Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Facebook
TwitterIn the United States, the federal government manages lands in significant parts of the country. These lands include 193 million acres managed by the US Forest Service in the nation's 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources.The agencies included in this layer are:Bureau of Land ManagementBureau of ReclamationDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States lands managed by six federal agencies Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DoD, USFS, USFWS, NPS, PADUS 2.1Publication Date: Various - Esri compiled and published this layer in May 2022. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Bureau of Reclamation LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Facebook
TwitterThis map and corresponding dataset provide the location, satellite images and square footage of existing green roofs within the City of Chicago. This dataset is in ESRI shapefile format. To view or use these files, compression software and special GIS software, such as ESRI ArcGIS, is required. This information is derived from an analysis of high-spatial resolution (50cm), pan-sharpened, ortho-rectified, 8-band multi-spectral satellite images collected by Digital Globe’s Worldview-2 satellite. The City supplied the consultant with a 2009 City boundary shapefile to determine the required extent of the imagery. Acquisition of three different strips of imagery corresponding to the satellite’s paths was required. These strips of imagery spanned three consecutive months and were collected in August 2010 (90% coverage), September 2010 (5% coverage) and October 2010 (5% coverage). The results of the analysis include overall count of vegetated roofs, their total square footage, and the ratio of required to elective vegetated roofs. A total of 359 vegetated roofs were identified within the City of Chicago. The total square footage of these vegetated roofs was calculated to be approximately 5,469,463 square feet. The ratio of required vegetated roofs to elective vegetative roofs was 297:62 (~5:1). The median size of the vegetated roofs was calculated to be 5,234 square feet.
Facebook
TwitterWorld Continents represents the boundaries for the continents of the world.This layer is best viewed out beyond a maximum scale (zoomed in) of 1:3,000,000. The sources of this dataset are Esri, Global Mapping International (GMI), U.S. Central Intelligence Agency (The World Factbook), and Garmin. It is updated as country boundaries coincident to continental boundaries change. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Continents.
Facebook
TwitterThis resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.
Facebook
TwitterThis shapefile contains tax parcel polygons for Eaton County, Michigan, USA. Because tax parcel information changes daily, this shapefile contains only geometry, the parcel identifier and a URL link to the current information for each parcel. Parcel geometries are not survey-grade and should not be used to make important decisions like where to build a structure or install a fence. In their current form, they are only useful in spatial terms for getting an inexact idea of where a parcel is located. If you need to know exactly where a property line falls, please consult a certified land surveyor. Parcel geometries will be updated either annually or bi-annually. New splits and combinations are typically not visible in the parcel geometry until changes become official via Board of Review in the following April.
Facebook
TwitterThis geospatial dataset was created by uploading a shapefile through the new import experience (DSMUI). The original shapefile is attached and was downloaded from https://data-seattlecitygis.opendata.arcgis.com/datasets/municipal-boundaries.
Facebook
TwitterThis map presents transportation data, including highways, roads, railroads, and airports for the world.
The map was developed by Esri using Esri highway data; Garmin basemap layers; HERE street data for North America, Europe, Australia, New Zealand, South America and Central America, India, most of the Middle East and Asia, and select countries in Africa. Data for Pacific Island nations and the remaining countries of Africa was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.
You can add this layer on top of any imagery, such as the Esri World Imagery map service, to provide a useful reference overlay that also includes street labels at the largest scales. (At the largest scales, the line symbols representing the streets and roads are automatically hidden and only the labels showing the names of streets and roads are shown). Imagery With Labels basemap in the basemap dropdown in the ArcGIS web and mobile clients does not include this World Transportation map. If you use the Imagery With Labels basemap in your map and you want to have road and street names, simply add this World Transportation layer into your map. It is designed to be drawn underneath the labels in the Imagery With Labels basemap, and that is how it will be drawn if you manually add it into your web map.
Facebook
TwitterThis data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-meter resolution. A complementary polygon shapefile records the extent of each source survey in the output grid.
Facebook
TwitterOUTDATED. See the current data at https://data.cityofchicago.org/d/kjav-iyuj - Special Service Areas (SSA) boundaries in Chicago. The Special Service Area program is a mechanism used to fund expanded services and programs through a localized property tax levy within contiguous industrial, commercial and residential areas. The enhanced services and programs are in addition to services and programs currently provided through the city. SSA-funded projects could include, but are not limited to, security services, area marketing and advertising assistance, promotional activities such as parades and festivals, or any variety of small scale capital improvements that could be supported through a modest property tax levy. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
Facebook
TwitterLinn County, Iowa census information available for download in shapefile format. Features are from 2010 census.Layers include: Blocks Block Groups TractsUpdate FrequencyAs neededAdditional ResourcesVisit Linn County, Iowa on the web.Visit Linn County, Iowa GIS on the web.Visit the Linn County, Iowa GIS portal. This site is updated as needed to reflect maps, apps, and data of interest from various County departments.Contact InformationQuestions? Contact the GIS Division by phone at 319.892.5250 or by email.
Facebook
TwitterThis is a saved copy of the NWS Weather Watches and Warning layer, filtered just for wildfire related warnings.Details from the orginal item:https://www.arcgis.com/home/item.html?id=a6134ae01aad44c499d12feec782b386This feature service depicts the National Weather Service (NWS) watches, warnings, and advisories within the United States. Watches and warnings are classified into 43 categories.A warning is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. A warning means weather conditions pose a threat to life or property. People in the path of the storm need to take protective action.A watch is used when the risk of a hazardous weather or hydrologic event has increased significantly, but its occurrence, location or timing is still uncertain. It is intended to provide enough lead time so those who need to set their plans in motion can do so. A watch means that hazardous weather is possible. People should have a plan of action in case a storm threatens, and they should listen for later information and possible warnings especially when planning travel or outdoor activities.An advisory is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. Advisories are for less serious conditions than warnings, that cause significant inconvenience and if caution is not exercised, could lead to situations that may threaten life or property.SourceNational Weather Service RSS-CAP Warnings and Advisories: Public AlertsNational Weather Service Boundary Overlays: AWIPS Shapefile DatabaseUpdate FrequencyThe services is updated every 5 minutes using the Aggregated Live Feeds methodology.The overlay data is checked and updated daily from the official AWIPS Shapefile Database.Area CoveredUnited States and TerritoriesWhat can you do with this layer?Customize the display of each attribute by using the Change Style option for any layer.Query the layer to display only specific types of weather watches and warnings.Add to a map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools, such as Enrich Data, to determine the potential impact of weather events on populations.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.
Facebook
TwitterThis city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
Facebook
TwitterThe "Map Imager Layer - Administrative Boundaries" is a Map Image Layer of Administrative Boundaries. It has been designed specifically for use in ArcGIS Online (and will not directly work in ArcMap or ArcPro). This data has been modified from the original source data to serve a specific business purpose. This data is for cartographic purposes only.The Administrative Boundaries Data Group contains the following layers: Populated Places (USGS)US Census Urbanized Areas and Urban Clusters (USCB)US Census Minor Civil Divisions (USCB)PLSS Townships (MnDNR, MnGeo)Counties (USCB)American Indian, Alaska Native, Native Hawaiian (AIANNH) Areas (USCB)States (USCB)Countries (MPCA)These datasets have not been optimized for fast display (but rather they maintain their original shape/precision), therefore it is recommend that filtering is used to show only the features of interest. For more information about using filters please see "Work with map layers: Apply Filters": https://doc.arcgis.com/en/arcgis-online/create-maps/apply-filters.htmFor additional information about the Administrative Boundary Dataset please see:United States Census Bureau TIGER/Line Shapefiles and TIGER/Line Files Technical Documentation: https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.htmlUnited States Census Bureau Census Mapping Files: https://www.census.gov/geographies/mapping-files.htmlUnited States Census Bureau TIGER/Line Shapefiles: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html and https://www.census.gov/cgi-bin/geo/shapefiles/index.php
Facebook
TwitterGeostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben This non-exclusive report was purchased by the NSTA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the NSTA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities. The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report. The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms). In addition, the NSTA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the NSTA well names from the NSTA Offshore Wells shapefile (as provided on the NSTA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the NSTA. NSTA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the NSTA. A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the NSTA’s Open Data website for use in other GIS software packages. All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the NSTA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tool and data set of road networks for 80 of the most populated urban areas in the world. The data consist of a graph edge list for each city and two corresponding GIS shapefiles (i.e., links and nodes).Make your own data with our ArcGIS, QGIS, and python tools available at: http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
Facebook
Twitter(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.
Facebook
TwitterMapping of Visible Surface Water (VSW), or water features not concealed by other objects (i.e., tree canopy, bridges, etc.), is an important component of landcover models. VSW is not intended to represent a full hydrography or show connectivity, like other available water datasets – like NHD – whose boundaries may include other landcover types (i.e., shrubs, trees, etc.). Each feature has been visually verified and given attributes by an analyst. This dataset is also unique in that it reflects surface water for a single year - 2017. A variety of funding sources acquired between 2019 and 2023 aided the completion of the dataset for the entire state of Washington. More information on the dataset, current data coverage, and applications can be found on our website: https://hrcd-wdfw.hub.arcgis.com/.
Tip: Try using the filter options on the data tab to limit your download to a single County or WRIA. The filtered download can take a substantial amount of time to initiate, so it may be necessary to download the full dataset if the filter option does not work.
Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.