100+ datasets found
  1. TMDB movies clean dataset

    • kaggle.com
    zip
    Updated Sep 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bharat Kumar0925 (2024). TMDB movies clean dataset [Dataset]. https://www.kaggle.com/datasets/bharatkumar0925/tmdb-movies-clean-dataset
    Explore at:
    zip(266877093 bytes)Available download formats
    Dataset updated
    Sep 6, 2024
    Authors
    Bharat Kumar0925
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Description

    This dataset contains two files: Large_movies_data.csv and large_movies_clean.csv. The data is taken from the TMDB dataset. Originally, it contained around 900,000 movies, but some movies were dropped for recommendation purposes. Specifically, movies missing an overview were removed since the overview is one of the most important columns for analysis.

    Column Description:

    Large_movies_data.csv:

    • Id: Unique identifier for each movie.
    • Title: The title of the movie.
    • Overview: A brief description of the movie.
    • Genres: The genres associated with the movie.
    • Cast: The main actors in the movie.
    • Director: The director of the movie.
    • Writers: The screenwriters of the movie.
    • Production_companies: Companies involved in producing the movie.
    • Producers: Producers of the movie.
    • Original_language: The original language of the movie.
    • Vote_count: Number of votes the movie has received.
    • Vote_average: Average rating based on user votes.
    • Popularity: Popularity score of the movie.
    • Runtime: Duration of the movie in minutes.
    • Release_date: The release date of the movie.

    Total movies in Large_movies_data.csv: 663,828.

    Large_movies_clean.csv:

    This file is a cleaned version with unnecessary columns removed, text converted to lowercase, and many symbols removed (though some may still remain). If you find that certain features are missing, you can use the original Large_movies_data.csv.

    Columns in large_movies_clean.csv: - Id: Unique identifier for each movie. - Title: The title of the movie. - Tags: Combined information from the overview, genres, and other textual columns. - Original_language: The original language of the movie. - Vote_count: Number of votes the movie has received. - Vote_average: Average rating based on user votes. - Year: Year extracted from the release date. - Month: Month extracted from the release date.

    Possible Use Cases:

    1. Recommendation System: A robust recommendation system can be built using this large dataset.
    2. Analysis: Analyze various aspects, such as identifying actors who starred in the most popular movies, the impact of having the same writer, director, and producer on a movie, and whether independent producers create better movies.
    3. Rating Prediction: Predict the average rating of a movie based on factors such as overview, genres, and cast.
    4. Other Analysis: Perform other types of analysis to discover patterns in the movie industry.

    If you find this dataset useful, please upvote it!

  2. m

    Student Skill Gap Analysis

    • data.mendeley.com
    • kaggle.com
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bindu Garg (2025). Student Skill Gap Analysis [Dataset]. http://doi.org/10.17632/rv6scbpd7v.1
    Explore at:
    Dataset updated
    Apr 28, 2025
    Authors
    Bindu Garg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is designed for skill gap analysis, focusing on evaluating the skill gap between students’ current skills and industry requirements. It provides insights into technical skills, soft skills, career interests, and challenges, helping in skill gap analysis to identify areas for improvement.

    By leveraging this dataset, educators, recruiters, and researchers can conduct skill gap analysis to assess students’ job readiness and tailor training programs accordingly. It serves as a valuable resource for identifying skill deficiencies and skill gaps improving career guidance, and enhancing curriculum design through targeted skill gap analysis.

    Following is the column descriptors: Name - Student's full name. email_id - Student's email address. Year - The academic year the student is currently in (e.g., 1st Year, 2nd Year, etc.). Current Course - The course the student is currently pursuing (e.g., B.Tech CSE, MBA, etc.). Technical Skills - List of technical skills possessed by the student (e.g., Python, Data Analysis, Cloud Computing). Programming Languages - Programming languages known by the student (e.g., Python, Java, C++). Rating - Self-assessed rating of technical skills on a scale of 1 to 5. Soft Skills - List of soft skills (e.g., Communication, Leadership, Teamwork). Rating - Self-assessed rating of soft skills on a scale of 1 to 5. Projects - Indicates whether the student has worked on any projects (Yes/No). Career Interest - The student's preferred career path (e.g., Data Scientist, Software Engineer). Challenges - Challenges faced while applying for jobs/internships (e.g., Lack of experience, Resume building issues).

  3. N

    Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aa8c95e0-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel, Alabama
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.

    Key observations

    The largest age group in Excel, AL was for the group of age 45 to 49 years years with a population of 74 (15.64%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.42%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Excel is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Excel total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here

  4. f

    Assessment and Improvement of Statistical Tools for Comparative Proteomics...

    • acs.figshare.com
    • figshare.com
    txt
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veit Schwämmle; Ileana Rodríguez León; Ole Nørregaard Jensen (2023). Assessment and Improvement of Statistical Tools for Comparative Proteomics Analysis of Sparse Data Sets with Few Experimental Replicates [Dataset]. http://doi.org/10.1021/pr400045u.s002
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    ACS Publications
    Authors
    Veit Schwämmle; Ileana Rodríguez León; Ole Nørregaard Jensen
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Large-scale quantitative analyses of biological systems are often performed with few replicate experiments, leading to multiple nonidentical data sets due to missing values. For example, mass spectrometry driven proteomics experiments are frequently performed with few biological or technical replicates due to sample-scarcity or due to duty-cycle or sensitivity constraints, or limited capacity of the available instrumentation, leading to incomplete results where detection of significant feature changes becomes a challenge. This problem is further exacerbated for the detection of significant changes on the peptide level, for example, in phospho-proteomics experiments. In order to assess the extent of this problem and the implications for large-scale proteome analysis, we investigated and optimized the performance of three statistical approaches by using simulated and experimental data sets with varying numbers of missing values. We applied three tools, including standard t test, moderated t test, also known as limma, and rank products for the detection of significantly changing features in simulated and experimental proteomics data sets with missing values. The rank product method was improved to work with data sets containing missing values. Extensive analysis of simulated and experimental data sets revealed that the performance of the statistical analysis tools depended on simple properties of the data sets. High-confidence results were obtained by using the limma and rank products methods for analyses of triplicate data sets that exhibited more than 1000 features and more than 50% missing values. The maximum number of differentially represented features was identified by using limma and rank products methods in a complementary manner. We therefore recommend combined usage of these methods as a novel and optimal way to detect significantly changing features in these data sets. This approach is suitable for large quantitative data sets from stable isotope labeling and mass spectrometry experiments and should be applicable to large data sets of any type. An R script that implements the improved rank products algorithm and the combined analysis is available.

  5. Generative AI In Data Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Generative AI In Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/generative-ai-in-data-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Generative AI In Data Analytics Market Size 2025-2029

    The generative ai in data analytics market size is valued to increase by USD 4.62 billion, at a CAGR of 35.5% from 2024 to 2029. Democratization of data analytics and increased accessibility will drive the generative ai in data analytics market.

    Market Insights

    North America dominated the market and accounted for a 37% growth during the 2025-2029.
    By Deployment - Cloud-based segment was valued at USD 510.60 billion in 2023
    By Technology - Machine learning segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 621.84 million 
    Market Future Opportunities 2024: USD 4624.00 million
    CAGR from 2024 to 2029 : 35.5%
    

    Market Summary

    The market is experiencing significant growth as businesses worldwide seek to unlock new insights from their data through advanced technologies. This trend is driven by the democratization of data analytics and increased accessibility of AI models, which are now available in domain-specific and enterprise-tuned versions. Generative AI, a subset of artificial intelligence, uses deep learning algorithms to create new data based on existing data sets. This capability is particularly valuable in data analytics, where it can be used to generate predictions, recommendations, and even new data points. One real-world business scenario where generative AI is making a significant impact is in supply chain optimization. In this context, generative AI models can analyze historical data and generate forecasts for demand, inventory levels, and production schedules. This enables businesses to optimize their supply chain operations, reduce costs, and improve customer satisfaction. However, the adoption of generative AI in data analytics also presents challenges, particularly around data privacy, security, and governance. As businesses continue to generate and analyze increasingly large volumes of data, ensuring that it is protected and used in compliance with regulations is paramount. Despite these challenges, the benefits of generative AI in data analytics are clear, and its use is set to grow as businesses seek to gain a competitive edge through data-driven insights.

    What will be the size of the Generative AI In Data Analytics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleGenerative AI, a subset of artificial intelligence, is revolutionizing data analytics by automating data processing and analysis, enabling businesses to derive valuable insights faster and more accurately. Synthetic data generation, a key application of generative AI, allows for the creation of large, realistic datasets, addressing the challenge of insufficient data in analytics. Parallel processing methods and high-performance computing power the rapid analysis of vast datasets. Automated machine learning and hyperparameter optimization streamline model development, while model monitoring systems ensure continuous model performance. Real-time data processing and scalable data solutions facilitate data-driven decision-making, enabling businesses to respond swiftly to market trends. One significant trend in the market is the integration of AI-powered insights into business operations. For instance, probabilistic graphical models and backpropagation techniques are used to predict customer churn and optimize marketing strategies. Ensemble learning methods and transfer learning techniques enhance predictive analytics, leading to improved customer segmentation and targeted marketing. According to recent studies, businesses have achieved a 30% reduction in processing time and a 25% increase in predictive accuracy by implementing generative AI in their data analytics processes. This translates to substantial cost savings and improved operational efficiency. By embracing this technology, businesses can gain a competitive edge, making informed decisions with greater accuracy and agility.

    Unpacking the Generative AI In Data Analytics Market Landscape

    In the dynamic realm of data analytics, Generative AI algorithms have emerged as a game-changer, revolutionizing data processing and insights generation. Compared to traditional data mining techniques, Generative AI models can create new data points that mirror the original dataset, enabling more comprehensive data exploration and analysis (Source: Gartner). This innovation leads to a 30% increase in identified patterns and trends, resulting in improved ROI and enhanced business decision-making (IDC).

    Data security protocols are paramount in this context, with Classification Algorithms and Clustering Algorithms ensuring data privacy and compliance alignment. Machine Learning Pipelines and Deep Learning Frameworks facilitate seamless integration with Predictive Modeling Tools and Automated Report Generation on Cloud

  6. Classicmodels

    • kaggle.com
    zip
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Javier Landaeta (2024). Classicmodels [Dataset]. https://www.kaggle.com/datasets/javierlandaeta/classicmodels
    Explore at:
    zip(65751 bytes)Available download formats
    Dataset updated
    Dec 15, 2024
    Authors
    Javier Landaeta
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Abstract This project presents a comprehensive analysis of a company's annual sales, using the classic dataset classicmodels as the database. Python is used as the main programming language, along with the Pandas, NumPy and SQLAlchemy libraries for data manipulation and analysis, and PostgreSQL as the database management system.

    The main objective of the project is to answer key questions related to the company's sales performance, such as: Which were the most profitable products and customers? Were sales goals met? The results obtained serve as input for strategic decision making in future sales campaigns.

    Methodology 1. Data Extraction:

    • A connection is established with the PostgreSQL database to extract the relevant data from the orders, orderdetails, customers, products and employees tables.
    • A reusable function is created to read each table and load it into a Pandas DataFrame.

    2. Data Cleansing and Transformation:

    • An exploratory analysis of the data is performed to identify missing values, inconsistencies, and outliers.
    • New variables are calculated, such as the total value of each sale, cost, and profit.
    • Different DataFrames are joined using primary and foreign keys to obtain a complete view of sales.

    3. Exploratory Data Analysis (EDA):

    • Key metrics such as total sales, number of unique customers, and average order value are calculated.
    • Data is grouped by different dimensions (products, customers, dates) to identify patterns and trends.
    • Results are visualized using relevant graphics (histograms, bar charts, etc.).

    4. Modeling and Prediction:

    • Although the main focus of the project is descriptive, predictive modeling techniques (e.g., time series) could be explored to forecast future sales.

    5. Report Generation:

    • Detailed reports are created in Pandas DataFrames format that answer specific business questions.
    • These reports are stored in new PostgreSQL tables for further analysis and visualization.

    Results - Identification of top products and customers: The best-selling products and the customers that generate the most revenue are identified. - Analysis of sales trends: Sales trends over time are analyzed and possible factors that influence sales behavior are identified. - Calculation of key metrics: Metrics such as average profit margin and sales growth rate are calculated.

    Conclusions This project demonstrates how Python and PostgreSQL can be effectively used to analyze large data sets and obtain valuable insights for business decision making. The results obtained can serve as a starting point for future research and development in the area of ​​sales analysis.

    Technologies Used - Python: Pandas, NumPy, SQLAlchemy, Matplotlib/Seaborn - Database: PostgreSQL - Tools: Jupyter Notebook - Keywords: data analysis, Python, PostgreSQL, Pandas, NumPy, SQLAlchemy, EDA, sales, business intelligence

  7. Refined DataCo Supply Chain Geospatial Dataset

    • kaggle.com
    zip
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Om Gupta (2025). Refined DataCo Supply Chain Geospatial Dataset [Dataset]. https://www.kaggle.com/datasets/aaumgupta/refined-dataco-supply-chain-geospatial-dataset
    Explore at:
    zip(29010639 bytes)Available download formats
    Dataset updated
    Jan 29, 2025
    Authors
    Om Gupta
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Refined DataCo Smart Supply Chain Geospatial Dataset

    Optimized for Geospatial and Big Data Analysis

    This dataset is a refined and enhanced version of the original DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS dataset, specifically designed for advanced geospatial and big data analysis. It incorporates geocoded information, language translations, and cleaned data to enable applications in logistics optimization, supply chain visualization, and performance analytics.

    Key Features

    1. Geocoded Source and Destination Data

    • Accurate latitude and longitude coordinates for both source and destination locations.
    • Facilitates geospatial mapping, route analysis, and distance calculations.

    2. Supplementary GeoJSON Files

    • src_points.geojson: Source point geometries.
    • dest_points.geojson: Destination point geometries.
    • routes.geojson: Line geometries representing source-destination routes.
    • These files are compatible with GIS software and geospatial libraries such as GeoPandas, Folium, and QGIS.

    3. Language Translation

    • Key location fields (countries, states, and cities) are translated into English for consistency and global accessibility.

    4. Cleaned and Consolidated Data

    • Addressed missing values, removed duplicates, and corrected erroneous entries.
    • Ready-to-use dataset for analysis without additional preprocessing.

    5. Routes and Points Geometry

    • Enables the creation of spatial visualizations, hotspot identification, and route efficiency analyses.

    Applications

    1. Logistics Optimization

    • Analyze transportation routes and delivery performance to improve efficiency and reduce costs.

    2. Supply Chain Visualization

    • Create detailed maps to visualize the global flow of goods.

    3. Geospatial Modeling

    • Perform proximity analysis, clustering, and geospatial regression to uncover patterns in supply chain operations.

    4. Business Intelligence

    • Use the dataset for KPI tracking, decision-making, and operational insights.

    Dataset Content

    Files Included

    1. DataCoSupplyChainDatasetRefined.csv

      • The main dataset containing cleaned fields, geospatial coordinates, and English translations.
    2. src_points.geojson

      • GeoJSON file containing the source points for easy visualization and analysis.
    3. dest_points.geojson

      • GeoJSON file containing the destination points.
    4. routes.geojson

      • GeoJSON file with LineStrings representing routes between source and destination points.

    Attribution

    This dataset is based on the original dataset published by Fabian Constante, Fernando Silva, and AntΓ³nio Pereira:
    Constante, Fabian; Silva, Fernando; Pereira, AntΓ³nio (2019), β€œDataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS”, Mendeley Data, V5, doi: 10.17632/8gx2fvg2k6.5.

    Refinements include geospatial processing, translation, and additional cleaning by the uploader to enhance usability and analytical potential.

    Tips for Using the Dataset

    • For geospatial analysis, leverage tools like GeoPandas, QGIS, or Folium to visualize routes and points.
    • Use the GeoJSON files for interactive mapping and spatial queries.
    • Combine this dataset with external datasets (e.g., road networks) for enriched analytics.

    This dataset is designed to empower data scientists, researchers, and business professionals to explore the intersection of geospatial intelligence and supply chain optimization.

  8. N

    Comprehensive Median Household Income and Distribution Dataset for Big Bend...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Big Bend Town, Wisconsin: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cd8b5c39-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Big Bend, Wisconsin
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Big Bend town. It can be utilized to understand the trend in median household income and to analyze the income distribution in Big Bend town by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Big Bend Town, Wisconsin Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Big Bend Town, Wisconsin: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Big Bend Town, Wisconsin
    • Big Bend Town, Wisconsin households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Big Bend town median household income. You can refer the same here

  9. n

    Demo dataset for: SPACEc, a streamlined, interactive Python workflow for...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuqi Tan; Tim Kempchen (2024). Demo dataset for: SPACEc, a streamlined, interactive Python workflow for multiplexed image processing and analysis [Dataset]. http://doi.org/10.5061/dryad.brv15dvj1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 8, 2024
    Dataset provided by
    Stanford University School of Medicine
    Authors
    Yuqi Tan; Tim Kempchen
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Multiplexed imaging technologies provide insights into complex tissue architectures. However, challenges arise due to software fragmentation with cumbersome data handoffs, inefficiencies in processing large images (8 to 40 gigabytes per image), and limited spatial analysis capabilities. To efficiently analyze multiplexed imaging data, we developed SPACEc, a scalable end-to-end Python solution, that handles image extraction, cell segmentation, and data preprocessing and incorporates machine-learning-enabled, multi-scaled, spatial analysis, operated through a user-friendly and interactive interface. The demonstration dataset was derived from a previous analysis and contains TMA cores from a human tonsil and tonsillitis sample that were acquired with the Akoya PhenocyclerFusion platform. The dataset can be used to test the workflow and establish it on a user’s system or to familiarize oneself with the pipeline. Methods Tissue samples: Tonsil cores were extracted from a larger multi-tumor tissue microarray (TMA), which included a total of 66 unique tissues (51 malignant and semi-malignant tissues, as well as 15 non-malignant tissues). Representative tissue regions were annotated on corresponding hematoxylin and eosin (H&E)-stained sections by a board-certified surgical pathologist (S.Z.). Annotations were used to generate the 66 cores each with cores of 1mm diameter. FFPE tissue blocks were retrieved from the tissue archives of the Institute of Pathology, University Medical Center Mainz, Germany, and the Department of Dermatology, University Medical Center Mainz, Germany. The multi-tumor-TMA block was sectioned at 3Β΅m thickness onto SuperFrost Plus microscopy slides before being processed for CODEX multiplex imaging as previously described. CODEX multiplexed imaging and processing To run the CODEX machine, the slide was taken from the storage buffer and placed in PBS for 10 minutes to equilibrate. After drying the PBS with a tissue, a flow cell was sealed onto the tissue slide. The assembled slide and flow cell were then placed in a PhenoCycler Buffer made from 10X PhenoCycler Buffer & Additive for at least 10 minutes before starting the experiment. A 96-well reporter plate was prepared with each reporter corresponding to the correct barcoded antibody for each cycle, with up to 3 reporters per cycle per well. The fluorescence reporters were mixed with 1X PhenoCycler Buffer, Additive, nuclear-staining reagent, and assay reagent according to the manufacturer's instructions. With the reporter plate and assembled slide and flow cell placed into the CODEX machine, the automated multiplexed imaging experiment was initiated. Each imaging cycle included steps for reporter binding, imaging of three fluorescent channels, and reporter stripping to prepare for the next cycle and set of markers. This was repeated until all markers were imaged. After the experiment, a .qptiff image file containing individual antibody channels and the DAPI channel was obtained. Image stitching, drift compensation, deconvolution, and cycle concatenation are performed within the Akoya PhenoCycler software. The raw imaging data output (tiff, 377.442nm per pixel for 20x CODEX) is first examined with QuPath software (https://qupath.github.io/) for inspection of staining quality. Any markers that produce unexpected patterns or low signal-to-noise ratios should be excluded from the ensuing analysis. The qptiff files must be converted into tiff files for input into SPACEc. Data preprocessing includes image stitching, drift compensation, deconvolution, and cycle concatenation performed using the Akoya Phenocycler software. The raw imaging data (qptiff, 377.442 nm/pixel for 20x CODEX) files from the Akoya PhenoCycler technology were first examined with QuPath software (https://qupath.github.io/) to inspect staining qualities. Markers with untenable patterns or low signal-to-noise ratios were excluded from further analysis. A custom CODEX analysis pipeline was used to process all acquired CODEX data (scripts available upon request). The qptiff files were converted into tiff files for tissue detection (watershed algorithm) and cell segmentation.

  10. c

    ckanext-datatablesview

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-datatablesview [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-datatablesview
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The datatablesview extension for CKAN enhances the display of tabular datasets within CKAN by integrating the DataTables JavaScript library. As a fork of a previous DataTables CKAN plugin, this extension aims to provide improved functionality and maintainability for presenting data in a user-friendly and interactive tabular format. This tool focuses on making data more accessible and easier to explore directly within the CKAN interface. Key Features: Enhanced Data Visualization: Transforms standard CKAN dataset views into interactive tables using the DataTables library, providing a more engaging user experience compared to plain HTML tables. Interactive Table Functionality: Includes features such as sorting, filtering, and pagination within the data table, allowing users to easily navigate and analyze large datasets directly in the browser. Improved Data Accessibility: Makes tabular data more accessible to a wider range of users by providing intuitive tools to explore and understand the information. Presumed Customizable Appearance: Given that it is based on DataTables, users will likely be able to customize the look and feel of the tables through DataTables configuration options (note: this is an assumption based on standard DataTables usage and may require coding). Use Cases (based on typical DataTables applications): Government Data Portals: Display complex government datasets in a format that is easy for citizens to search, filter, and understand, enhancing transparency and promoting data-driven decision-making. For example, presenting financial data, population statistics, or environmental monitoring results. Research Data Repositories: Allow researchers to quickly explore and analyze large scientific datasets directly within the CKAN interface, facilitating data discovery and collaboration. Corporate Data Catalogs: Enable business users to easily access and manipulate tabular data relevant to their roles, improving data literacy and enabling data-informed business strategies. Technical Integration (inferred from CKAN extension structure): The extension likely operates by leveraging CKAN's plugin architecture to override the default dataset view for tabular data. Its implementation likely uses CKAN's templating system to render datasets using DataTables' JavaScript and CSS, enhancing data-viewing experience. Benefits & Impact: By implementing the datatablesview extension, organizations can improve the user experience when accessing and exploring tabular datasets within their CKAN instances. The enhanced interactivity and data exploration features can lead to increased data utilization, improved data literacy, and more effective data-driven decision-making within organizations and communities.

  11. New 1000 Sales Records Data 2

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Calvin Oko Mensah (2023). New 1000 Sales Records Data 2 [Dataset]. https://www.kaggle.com/datasets/calvinokomensah/new-1000-sales-records-data-2
    Explore at:
    zip(49305 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    Calvin Oko Mensah
    Description

    This is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.

  12. N

    Comprehensive Median Household Income and Distribution Dataset for Big...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Big Sandy, TX: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cd8b6e24-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Big Sandy
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Big Sandy. It can be utilized to understand the trend in median household income and to analyze the income distribution in Big Sandy by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Big Sandy, TX Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Big Sandy, TX: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Big Sandy, TX
    • Big Sandy, TX households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Big Sandy median household income. You can refer the same here

  13. Daily Social Media Active Users

    • kaggle.com
    zip
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaik Barood Mohammed Umar Adnaan Faiz (2025). Daily Social Media Active Users [Dataset]. https://www.kaggle.com/datasets/umeradnaan/daily-social-media-active-users
    Explore at:
    zip(126814 bytes)Available download formats
    Dataset updated
    May 5, 2025
    Authors
    Shaik Barood Mohammed Umar Adnaan Faiz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description:

    The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.

    Dataset Breakdown:

    • Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.

    • Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.

    • Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.

    • Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.

    • Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.

    • Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.

    • Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.

    Context and Use Cases:

    • This synthetic dataset is designed to offer a privacy-friendly alternative for analytics, research, and machine learning purposes. Given the complexities and privacy concerns around using real user data, especially in the context of social media, this dataset offers a clean and secure way to develop, test, and fine-tune applications, models, and algorithms without the risks of handling sensitive or personal information.

    Researchers, data scientists, and developers can use this dataset to:

    • Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.

    • Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.

    • Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.

    • Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.

    • Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.

    • Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.

    The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.

    Future Considerations:

    As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.

    By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...

  14. N

    Comprehensive Median Household Income and Distribution Dataset for Big...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Big Prairie Township, Michigan: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cd8b653e-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, Big Prairie, Big Prairie Township
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Big Prairie township. It can be utilized to understand the trend in median household income and to analyze the income distribution in Big Prairie township by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Big Prairie Township, Michigan Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Big Prairie Township, Michigan: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Big Prairie Township, Michigan
    • Big Prairie Township, Michigan households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Big Prairie township median household income. You can refer the same here

  15. N

    Comprehensive Median Household Income and Distribution Dataset for Brevard...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Brevard County, FL: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cd8d6902-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brevard County, Florida
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Brevard County. It can be utilized to understand the trend in median household income and to analyze the income distribution in Brevard County by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Brevard County, FL Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Brevard County, FL: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Brevard County, FL
    • Brevard County, FL households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Brevard County median household income. You can refer the same here

  16. All Seaborn Built-in Datasets πŸ“Šβœ¨

    • kaggle.com
    zip
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdelrahman Mohamed (2024). All Seaborn Built-in Datasets πŸ“Šβœ¨ [Dataset]. https://www.kaggle.com/datasets/abdoomoh/all-seaborn-built-in-datasets
    Explore at:
    zip(1383218 bytes)Available download formats
    Dataset updated
    Aug 27, 2024
    Authors
    Abdelrahman Mohamed
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description: - This dataset includes all 22 built-in datasets from the Seaborn library, a widely used Python data visualization tool. Seaborn's built-in datasets are essential resources for anyone interested in practicing data analysis, visualization, and machine learning. They span a wide range of topics, from classic datasets like the Iris flower classification to real-world data such as Titanic survival records and diamond characteristics.

    • Included Datasets:
      • Anagrams: Analysis of word anagram patterns.
      • Anscombe: Anscombe's quartet demonstrating the importance of data visualization.
      • Attention: Data on attention span variations in different scenarios.
      • Brain Networks: Connectivity data within brain networks.
      • Car Crashes: US car crash statistics.
      • Diamonds: Data on diamond properties including price, cut, and clarity.
      • Dots: Randomly generated data for scatter plot visualization.
      • Dow Jones: Historical records of the Dow Jones Industrial Average.
      • Exercise: The relationship between exercise and health metrics.
      • Flights: Monthly passenger numbers on flights.
      • FMRI: Functional MRI data capturing brain activity.
      • Geyser: Eruption times of the Old Faithful geyser.
      • Glue: Strength of glue under different conditions.
      • Health Expenditure: Health expenditure statistics across countries.
      • Iris: Famous dataset for classifying Iris species.
      • MPG: Miles per gallon for various vehicles.
      • Penguins: Data on penguin species and their features.
      • Planets: Characteristics of discovered exoplanets.
      • Sea Ice: Measurements of sea ice extent.
      • Taxis: Taxi trips data in a city.
      • Tips: Tipping data collected from a restaurant.
      • Titanic: Survival data from the Titanic disaster.

    This complete collection serves as an excellent starting point for anyone looking to improve their data science skills, offering a wide array of datasets suitable for both beginners and advanced users.

  17. N

    Comprehensive Median Household Income and Distribution Dataset for Billings,...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Billings, OK: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cd8b9f5b-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Oklahoma, Billings
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Billings. It can be utilized to understand the trend in median household income and to analyze the income distribution in Billings by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Billings, OK Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Billings, OK: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Billings, OK
    • Billings, OK households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Billings median household income. You can refer the same here

  18. N

    Comprehensive Income by Age Group Dataset: Longitudinal Analysis of Missouri...

    • neilsberg.com
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Income by Age Group Dataset: Longitudinal Analysis of Missouri Household Incomes Across 4 Age Groups and 16 Income Brackets. Annual Editions Collection // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2ee229b6-aeee-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Missouri household income by age. The dataset can be utilized to understand the age-based income distribution of Missouri income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Missouri annual median income by age groups dataset (in 2022 inflation-adjusted dollars)
    • Age-wise distribution of Missouri household incomes: Comparative analysis across 16 income brackets

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Missouri income distribution by age. You can refer the same here

  19. N

    Comprehensive Median Household Income and Distribution Dataset for Woodland...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Woodland Park, CO: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cdc9c889-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Colorado, Woodland Park
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Woodland Park. It can be utilized to understand the trend in median household income and to analyze the income distribution in Woodland Park by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Woodland Park, CO Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Woodland Park, CO: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Woodland Park, CO
    • Woodland Park, CO households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Woodland Park median household income. You can refer the same here

  20. N

    Comprehensive Median Household Income and Distribution Dataset for Franklin...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Franklin County, ID: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cd9bc671-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Franklin County
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Franklin County. It can be utilized to understand the trend in median household income and to analyze the income distribution in Franklin County by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Franklin County, ID Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Franklin County, ID: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Franklin County, ID
    • Franklin County, ID households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Franklin County median household income. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bharat Kumar0925 (2024). TMDB movies clean dataset [Dataset]. https://www.kaggle.com/datasets/bharatkumar0925/tmdb-movies-clean-dataset
Organization logo

TMDB movies clean dataset

Large clean data of TMDB movies

Explore at:
zip(266877093 bytes)Available download formats
Dataset updated
Sep 6, 2024
Authors
Bharat Kumar0925
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Dataset Description

This dataset contains two files: Large_movies_data.csv and large_movies_clean.csv. The data is taken from the TMDB dataset. Originally, it contained around 900,000 movies, but some movies were dropped for recommendation purposes. Specifically, movies missing an overview were removed since the overview is one of the most important columns for analysis.

Column Description:

Large_movies_data.csv:

  • Id: Unique identifier for each movie.
  • Title: The title of the movie.
  • Overview: A brief description of the movie.
  • Genres: The genres associated with the movie.
  • Cast: The main actors in the movie.
  • Director: The director of the movie.
  • Writers: The screenwriters of the movie.
  • Production_companies: Companies involved in producing the movie.
  • Producers: Producers of the movie.
  • Original_language: The original language of the movie.
  • Vote_count: Number of votes the movie has received.
  • Vote_average: Average rating based on user votes.
  • Popularity: Popularity score of the movie.
  • Runtime: Duration of the movie in minutes.
  • Release_date: The release date of the movie.

Total movies in Large_movies_data.csv: 663,828.

Large_movies_clean.csv:

This file is a cleaned version with unnecessary columns removed, text converted to lowercase, and many symbols removed (though some may still remain). If you find that certain features are missing, you can use the original Large_movies_data.csv.

Columns in large_movies_clean.csv: - Id: Unique identifier for each movie. - Title: The title of the movie. - Tags: Combined information from the overview, genres, and other textual columns. - Original_language: The original language of the movie. - Vote_count: Number of votes the movie has received. - Vote_average: Average rating based on user votes. - Year: Year extracted from the release date. - Month: Month extracted from the release date.

Possible Use Cases:

  1. Recommendation System: A robust recommendation system can be built using this large dataset.
  2. Analysis: Analyze various aspects, such as identifying actors who starred in the most popular movies, the impact of having the same writer, director, and producer on a movie, and whether independent producers create better movies.
  3. Rating Prediction: Predict the average rating of a movie based on factors such as overview, genres, and cast.
  4. Other Analysis: Perform other types of analysis to discover patterns in the movie industry.

If you find this dataset useful, please upvote it!

Search
Clear search
Close search
Google apps
Main menu