outlined above tells us which electrodes were within the surgical removed brain region.

    Otherwise, clinicians give us their best estimate, of which electrodes were resected/ablated based on their surgical notes.

    For surgical patients whose postoperative medical records did not explicitly indicate specific resected or ablated contacts, manual visual inspection was performed to determine the approximate contacts that were located in later resected/ablated tissue. Postoperative T1 MRI scans were compared against post-SEEG implantation CT scans or CURRY coregistrations of preoperative MRI/post SEEG CT scans. Contacts of interest in and around the area of the reported resection were selected individually and the corresponding slice was navigated to on the CT scan or CURRY coregistration. After identifying landmarks of that slice (e.g. skull shape, skull features, shape of prominent brain structures like the ventricles, central sulcus, superior temporal gyrus, etc.), the location of a given contact in relation to these landmarks, and the location of the slice along the axial plane, the corresponding slice in the postoperative MRI scan was navigated to. The resected tissue within the slice was then visually inspected and compared against the distinct landmarks identified in the CT scans, if brain tissue was not present in the corresponding location of the contact, then the contact was marked as resected/ablated. This process was repeated for each contact of interest.

    References

    Adam Li, Chester Huynh, Zachary Fitzgerald, Iahn Cajigas, Damian Brusko, Jonathan Jagid, Angel Claudio, Andres Kanner, Jennifer Hopp, Stephanie Chen, Jennifer Haagensen, Emily Johnson, William Anderson, Nathan Crone, Sara Inati, Kareem Zaghloul, Juan Bulacio, Jorge Gonzalez-Martinez, Sridevi V. Sarma. Neural Fragility as an EEG Marker of the Seizure Onset Zone. bioRxiv 862797; doi: https://doi.org/10.1101/862797

    Appelhoff, S., Sanderson, M., Brooks, T., Vliet, M., Quentin, R., Holdgraf, C., Chaumon, M., Mikulan, E., Tavabi, K., Höchenberger, R., Welke, D., Brunner, C., Rockhill, A., Larson, E., Gramfort, A. and Jas, M. (2019). MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software 4: (1896). https://doi.org/10.21105/joss.01896

    Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K., D'Ambrosio, S., David, O., … Hermes, D. (2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 6, 102. https://doi.org/10.1038/s41597-019-0105-7

    Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6, 103. https://doi.org/10.1038/s41597-019-0104-8

  5. ICSE 2025 - Artifact

    • figshare.com
    pdf
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FARIDAH AKINOTCHO (2025). ICSE 2025 - Artifact [Dataset]. http://doi.org/10.6084/m9.figshare.28194605.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    FARIDAH AKINOTCHO
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Mobile Application Coverage: The 30% Curse and Ways ForwardPurpose In this artifact, we provide the information about our benchmarks used for manual and tool exploration. We include coverage results achieved by tools and human analysts as well as plots of the coverage progression over time for analysts. We further provide manual analysis results for our case study, more specifically extracted reasons for unreachability for the case study apps and extracted code-level properties, which constitute a ground truth for future work in coverage explainability. Finally, we identify a list of beyond-GUI exploration tools and categorize them for future work to take inspiration from. We are claiming available and reusable badges; the artifact is publicly available, fully aligned with the results described in our paper and comprehensively documented.ProvenanceThe artifact can be obtained from this figshare archival link: https://figshare.com/articles/dataset/ICSE_2025_-_Artifact/28194605/1The paper preprint is available here: https://people.ece.ubc.ca/mjulia/publications/Mobile_Application_Coverage_ICSE2025.pdfDataThe artifact submission is organized into five parts under the Data folder:- 'BenchInfo' excel sheet describing our experiment dataset- 'Coverage' folder containing coverage results for tools and analysts (RQ1) - 'Reasons' excel sheet describing our manually extracted reasons for unreachability (RQ2)- 'ActivationProperties' excel sheet describing our manually extracted code properties of unreached activities (RQ3)- 'ActivationProperties-Graph' pdf which presents combinations of the extracted code properties in a graph format.- 'BeyondGUI' folder containing information about identified techniques which go beyond GUI exploration.The artifact requires about 15MB of storage.Dataset: 'BenchInfo.xlsx':This file list the full application dataset used for experiments into three tabs: 'BenchNotGP' (apps from AndroTest dataset which are not on Google Play), 'BenchGP' (apps from AndroTest which are also on Google Play) and 'TopGP' (top ranked free apps from Google Play). Each tab contains the following information:- Application Name- Package Name- Version Used (Latest)- Original Version- # Activities- Minimum SDK- Target SDK- # Permissions (in Manifest)- List of Permissions (in Manifest)- # Features (in Manifest)- List of Features (in Manifest)The 'TopGP' sheet also includes Google-Play-specific information, namely:- Category (one of 32 app categories)- Downloads- Popularity RankThe 'BenchGP' and 'BenchNotGP' sheets also include the original version (included in the AndroTest benchmark) and the source (one of F-Droid, Github or Google Code Archives).RQ1: 'Coverage'The 'Coverage' folder includes coverage results for tools and analysts, and is structured as follows:- 'CoverageResults.xlsx": An excel sheet containing the coverage results achieved by each human analysts and tool. - The first tab described the results over all apps for analysts combined, tools combined, and analysts + tools, which map to Table II in the paper. - Each of the following 42 tab, one per app in TopGP, marks the activities reached by Analyst 1, Analyst 2, Tool 1 (ape) and Tool 2 (fastbot), with an 'x' in the corresponding column to indicate that the activity was reached by the given agent.- 'Plots': A folder containing plots of the progressive coverage over time of analysts, split into one folder for 'Analyst1' and one for 'Analyst2'. - Each of the analysts' folder includes a subfolder per benchmark ('BenchNotGP', 'BenchGP' and 'TopGP'), containing as many png files as applications in the benchmark (respectively 47, 14 and 42 image files) named 'ANALYST_[X]_[APP_PACKAGE_NAME]'.png.RQ2: 'Reasons.xslx'This file contains the extracted reasons for unreachability for the 11 apps manually analyzed. - The 'Summary' tab provides an overview of unreached activities per reasons over all apps and per app, which corresponds to Table III in the paper. - The following 11 tabs, each corresponding to and named after a single application, describe the reasons associated with each activity of that application. Each column corresponds to a single reason and 'x' indicates that the activity is unreached due to the reason in that column. The top row sums up the total number of activities unreached due to a given reason in each column.- The activities at the bottom which are greyed out correspond to activities that were reached during exploration, and are thus excluded from the reason extraction.RQ3: 'ActivationProperties.xslx'This file contains the full list of activation properties extracted for each of the 185 activities analyzed for RQ2.The first half of the columns (columns C-M) correspond to the reasons (excluding Transitive, Inconclusive and No Caller) and the second half (columns O-AE) correspond to properties described in Figure 5 in the paper, namely:- Exported- Activation Location: - Code: GUI/lifecycle, Other Android or App-specific - Manifest- Activation Guards: - Enforcement: In Code or In Resources - Restriction: Mandatory or Discretionary- Data: - Type: Parameters, Execution Dependencies - Format: Primitive, Strings, ObjectsThe rows are grouped by applications, and each row correspond to an activity of that application. 'x' in a given column indicates the presence of the property in that column within the analyzed path to the activity. The third and fourth rows sums up the numbers and percentages for each property, as reported in Figure 5.RQ3: 'ActivationProperties-Graph.pdf'This file shows combinations of the individual properties listed in 'ActivationProperties.xlsx' in a graph format, extending the combinations described in Table IV with data (types and format) and reasons for unreachability.BeyondGUIThis folder includes:- 'ToolInfo.xlsx': an excel sheet listing the identified 22 beyond-GUI papers, the date of publication, availability, invasiveness (Source code, Bytecode, framework, OS) and their targeting strategy (None, Manual or Automated).- ToolClassification.pdf': a pdf file describing our paper selection methodology as well as a classication of the techniques in terms of Invocation Strategy, Navigation Strategy, Value Generation Strategy, and Value Generation Types. We fully introduce these categories in the pdf file.Requirements & technology skills assumed by the reviewer evaluating the artifactThe artifact entirely consists of Excel sheets which can be opened with common Excel visualization software, i.e., Microsoft Excel, coverage plots as PNG files and PDF files. It requires about 15MB of storage in total.No other specific technology skills are required of the reviewer evaluating the artifact.

  6. g

    Image Stitching Record | gimi9.com

    • gimi9.com
    Updated Nov 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Image Stitching Record | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_235cd7e7-b015-4166-859f-58cae9fedb60
    Explore at:
    Dataset updated
    Nov 19, 2024
    Description

    The dataset is structured as follows: — The ZIP file “01 original data” contains 233 folders (named according to the TU-IDs) with the corresponding partial recordings in TIF format. The TIFs are binary in CCITT Fax 4 format. 219 TUs are separated into two and 14 into three parts. Thus, the original data consists of 480 partial recordings. — The ZIP file “02 intermediate results” contains 233 folders (named after the TU-IDs) with relevant intermediate results generated during stitching. These include the input images scaled to 10 MP, the visualisation of the feature assignment(s) and the result in downscaled resolution with visualised seam lines. — The ZIP file “03_Results” contains the 170 successfully merged plans in high resolution in TIF format — The Excel file “Dataset” contains metadata for the 233 examined TUs including the DOT graph of the assignment described in the thesis, as well as the assessment of the correctness of the results and the assignment to the presented error sources. The data set was generated with the following metadata query in the IT system Digital Management of Technical Documents (DVtU): Microfilm metadata — TA (partial recording) — Number: “> 1” Document Metadata — Object part: “130 (Wehrwangen, weir pillar)” — Object identifier: “213 (Wehranlagen)” — Details: “[BB]Army” — Version: “01.00.00”

  7. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-03-27 to 2025-03-26 about stock market, average, industry, and USA.

  8. g

    Data from: Stratigraphic Classification Table for the PetroPhysical Property...

    • dataservices.gfz-potsdam.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristian Bär; Philipp Mielke (2019). Stratigraphic Classification Table for the PetroPhysical Property Database P³ [Dataset]. http://doi.org/10.5880/gfz.4.8.2019.p3.s
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    GFZ Data Services
    datacite
    Authors
    Kristian Bär; Philipp Mielke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Dataset funded by
    FP7 Energy
    Description

    This data publication is part of the 'P³-Petrophysical Property Database' project, which was developed within the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553) and consists of a scientific paper, a full report on the database, the database as excel and .csv files and additional tables for a hierarchical classification of the petrography and stratigraphy of the investigated rock samples (see related references). This publication here provides a hierarchical interlinked stratigraphic classification according to the chronostratigraphical units of the international chronostratigraphic chart of the IUGS v2016/04 (Cohen et al. 2013, updated) according to international standardisation. As addition to this IUGS chart, which is also documented in GeoSciML, stratigraphic IDs and parent IDs were included to define the direct relationships between the stratigraphic terms. The P³ database aims at providing easily accessible, peer-reviewed information on physical rock properties relevant for geothermal exploration and reservoir characterization in one single compilation. Collected data include hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age and, most important, original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis, of which the stratigraphic catalogue is presented here. These chronostratigraphic units are compiled to ensure that formations of a certain age are connected to the corresponding stratigraphic epoch, period or erathem. Thus, the chronostratigraphic units are directly correlated to each other by their stratigraphic ID and stratigraphic parent ID and can thus be used for interlinked data assessment of the petrophysical properties of samples of an according stratigraphic unit.

  9. o

    Datasets for Linked Open Data Instance Level Analysis for Cultural Heritage

    • explore.openaire.eu
    • zenodo.org
    Updated Jan 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sugimoto Go (2021). Datasets for Linked Open Data Instance Level Analysis for Cultural Heritage [Dataset]. http://doi.org/10.5281/zenodo.4455461
    Explore at:
    Dataset updated
    Jan 21, 2021
    Authors
    Sugimoto Go
    Description

    This is the datasets used for Linked Open Data instant level quality analysis for cultural heritage (2020). 7Z and ZIP versions are available for both Excel 2006 and R 4.0.3. The compressed files include, Excel spreadsheets (.xlsx, .csv), VBA scripts (.bas), and R scripts (.r). Please read the full documentation in Linked_Open_Data_Instance_Level_Analysis_Procedure.pdf.

  10. c

    The global Graph Database market size is USD 7.3 billion in 2024 and will...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, The global Graph Database market size is USD 7.3 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 20.2% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/graph-database-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Graph Database market size will be USD 7.3 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 20.2% from 2024 to 2031. Market Dynamics of Graph Database Market

    Key Drivers for Graph Database Market

    Increasing demand for solutions with the capability to process low-latency queries-One of the main reasons the Graph Database market is extensively being used all over the globe, to the extent that numerous legacy database providers are endeavoring to assimilate graph database schemas into their main relational database infrastructures. Whereas, in theory, the strategy might save money, it might degrade and slow down the performance of queries run beside the database. A graph database is altering traditional brick-and-mortar trades into digital business powerhouses in terms of digital business activities.
    Growing usage of graph database technology to drive the Graph Database market's expansion in the years ahead.
    

    Key Restraints for Graph Database Market

    Complex programming and standardization pose a serious threat to the Graph Database industry.
    The market also faces significant difficulties related to low-cost clusters.
    

    Introduction of the Graph Database Market

    The graph database market has experienced significant growth due to the increasing need for efficient data management and complex relationship mapping in various industries. Unlike traditional relational databases, graph databases excel in handling interconnected data, making them ideal for applications such as social networks, fraud detection, recommendation engines, and supply chain management. Key drivers of this market include the rising adoption of big data analytics, advancements in artificial intelligence, and the proliferation of connected devices. Leading players, such as Neo4j, Amazon Web Services, and Microsoft, continue to innovate, offering scalable and robust graph database solutions. The growing demand for real-time, low-latency data processing capabilities further propels the market's expansion.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1

Dataset of development of business during the COVID-19 crisis

Explore at:
Dataset updated
Nov 9, 2020
Authors
Tatiana N. Litvinova
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

Search
Clear search
Close search
Google apps
Main menu