100+ datasets found
  1. r

    Data Analytic Market Size, Share, Trends & Insights Report, 2035

    • rootsanalysis.com
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2025). Data Analytic Market Size, Share, Trends & Insights Report, 2035 [Dataset]. https://www.rootsanalysis.com/data-analytics-market
    Explore at:
    Dataset updated
    Sep 11, 2025
    Dataset authored and provided by
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Description

    The data analytic market size is projected to grow from USD 69.40 billion in the current year to USD 877.12 billion by 2035, representing a CAGR of 25.93%, during the forecast period till 2035.

  2. Google Data Analytics Capstone Project

    • kaggle.com
    zip
    Updated Nov 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NANCY CHAUHAN (2021). Google Data Analytics Capstone Project [Dataset]. https://www.kaggle.com/datasets/nancychauhan199/google-case-study-pdf
    Explore at:
    zip(284279 bytes)Available download formats
    Dataset updated
    Nov 13, 2021
    Authors
    NANCY CHAUHAN
    Description

    Case Study: How Does a Bike-Share Navigate Speedy Success?¶

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path. By the end of this lesson, you will have a portfolio-ready case study. Download the packet and reference the details of this case study anytime. Then, when you begin your job hunt, your case study will be a tangible way to demonstrate your knowledge and skills to potential employers.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations. Characters and teams ● Cyclistic: A bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use the assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day. ● Lily Moreno: The director of marketing and your manager. Moreno is responsible for the development of campaigns and initiatives to promote the bike-share program. These may include email, social media, and other channels. ● Cyclistic marketing analytics team: A team of data analysts who are responsible for collecting, analyzing, and reporting data that helps guide Cyclistic marketing strategy. You joined this team six months ago and have been busy learning about Cyclistic’s mission and business goals — as well as how you, as a junior data analyst, can help Cyclistic achieve them. ● Cyclistic executive team: The notoriously detail-oriented executive team will decide whether to approve the recommended marketing program.

    About the company

    In 2016, Cyclistic launched a successful bike-share offering. Since then, the program has grown to a fleet of 5,824 bicycles that are geotracked and locked into a network of 692 stations across Chicago. The bikes can be unlocked from one station and returned to any other station in the system anytime. Until now, Cyclistic’s marketing strategy relied on building general awareness and appealing to broad consumer segments. One approach that helped make these things possible was the flexibility of its pricing plans: single-ride passes, full-day passes, and annual memberships. Customers who purchase single-ride or full-day passes are referred to as casual riders. Customers who purchase annual memberships are Cyclistic members. Cyclistic’s finance analysts have concluded that annual members are much more profitable than casual riders. Although the pricing flexibility helps Cyclistic attract more customers, Moreno believes that maximizing the number of annual members will be key to future growth. Rather than creating a marketing campaign that targets all-new customers, Moreno believes there is a very good chance to convert casual riders into members. She notes that casual riders are already aware of the Cyclistic program and have chosen Cyclistic for their mobility needs. Moreno has set a clear goal: Design marketing strategies aimed at converting casual riders into annual members. In order to do that, however, the marketing analyst team needs to better understand how annual members and casual riders differ, why casual riders would buy a membership, and how digital media could affect their marketing tactics. Moreno and her team are interested in analyzing the Cyclistic historical bike trip data to identify trends

    Three questions will guide the future marketing program:

    How do annual members and casual riders use Cyclistic bikes differently? Why would casual riders buy Cyclistic annual memberships? How can Cyclistic use digital media to influence casual riders to become members? Moreno has assigned you the first question to answer: How do annual members and casual rid...

  3. D

    Data Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Data Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-analytics-market-1787
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 31, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analytics Market size was valued at USD 41.05 USD billion in 2023 and is projected to reach USD 222.39 USD billion by 2032, exhibiting a CAGR of 27.3 % during the forecast period. Key drivers for this market are: Rising Demand for Edge Computing Likely to Boost Market Growth. Potential restraints include: Data Security Concerns to Impede the Market Progress . Notable trends are: Metadata-Driven Data Fabric Solutions to Expand Market Growth.

  4. D

    Data Analysis Application Solution Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Analysis Application Solution Report [Dataset]. https://www.datainsightsmarket.com/reports/data-analysis-application-solution-1439900
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analysis Application Solution market is booming, projected to reach $45 billion by 2033 with a 15% CAGR. Explore key drivers, trends, and challenges shaping this rapidly evolving sector, featuring leading companies like SAP, Microsoft, and BigID. Discover market segmentation, regional insights, and future growth forecasts.

  5. m

    Big Data Analytics in Retail Market - Trends & Industry Analysis

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2024). Big Data Analytics in Retail Market - Trends & Industry Analysis [Dataset]. https://www.mordorintelligence.com/industry-reports/big-data-analytics-in-retail-marketing-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2021 - 2030
    Area covered
    Global
    Description

    The Data Analytics in Retail Industry is segmented by Application (Merchandising and Supply Chain Analytics, Social Media Analytics, Customer Analytics, Operational Intelligence, Other Applications), by Business Type (Small and Medium Enterprises, Large-scale Organizations), and Geography. The market size and forecasts are provided in terms of value (USD billion) for all the above segments.

  6. D

    Data Analysis Services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Analysis Services Report [Dataset]. https://www.datainsightsmarket.com/reports/data-analysis-services-1989313
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analysis Services market is experiencing robust growth, driven by the exponential increase in data volume and the rising demand for data-driven decision-making across various industries. The market, estimated at $150 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an impressive $450 billion by 2033. This expansion is fueled by several key factors, including the increasing adoption of cloud-based analytics platforms, the growing need for advanced analytics techniques like machine learning and AI, and the rising focus on data security and compliance. The market is segmented by service type (e.g., predictive analytics, descriptive analytics, prescriptive analytics), industry vertical (e.g., healthcare, finance, retail), and deployment model (cloud, on-premise). Key players like IBM, Accenture, Microsoft, and SAS Institute are investing heavily in research and development, expanding their service portfolios, and pursuing strategic partnerships to maintain their market leadership. The competitive landscape is characterized by both large established players and emerging niche providers offering specialized solutions. The market's growth trajectory is influenced by various trends, including the increasing adoption of big data technologies, the growing prevalence of self-service analytics tools empowering business users, and the rise of specialized data analysis service providers catering to specific industry needs. However, certain restraints, such as the lack of skilled data analysts, data security concerns, and the high cost of implementation and maintenance of advanced analytics solutions, could potentially hinder market growth. Addressing these challenges through investments in data literacy programs, enhanced security measures, and flexible pricing models will be crucial for sustaining the market's momentum and unlocking its full potential. Overall, the Data Analysis Services market presents a significant opportunity for companies offering innovative solutions and expertise in this rapidly evolving landscape.

  7. H

    Python Codes for Data Analysis of The Impact of COVID-19 on Technical...

    • dataverse.harvard.edu
    • figshare.com
    Updated Mar 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Szkirpan (2022). Python Codes for Data Analysis of The Impact of COVID-19 on Technical Services Units Survey Results [Dataset]. http://doi.org/10.7910/DVN/SXMSDZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 21, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Elizabeth Szkirpan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Copies of Anaconda 3 Jupyter Notebooks and Python script for holistic and clustered analysis of "The Impact of COVID-19 on Technical Services Units" survey results. Data was analyzed holistically using cleaned and standardized survey results and by library type clusters. To streamline data analysis in certain locations, an off-shoot CSV file was created so data could be standardized without compromising the integrity of the parent clean file. Three Jupyter Notebooks/Python scripts are available in relation to this project: COVID_Impact_TechnicalServices_HolisticAnalysis (a holistic analysis of all survey data) and COVID_Impact_TechnicalServices_LibraryTypeAnalysis (a clustered analysis of impact by library type, clustered files available as part of the Dataverse for this project).

  8. e

    Computational Statistics and Data Analysis - if-computation

    • exaly.com
    csv, json
    Updated Nov 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Computational Statistics and Data Analysis - if-computation [Dataset]. https://exaly.com/journal/14378/computational-statistics-and-data-analysis/impact-factor
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Nov 1, 2025
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This graph shows how the impact factor of ^ is computed. The left axis depicts the number of papers published in years X-1 and X-2, and the right axis displays their citations in year X.

  9. i

    Data and analysis of the avatar surveys

    • ieee-dataport.org
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ines Miguel Alonso (2024). Data and analysis of the avatar surveys [Dataset]. https://ieee-dataport.org/documents/data-and-analysis-avatar-surveys
    Explore at:
    Dataset updated
    Jul 9, 2024
    Authors
    Ines Miguel Alonso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data and analysis of the surveys to study the users' opinion about the presence of an avatar during a learning experience in Mixed Reality. Also there are demographic data and the open questions collected. This data was used in the paper Evaluating the Effectiveness of Avatar-Based Collaboration in XR for Pump Station Training Scenarios for the GeCon 2024 Conference.

  10. G

    Genomic Data Analysis Service Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Genomic Data Analysis Service Report [Dataset]. https://www.archivemarketresearch.com/reports/genomic-data-analysis-service-11532
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Genomic Data Analysis Service market was valued at USD 5295 million in 2024 and is projected to reach USD 12769.01 million by 2033, with an expected CAGR of 13.4 % during the forecast period.

  11. f

    Data from: HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE...

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated May 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helito, Camilo Partezani; Gonçalves, Romeu Krause; de Lima, Lana Lacerda; Clazzer, Renata; de Lima, Diego Ariel; de Camargo, Olavo Pires (2022). HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE USING R SOFTWARE AND RSTUDIO [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000403452
    Explore at:
    Dataset updated
    May 27, 2022
    Authors
    Helito, Camilo Partezani; Gonçalves, Romeu Krause; de Lima, Lana Lacerda; Clazzer, Renata; de Lima, Diego Ariel; de Camargo, Olavo Pires
    Description

    ABSTRACT Meta-analysis is an adequate statistical technique to combine results from different studies, and its use has been growing in the medical field. Thus, not only knowing how to interpret meta-analysis, but also knowing how to perform one, is fundamental today. Therefore, the objective of this article is to present the basic concepts and serve as a guide for conducting a meta-analysis using R and RStudio software. For this, the reader has access to the basic commands in the R and RStudio software, necessary for conducting a meta-analysis. The advantage of R is that it is a free software. For a better understanding of the commands, two examples were presented in a practical way, in addition to revising some basic concepts of this statistical technique. It is assumed that the data necessary for the meta-analysis has already been collected, that is, the description of methodologies for systematic review is not a discussed subject. Finally, it is worth remembering that there are many other techniques used in meta-analyses that were not addressed in this work. However, with the two examples used, the article already enables the reader to proceed with good and robust meta-analyses. Level of Evidence V, Expert Opinion.

  12. m

    Supply Chain Big Data Analytics Market - Companies, Forecast & Trends

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Supply Chain Big Data Analytics Market - Companies, Forecast & Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/global-supply-chain-big-data-analytics-market-industry
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Oct 3, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Supply Chain Big Data Analytics Market Report is Segmented by Component (Solution, Service), End User Industry (Retail, Transportation and Logistics, Manufacturing, Healthcare, Other End-User Industries), Deployment Model (On-Premise, Cloud), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

  13. Data Analysis Reports Team (DART) -

    • data.virginia.gov
    • data.transportation.gov
    • +3more
    html
    Updated May 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S Department of Transportation (2024). Data Analysis Reports Team (DART) - [Dataset]. https://data.virginia.gov/dataset/data-analysis-reports-team-dart
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 24, 2024
    Dataset provided by
    Federal Motor Carrier Safety Administrationhttps://www.fmcsa.dot.gov/
    Authors
    U.S Department of Transportation
    Description

    The DART team is responsible for fulfilling ad hoc data requests that come in to the Analysis Division, FMCSA. The DART system tracks these requests, stores any coding and results, and performs internal reporting about requests received.

  14. Association rule mining data for census tract chemical exposure analysis

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Association rule mining data for census tract chemical exposure analysis [Dataset]. https://catalog.data.gov/dataset/association-rule-mining-data-for-census-tract-chemical-exposure-analysis
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Chemical concentration, exposure, and health risk data for U.S. census tracts from National Scale Air Toxics Assessment (NATA). This dataset is associated with the following publication: Huang, H., R. Tornero-Velez, and T. Barzyk. Associations between socio-demographic characteristics and chemical concentrations contributing to cumulative exposures in the United States. Journal of Exposure Science and Environmental Epidemiology. Nature Publishing Group, London, UK, 27(6): 544-550, (2017).

  15. M

    Marketing Data Analysis Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Marketing Data Analysis Software Report [Dataset]. https://www.archivemarketresearch.com/reports/marketing-data-analysis-software-40114
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Marketing Data Analysis Software market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.

  16. e

    Analysis of Data

    • paper.erudition.co.in
    html
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic, Analysis of Data [Dataset]. https://paper.erudition.co.in/makaut/master-of-business-administration-2023-24/3/marketing-research-and-analytics
    Explore at:
    htmlAvailable download formats
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Analysis of Data of Marketing Research and Analytics, 3rd semester , Master of Business Administration (2023-24)

  17. Refined DataCo Supply Chain Geospatial Dataset

    • kaggle.com
    zip
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Om Gupta (2025). Refined DataCo Supply Chain Geospatial Dataset [Dataset]. https://www.kaggle.com/datasets/aaumgupta/refined-dataco-supply-chain-geospatial-dataset
    Explore at:
    zip(29010639 bytes)Available download formats
    Dataset updated
    Jan 29, 2025
    Authors
    Om Gupta
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Refined DataCo Smart Supply Chain Geospatial Dataset

    Optimized for Geospatial and Big Data Analysis

    This dataset is a refined and enhanced version of the original DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS dataset, specifically designed for advanced geospatial and big data analysis. It incorporates geocoded information, language translations, and cleaned data to enable applications in logistics optimization, supply chain visualization, and performance analytics.

    Key Features

    1. Geocoded Source and Destination Data

    • Accurate latitude and longitude coordinates for both source and destination locations.
    • Facilitates geospatial mapping, route analysis, and distance calculations.

    2. Supplementary GeoJSON Files

    • src_points.geojson: Source point geometries.
    • dest_points.geojson: Destination point geometries.
    • routes.geojson: Line geometries representing source-destination routes.
    • These files are compatible with GIS software and geospatial libraries such as GeoPandas, Folium, and QGIS.

    3. Language Translation

    • Key location fields (countries, states, and cities) are translated into English for consistency and global accessibility.

    4. Cleaned and Consolidated Data

    • Addressed missing values, removed duplicates, and corrected erroneous entries.
    • Ready-to-use dataset for analysis without additional preprocessing.

    5. Routes and Points Geometry

    • Enables the creation of spatial visualizations, hotspot identification, and route efficiency analyses.

    Applications

    1. Logistics Optimization

    • Analyze transportation routes and delivery performance to improve efficiency and reduce costs.

    2. Supply Chain Visualization

    • Create detailed maps to visualize the global flow of goods.

    3. Geospatial Modeling

    • Perform proximity analysis, clustering, and geospatial regression to uncover patterns in supply chain operations.

    4. Business Intelligence

    • Use the dataset for KPI tracking, decision-making, and operational insights.

    Dataset Content

    Files Included

    1. DataCoSupplyChainDatasetRefined.csv

      • The main dataset containing cleaned fields, geospatial coordinates, and English translations.
    2. src_points.geojson

      • GeoJSON file containing the source points for easy visualization and analysis.
    3. dest_points.geojson

      • GeoJSON file containing the destination points.
    4. routes.geojson

      • GeoJSON file with LineStrings representing routes between source and destination points.

    Attribution

    This dataset is based on the original dataset published by Fabian Constante, Fernando Silva, and António Pereira:
    Constante, Fabian; Silva, Fernando; Pereira, António (2019), “DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS”, Mendeley Data, V5, doi: 10.17632/8gx2fvg2k6.5.

    Refinements include geospatial processing, translation, and additional cleaning by the uploader to enhance usability and analytical potential.

    Tips for Using the Dataset

    • For geospatial analysis, leverage tools like GeoPandas, QGIS, or Folium to visualize routes and points.
    • Use the GeoJSON files for interactive mapping and spatial queries.
    • Combine this dataset with external datasets (e.g., road networks) for enriched analytics.

    This dataset is designed to empower data scientists, researchers, and business professionals to explore the intersection of geospatial intelligence and supply chain optimization.

  18. IoT-Town

    • kaggle.com
    zip
    Updated Apr 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauren Dobratz (2022). IoT-Town [Dataset]. https://www.kaggle.com/datasets/laurendobratz/iottown
    Explore at:
    zip(4236 bytes)Available download formats
    Dataset updated
    Apr 24, 2022
    Authors
    Lauren Dobratz
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    IoT-Town is focused around using IoT sensors on the Helium Network. We will use sensors to mine and analyze data for the purpose of allowing Data Scientists and/or students a way to analyze the data from these sensors in a way that they can tap into the unfounded info that's within.

    The data is being collected through two Dragino Temperature and Humidity sensors and two Dragino Door-Status sensors.

    Through a decoder function, the data from these IoT devices were extracted and serialized to a Google Sheet integration for user-friendly data analysis.

    The data for the temperature and humidity sensors were sporadic and had a handful of misreadings ( outliers) which may make it more challenging to perform analysis on this data.

    For backup collection methods, we utilized other integrations in the Helium console such as Datacake, Cayenne, MyDevices, Akenza to check the accuracy of data transmission and proved it checked out, so we continued with phasing out those integrations and relied solely on Google Sheet Integrations because of the UI/UX experience it provides as far as customizing the data visualizations the way we wanted.

  19. Bike Rental Data

    • kaggle.com
    zip
    Updated Jan 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PrepInsta Technologies (2023). Bike Rental Data [Dataset]. https://www.kaggle.com/datasets/prepinstaprime/bike-rental-data
    Explore at:
    zip(132898 bytes)Available download formats
    Dataset updated
    Jan 20, 2023
    Authors
    PrepInsta Technologies
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Problem Statement-

    Bike-sharing systems are meant to rent bicycles and return to different places for bike-sharing purposes in Washington DC.

    You are provided with rental data spanning 2 years. It would help if you predicted the total count of bikes rented during each hour covered by the test set, using only information available prior to the rental period.

    This is the bike rental dataset, to practice pandas profiling. This dataset contains numerical values.

    Tasks to perform : 1. Perform Exploratory Data Analysis 2. Use Pandas Profiling

    Compare the pandas profiling report with Exploratory Data Analysis

  20. E

    Exploratory Data Analysis (EDA) Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Exploratory Data Analysis (EDA) Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/exploratory-data-analysis-eda-tools-532159
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Explore the booming Exploratory Data Analysis (EDA) Tools market, projected to reach $10.5 billion by 2025 with a 12.5% CAGR. Discover key drivers, trends, and market share for large enterprises, SMEs, graphical & non-graphical tools across North America, Europe, APAC, and more.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Roots Analysis (2025). Data Analytic Market Size, Share, Trends & Insights Report, 2035 [Dataset]. https://www.rootsanalysis.com/data-analytics-market

Data Analytic Market Size, Share, Trends & Insights Report, 2035

Explore at:
Dataset updated
Sep 11, 2025
Dataset authored and provided by
Roots Analysis
License

https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

Description

The data analytic market size is projected to grow from USD 69.40 billion in the current year to USD 877.12 billion by 2035, representing a CAGR of 25.93%, during the forecast period till 2035.

Search
Clear search
Close search
Google apps
Main menu