100+ datasets found
  1. f

    Comparison of alternative approaches for analysing multi-level RNA-seq data

    • plos.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irina Mohorianu; Amanda Bretman; Damian T. Smith; Emily K. Fowler; Tamas Dalmay; Tracey Chapman (2023). Comparison of alternative approaches for analysing multi-level RNA-seq data [Dataset]. http://doi.org/10.1371/journal.pone.0182694
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Irina Mohorianu; Amanda Bretman; Damian T. Smith; Emily K. Fowler; Tamas Dalmay; Tracey Chapman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    RNA sequencing (RNA-seq) is widely used for RNA quantification in the environmental, biological and medical sciences. It enables the description of genome-wide patterns of expression and the identification of regulatory interactions and networks. The aim of RNA-seq data analyses is to achieve rigorous quantification of genes/transcripts to allow a reliable prediction of differential expression (DE), despite variation in levels of noise and inherent biases in sequencing data. This can be especially challenging for datasets in which gene expression differences are subtle, as in the behavioural transcriptomics test dataset from D. melanogaster that we used here. We investigated the power of existing approaches for quality checking mRNA-seq data and explored additional, quantitative quality checks. To accommodate nested, multi-level experimental designs, we incorporated sample layout into our analyses. We employed a subsampling without replacement-based normalization and an identification of DE that accounted for the hierarchy and amplitude of effect sizes within samples, then evaluated the resulting differential expression call in comparison to existing approaches. In a final step to test for broader applicability, we applied our approaches to a published set of H. sapiens mRNA-seq samples, The dataset-tailored methods improved sample comparability and delivered a robust prediction of subtle gene expression changes. The proposed approaches have the potential to improve key steps in the analysis of RNA-seq data by incorporating the structure and characteristics of biological experiments.

  2. o

    Reference-Based Rna-Seq Data Analysis (Training Data)

    • explore.openaire.eu
    Updated Feb 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bérénice Batut; Pavankumar Videm; Anika Erxleben; Torsten Houwaart; Björn Grüning (2017). Reference-Based Rna-Seq Data Analysis (Training Data) [Dataset]. http://doi.org/10.5281/zenodo.290221
    Explore at:
    Dataset updated
    Feb 10, 2017
    Authors
    Bérénice Batut; Pavankumar Videm; Anika Erxleben; Torsten Houwaart; Björn Grüning
    Description

    RNA-seq (RNA sequencing) uses high-throughput (HTS) data to reveal the presence and quantity of RNA in a biological sample at a given moment in time. In the training available at http://galaxyproject.github.io/RNA-Seq/tutorials/ref_based, we introduce the bioinformatics methods to analyze RNA-seq data using a reference genome. The toy datasets were extracted from the study of Brooks et al. 2011.

  3. Data, R code and output Seurat Objects for single cell RNA-seq analysis of...

    • figshare.com
    application/gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yunshun Chen; Gordon Smyth (2023). Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues [Dataset]. http://doi.org/10.6084/m9.figshare.17058077.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yunshun Chen; Gordon Smyth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.

  4. R

    RNA-Seq Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). RNA-Seq Report [Dataset]. https://www.datainsightsmarket.com/reports/rna-seq-1442670
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jan 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global RNA-Seq market is anticipated to reach a value of XXX million by 2033, expanding at a CAGR of XX% during the forecast period of 2025-2033. The market is primarily driven by the increasing prevalence of cancer and other chronic diseases, coupled with the advancements in RNA sequencing technologies. RNA-Seq is a high-throughput sequencing technique that allows researchers to study the expression of all RNA molecules in a cell or tissue sample. This information can be used to identify biomarkers for diseases, develop new therapies, and understand the mechanisms of gene regulation. The key market trends include the growing adoption of next-generation sequencing (NGS) platforms, the development of new RNA-Seq library preparation methods, and the increasing availability of bioinformatics tools. The major players in the RNA-Seq market include Thermo Fisher Scientific, Illumina, BGI, PacBio, Genewiz, Macrogen, LabCorp, Roche, Qiagen, Eurofins, Novo Gene, Berry Genomics, LC Sciences, Canopy Biosciences, Macrogen, and Hologic. The market is fragmented, with the top players accounting for a significant share. The market is expected to witness significant growth in the coming years, driven by the factors mentioned above.

  5. d

    ReCount - A multi-experiment resource of analysis-ready RNA-seq gene count...

    • dknet.org
    • scicrunch.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ReCount - A multi-experiment resource of analysis-ready RNA-seq gene count datasets [Dataset]. http://identifiers.org/RRID:SCR_001774
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    RNA-seq gene count datasets built using the raw data from 18 different studies. The raw sequencing data (.fastq files) were processed with Myrna to obtain tables of counts for each gene. For ease of statistical analysis, they combined each count table with sample phenotype data to form an R object of class ExpressionSet. The count tables, ExpressionSets, and phenotype tables are ready to use and freely available. By taking care of several preprocessing steps and combining many datasets into one easily-accessible website, we make finding and analyzing RNA-seq data considerably more straightforward.

  6. Z

    Results of "Curare and GenExVis: A versatile toolkit for analyzing and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Goesmann, Alexander (2024). Results of "Curare and GenExVis: A versatile toolkit for analyzing and visualizing RNA-Seq data" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10362479
    Explore at:
    Dataset updated
    Apr 12, 2024
    Dataset provided by
    Goesmann, Alexander
    Brinkrolf, Karina
    Blumenkamp, Patrick
    Jaenicke, Sebastian
    Diedrich, Sonja
    Pfister, Max
    Description

    Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages.

  7. f

    Table_3_Read Mapping and Transcript Assembly: A Scalable and High-Throughput...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sateesh Peri; Sarah Roberts; Isabella R. Kreko; Lauren B. McHan; Alexandra Naron; Archana Ram; Rebecca L. Murphy; Eric Lyons; Brian D. Gregory; Upendra K. Devisetty; Andrew D. L. Nelson (2023). Table_3_Read Mapping and Transcript Assembly: A Scalable and High-Throughput Workflow for the Processing and Analysis of Ribonucleic Acid Sequencing Data.docx [Dataset]. http://doi.org/10.3389/fgene.2019.01361.s004
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Sateesh Peri; Sarah Roberts; Isabella R. Kreko; Lauren B. McHan; Alexandra Naron; Archana Ram; Rebecca L. Murphy; Eric Lyons; Brian D. Gregory; Upendra K. Devisetty; Andrew D. L. Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Next-generation RNA-sequencing is an incredibly powerful means of generating a snapshot of the transcriptomic state within a cell, tissue, or whole organism. As the questions addressed by RNA-sequencing (RNA-seq) become both more complex and greater in number, there is a need to simplify RNA-seq processing workflows, make them more efficient and interoperable, and capable of handling both large and small datasets. This is especially important for researchers who need to process hundreds to tens of thousands of RNA-seq datasets. To address these needs, we have developed a scalable, user-friendly, and easily deployable analysis suite called RMTA (Read Mapping, Transcript Assembly). RMTA can easily process thousands of RNA-seq datasets with features that include automated read quality analysis, filters for lowly expressed transcripts, and read counting for differential expression analysis. RMTA is containerized using Docker for easy deployment within any compute environment [cloud, local, or high-performance computing (HPC)] and is available as two apps in CyVerse's Discovery Environment, one for normal use and one specifically designed for introducing undergraduates and high school to RNA-seq analysis. For extremely large datasets (tens of thousands of FASTq files) we developed a high-throughput, scalable, and parallelized version of RMTA optimized for launching on the Open Science Grid (OSG) from within the Discovery Environment. OSG-RMTA allows users to utilize the Discovery Environment for data management, parallelization, and submitting jobs to OSG, and finally, employ the OSG for distributed, high throughput computing. Alternatively, OSG-RMTA can be run directly on the OSG through the command line. RMTA is designed to be useful for data scientists, of any skill level, interested in rapidly and reproducibly analyzing their large RNA-seq data sets.

  8. Comparative gene expression analysis in the Arabidopsis thaliana root apex...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2025). Comparative gene expression analysis in the Arabidopsis thaliana root apex using RNA-seq and microarray transcriptome profiles [Dataset]. https://catalog.data.gov/dataset/comparative-gene-expression-analysis-in-the-arabidopsis-thaliana-root-apex-using-rna-seq-a-b73a6
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The root apex is an important section of the plant root involved in environmental sensing and cellular development. Analyzing the gene profile of root apex in diverse environments is important and challenging especially when the samples are limiting and precious such as in spaceflight. The feasibility of using tiny root sections for transcriptome analysis was examined in this study. To understand the gene expression profiles of the root apex Arabidopsis thaliana Col-0 roots were sectioned into Zone-I (0.5 mm root cap and meristematic zone) and Zone-II (1.5 mm transition elongation and growth terminating zone). Gene expression was analyzed using microarray and RNA seq. Both the techniques arrays and RNA-Seq identified 4180 common genes as differentially expressed (with > two-fold changes) between the zones. In addition 771 unique genes and 19 novel TARs were identified by RNA-Seq as differentially expressed which were not detected in the arrays. Single root tip zones can be used for full transcriptome analysis; further the root apex zones are functionally very distinct from each other. RNA-Seq provided novel information about the transcripts compared to the arrays. These data will help optimize transcriptome techniques for dealing with small rare samples.

  9. Z

    Robustness and applicability of transcription factor and pathway analysis...

    • data.niaid.nih.gov
    Updated Feb 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian A. Joughin (2020). Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3564178
    Explore at:
    Dataset updated
    Feb 14, 2020
    Dataset provided by
    Julio Saez-Rodriguez
    Douglas A. Lauffenburger
    Brian A. Joughin
    Jovan Tanevski
    Javier Perales-Patón
    Bence Szalai
    Elisabetta Mereu
    Christian H. Holland
    Holger Heyn
    Jan Gleixner
    Manu P. Kumar
    Oliver Stegle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data used to test the robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data, described in Holland et al. 2020.

    The folder data contains raw data and the folder output contains intermediate and final results of all analyses.

    The associated analyses code and more information are available on GitHub.

    Abstract

    Background

    Many functional analysis tools have been developed to extract functional and mechanistic insight from bulk transcriptome data. With the advent of single-cell RNA sequencing (scRNA-seq), it is in principle possible to do such an analysis for single cells. However, scRNA-seq data has characteristics such as drop-out events and low library sizes. It is thus not clear if functional TF and pathway analysis tools established for bulk sequencing can be applied to scRNA-seq in a meaningful way.

    Results

    To address this question, we perform benchmark studies on simulated and real scRNA-seq data. We include the bulk-RNA tools PROGENy, GO enrichment, and DoRothEA that estimate pathway and transcription factor (TF) activities, respectively, and compare them against the tools SCENIC/AUCell and metaVIPER, designed for scRNA-seq. For the in silico study, we simulate single cells from TF/pathway perturbation bulk RNA-seq experiments. We complement the simulated data with real scRNA-seq data upon CRISPR-mediated knock-out. Our benchmarks on simulated and real data reveal comparable performance to the original bulk data. Additionally, we show that the TF and pathway activities preserve cell type-specific variability by analyzing a mixture sample sequenced with 13 scRNA-seq protocols. We also provide the benchmark data for further use by the community.

    Conclusions

    Our analyses suggest that bulk-based functional analysis tools that use manually curated footprint gene sets can be applied to scRNA-seq data, partially outperforming dedicated single-cell tools. Furthermore, we find that the performance of functional analysis tools is more sensitive to the gene sets than to the statistic used.

    For questions related to the data please write an email to christian.holland@bioquant.uni-heidelberg.de or use the GitHub issue system.

  10. Reference-based RNA-seq data analysis (training data)

    • zenodo.org
    • explore.openaire.eu
    bin
    Updated Apr 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bérénice Batut; Pavankumar Videm; Anika Erxleben; Björn Grüning; Bérénice Batut; Pavankumar Videm; Anika Erxleben; Björn Grüning (2023). Reference-based RNA-seq data analysis (training data) [Dataset]. http://doi.org/10.5281/zenodo.1185122
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 26, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Bérénice Batut; Pavankumar Videm; Anika Erxleben; Björn Grüning; Bérénice Batut; Pavankumar Videm; Anika Erxleben; Björn Grüning
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data provided here are part of a Galaxy Training Network tutorial that analyzes RNA-Seq data from a study published by Brooks et al. 2011 to identify genes and exons that are regulated by Pasilla gene.

  11. s

    Data from: Transcriptomic analysis reveals pro-inflammatory signatures...

    • figshare.scilifelab.se
    • researchdata.se
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linda Holmfeldt; Svea Stratmann (2025). Data from: Transcriptomic analysis reveals pro-inflammatory signatures associated with acute myeloid leukemia progression [Dataset]. http://doi.org/10.17044/scilifelab.13105229.v1
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    Uppsala Universitet
    Authors
    Linda Holmfeldt; Svea Stratmann
    License

    https://www.scilifelab.se/data/restricted-access/https://www.scilifelab.se/data/restricted-access/

    Description

    Data Set Description

    These data are collected from a total of 70 participants (47 adult; 23 pediatric), all of which had relapsed or primary resistant acute myeloid leukemia. The data, which here are separated into an adult and a pediatric dataset, were generated as part of a study by Stratmann et. al. (https://doi.org/10.1182/bloodadvances.2021004962). The Stratmann et. al. study is currently pre-published here: https://ashpublications.org/bloodadvances/article/doi/10.1182/bloodadvances.2021004962/477210/Transcriptomic-analysis-reveals-pro-inflammatory Please note that separate applications are necessary for the adult and pediatric dataset, respectively. When applying for access, please indicate which of the datasets that the application applies for. The adult dataset contains transcriptome sequencing (RNA-seq) data from 25 diagnosis (D), 45 relapse (R1/R2/R3) and five (5) primary resistant (PR) leukemic samples from 47 patients, as well as five (5) normal CD34+ bone marrow control samples. The pediatric dataset contains RNA-seq data from 18 diagnosis (D), 22 relapse (R1/R2), six (6) persistent relapse (R1/2-P) and one (1) primary resistant (PR) leukemic samples from 23 patients, as well as five (5) normal CD34+ bone marrow control samples. The leukemic samples originate from bone marrow or peripheral blood. The normal RNA samples originate from purified CD34+ bone marrow cells from five different healthy individuals. Further details regarding the samples are available in the Supplemental Information part of Stratmann et. al. (https://doi.org/10.1182/bloodadvances.2021004962). RNA-seq libraries and associated next-generation sequencing were carried out by the SNP&SEQ Technology platform, SciLifeLab, National Genomics Infrastructure Uppsala, Sweden. Libraries were prepared using the TruSeq stranded total RNA library preparation kit with ribosomal depletion by RiboZero Gold (Illumina). Sequencing of adult samples was carried out on the Illumina HiSeq2500 platform, generating paired-end 125bp reads using v4 sequencing chemistry. Sequencing of pediatric samples was carried out on the Illumina NovaSeq6000 platform (S2 flowcell), generating paired-end 100bp reads using the v1 sequencing chemistry. The CD34+ bone marrow control samples were sequenced using both platforms (Illumina HiSeq2500 and NovaSeq6000). Further, all of these acute myeloid leukemia samples have also been characterized by whole genome sequencing or whole exome sequencing, with the datasets available under controlled access through doi.org/10.17044/scilifelab.12292778. Terms for accessThe adult and pediatric datasets are only to be used for research that is seeking to advance the understanding of the influence of genetic and transcriptomic factors on human acute myeloid leukemia etiology and biology. Use of the protected pediatric dataset is only for research projects that can merely be conducted using pediatric acute myeloid leukemia data, and for which the research objectives cannot be accomplished using data from adults. Applications intending various method development would thus not be considered as acceptable for use of the pediatric dataset. Further, the pediatric dataset may not be used for research investigating predisposition for acute myeloid leukemia based on germline variants.

    For conditional access to the adult and/or pediatric dataset in this publication, please contact datacentre@scilifelab.se

  12. Z

    Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stoop, Allart (2023). Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10011621
    Explore at:
    Dataset updated
    Nov 20, 2023
    Dataset provided by
    Stoop, Allart
    Hsu, Jonathan
    Description

    Table of Contents

    Main Description File Descriptions Linked Files Installation and Instructions

    1. Main Description

    This is the Zenodo repository for the manuscript titled "A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity.". The code included in the file titled marengo_code_for_paper_jan_2023.R was used to generate the figures from the single-cell RNA sequencing data. The following libraries are required for script execution:

    Seurat scReportoire ggplot2 stringr dplyr ggridges ggrepel ComplexHeatmap

    File Descriptions

    The code can be downloaded and opened in RStudios. The "marengo_code_for_paper_jan_2023.R" contains all the code needed to reproduce the figues in the paper The "Marengo_newID_March242023.rds" file is available at the following address: https://zenodo.org/badge/DOI/10.5281/zenodo.7566113.svg (Zenodo DOI: 10.5281/zenodo.7566113). The "all_res_deg_for_heat_updated_march2023.txt" file contains the unfiltered results from DGE anlaysis, also used to create the heatmap with DGE and volcano plots. The "genes_for_heatmap_fig5F.xlsx" contains the genes included in the heatmap in figure 5F.

    Linked Files

    This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. The "Rdata" or "Rds" file was deposited in Zenodo. Provided below are descriptions of the linked datasets:

    Gene Expression Omnibus (GEO) ID: GSE223311(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223311)

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the "matrix.mtx", "barcodes.tsv", and "genes.tsv" files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Sequence read archive (SRA) repository ID: SRX19088718 and SRX19088719

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the raw sequencing or .fastq.gz files, which are tab delimited text files. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Zenodo DOI: 10.5281/zenodo.7566113(https://zenodo.org/record/7566113#.ZCcmvC2cbrJ)

    Title: A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity. Description: This submission contains the "Rdata" or ".Rds" file, which is an R object file. This is a necessary file to use the code. Submission type: Restricted Acess. In order to gain access to the repository, you must contact the author.

    Installation and Instructions

    The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation:

    Ensure you have R version 4.1.2 or higher for compatibility.

    Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code.

    1. Download the *"Rdata" or ".Rds" file from Zenodo (https://zenodo.org/record/7566113#.ZCcmvC2cbrJ) (Zenodo DOI: 10.5281/zenodo.7566113).
    2. Open R-Studios (https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R.
    3. Set your working directory to where the following files are located:

    marengo_code_for_paper_jan_2023.R Install_Packages.R Marengo_newID_March242023.rds genes_for_heatmap_fig5F.xlsx all_res_deg_for_heat_updated_march2023.txt

    You can use the following code to set the working directory in R:

    setwd(directory)

    1. Open the file titled "Install_Packages.R" and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies in order to set up an environment where the code in "marengo_code_for_paper_jan_2023.R" can be executed.
    2. Once the "Install_Packages.R" script has been successfully executed, re-start R-Studios or your IDE of choice.
    3. Open the file "marengo_code_for_paper_jan_2023.R" file in R-studios or your IDE of choice.
    4. Execute commands in the file titled "marengo_code_for_paper_jan_2023.R" in R-Studios or your IDE of choice to generate the plots.
  13. Data from: Efficient Identification of Multiple Pathways: RNA-Seq Analysis...

    • catalog.data.gov
    • data.nasa.gov
    • +1more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2025). Efficient Identification of Multiple Pathways: RNA-Seq Analysis of Livers from 56Fe Ion Irradiated Mice [Dataset]. https://catalog.data.gov/dataset/efficient-identification-of-multiple-pathways-rna-seq-analysis-of-livers-from-56fe-ion-irr-3f51e
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Background: mRNA interactions with each other and other signaling molecules define different biological pathways and functions. Researchers have been investigating various tools to analyze these types of interactions. In particular gene co-expression network methods have proved useful in finding and analyzing these molecular interactions. Many different analytical pipelines to identify these interactions networks have been proposed with the aim of identifying an optimal partition of the network where the individual modules are neither too small to make any general inference or too large to be biologically interpretable. Results: In this study we propose a new pipeline to perform gene co-expression network analysis. The proposed pipeline uses WGCNA a widely used software to perform different aspects of gene co-expression network analysis and modularity maximization algorithm to analyze novel RNA-Seq data to understand the effects of low-dose 56Fe ion irradiation on the formation of hepatocellular carcinoma in mice. The network results along with experimental validation show that using WGCNA combined with Modularity provide a more biologically interpretable network in our dataset. Our pipeline showed better performance than the existing clustering algorithm in WGCNA in finding modules and identified a module with mitochondrial subunits that are supported by mitochondrial complex assay. Conclusions: We present a pipeline that can reduce the problem of parameter selection with the existing algorithm in WGCNA for comparable RNA-Seq datasets which may assist in future research to discover novel mRNA interactions and their downstream molecular effects. C57BL16 males were placed into 2 treatment groups and received the following irradiation treatments at Brookhaven National Laboratories (Long Island NY): 600 MeV/n 56Fe (0.2 Gy) and no irradiation. Left liver lobes were collected at 30 60 120 270 and 360 days post-irradiation flash frozen and stored at -80 xc2 xb0C until they could be processed for RNA-Seq. Livers were sampled by taking two 40-micron thick slices using a cryotome at -20 xc2 xb0C. This allowed multiple sampling of the tissue without the tissue going through multiple freeze/thaw cycles. Total RNA was isolated from the liver slices using RNAqueousTM Total RNA Isolation Kit (ThermoFisher Scientific Waltham MA) and rRNA was removed via Ribo-ZeroTM rRNA Removal Kit (Illumina San Diego CA) prior to library preparation with the Illumina TruSeq RNA Library kit. Samples were sequenced in a paired-end 50 base format on an Illumina HiSeq 1500. Reads were aligned to the mouse GRCm38 reference genome using the STAR alignment program version 2.5.3a with the recommended ENCODE options. The -quantMode GeneCounts option was used to obtain read counts per gene based on the Gencode release M14 annotation file. Total number of reads used in analysis varies between 23-35 millions of reads.

  14. o

    Data from: Gene expression and splicing alterations analyzed by high...

    • omicsdi.org
    xml
    Updated Jan 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gwen Jordaan,Ryan T Phandaan,Matteo Pelegrini,Sanjai Sharma,Wei Liao,Phillipp Nham (2015). Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens [Dataset]. https://www.omicsdi.org/dataset/arrayexpress-repository/E-GEOD-70830
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jan 1, 2015
    Authors
    Gwen Jordaan,Ryan T Phandaan,Matteo Pelegrini,Sanjai Sharma,Wei Liao,Phillipp Nham
    Variables measured
    Transcriptomics
    Description

    Background: To determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed. Methods: Ten CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system. Results: An average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q<0.05, fold change >2) were identified. Expression of selected DEGs (n=32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90% of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1). Conclusion: The RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis. Ten CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.

  15. Ngs-Based Rna-Seq Market Analysis North America, Europe, Asia, Rest of World...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio, Ngs-Based Rna-Seq Market Analysis North America, Europe, Asia, Rest of World (ROW) - US, UK, Germany, Singapore, China - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/ngs-based-rna-seq-market-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    NGS-Based Rna-Seq Market Size 2024-2028

    The NGS-based RNA-seq market size is forecast to increase by USD 6.66 billion, at a CAGR of 20.52% between 2023 and 2028.

    The market is witnessing significant growth, driven by the increased adoption of next-generation sequencing (NGS) methods for RNA-Seq analysis. The advanced capabilities of NGS techniques, such as high-throughput, cost-effectiveness, and improved accuracy, have made them the preferred choice for researchers and clinicians in various fields, including genomics, transcriptomics, and personalized medicine. However, the market faces challenges, primarily from the lack of clinical validation on direct-to-consumer genetic tests. As the use of NGS technology in consumer applications expands, ensuring the accuracy and reliability of results becomes crucial.
    The absence of standardized protocols and regulatory oversight in this area poses a significant challenge to market growth and trust. Companies seeking to capitalize on market opportunities must focus on addressing these challenges through collaborations, partnerships, and investments in research and development to ensure the clinical validity and reliability of their NGS-based RNA-Seq offerings.
    

    What will be the Size of the NGS-based RNA-Seq market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2018-2022 and forecasts 2024-2028 - in the full report.
    Request Free Sample

    The market continues to evolve, driven by advancements in NGS technology and its applications across various sectors. Spatial transcriptomics, a novel approach to studying gene expression in its spatial context, is gaining traction in disease research and precision medicine. Splice junction detection, a critical component of RNA-seq data analysis, enhances the accuracy of gene expression profiling and differential gene expression studies. Cloud computing plays a pivotal role in handling the massive amounts of data generated by NGS platforms, enabling real-time data analysis and storage. Enrichment analysis, gene ontology, and pathway analysis facilitate the interpretation of RNA-seq data, while data normalization and quality control ensure the reliability of results.

    Precision medicine and personalized therapy are key applications of RNA-seq, with single-cell RNA-seq offering unprecedented insights into the complexities of gene expression at the single-cell level. Read alignment and variant calling are essential steps in RNA-seq data analysis, while bioinformatics pipelines and RNA-seq software streamline the process. NGS technology is revolutionizing drug discovery by enabling the identification of biomarkers and gene fusion detection in various diseases, including cancer and neurological disorders. RNA-seq is also finding applications in infectious diseases, microbiome analysis, environmental monitoring, agricultural genomics, and forensic science. Sequencing costs are decreasing, making RNA-seq more accessible to researchers and clinicians.

    The ongoing development of sequencing platforms, library preparation, and sample preparation kits continues to drive innovation in the field. The dynamic nature of the market ensures that it remains a vibrant and evolving field, with ongoing research and development in areas such as data visualization, clinical trials, and sequencing depth.

    How is this NGS-based RNA-Seq industry segmented?

    The NGS-based RNA-seq industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Acamedic and research centers
      Clinical research
      Pharma companies
      Hospitals
    
    
    Technology
    
      Sequencing by synthesis
      Ion semiconductor sequencing
      Single-molecule real-time sequencing
      Others
    
    
    Geography
    
      North America
    
        US
    
    
      Europe
    
        Germany
        UK
    
    
      APAC
    
        China
        Singapore
    
    
      Rest of World (ROW)
    

    .

    By End-user Insights

    The acamedic and research centers segment is estimated to witness significant growth during the forecast period.

    The global next-generation sequencing (NGS) market for RNA sequencing (RNA-Seq) is primarily driven by academic and research institutions, including those from universities, research institutes, government entities, biotechnology organizations, and pharmaceutical companies. These institutions utilize NGS technology for various research applications, such as whole-genome sequencing, epigenetics, and emerging fields like agrigenomics and animal research, to enhance crop yield and nutritional composition. NGS-based RNA-Seq plays a pivotal role in translational research, with significant investments from both private and public organizations fueling its growth. The technology is instrumental in disease research, enabling the identification

  16. Raw and processed (filtered and annotated) scRNAseq data

    • figshare.com
    zip
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabrielle Leclercq-Cohen; Sabrina Danilin; Llucia Alberti-Servera; Stephan Schmeing; Hélène Haegel; Sina Nassiri; Marina Bacac (2023). Raw and processed (filtered and annotated) scRNAseq data [Dataset]. http://doi.org/10.6084/m9.figshare.23499192.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Gabrielle Leclercq-Cohen; Sabrina Danilin; Llucia Alberti-Servera; Stephan Schmeing; Hélène Haegel; Sina Nassiri; Marina Bacac
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Single cell RNA-seq data generated and reported as part of the manuscript entitled "Dissecting the mechanisms underlying the Cytokine Release Syndrome (CRS) mediated by T Cell Bispecific Antibodies" by Leclercq-Cohen et al 2023. Raw and processed (filtered and annotated) data are provided as AnnData objects which can be directly ingested to reproduce the findings of the paper or for ab initio data reuse: 1- raw.zip provides concatenated raw/unfiltered counts for the 20 samples in the standard Market Exchange Format (MEX) format. 2- 230330_sw_besca2_LowFil_raw.h5ad contains filtered cells and raw counts in the HDF5 format. 3- 221124_sw_besca2_LowFil.annotated.h5ad contains filtered cells and log normalized counts, along with cell type annotation in the HDF5 format.

    scRNAseq data generation: Whole blood from 4 donors was treated with 0.2 μg/mL CD20-TCB, or incubated in the absence of CD20- TCB. At baseline (before addition of TCB) and assay endpoints (2, 4, 6, and 20 hrs), blood was collected for total leukocyte isolation using EasySepTM red blood cell depletion reagent (Stemcell). Briefly, cells were counted and processed for single cell RNA sequencing using the BD Rhapsody platform. To load several samples on a single BD Rhapsody cartridge, sample cells were labelled with sample tags (BD Human Single-Cell Multiplexing Kit) following the manufacturer’s protocol prior to pooling. Briefly, 1x106 cells from each sample were re-suspended in 180 μL FBS Stain Buffer (BD, PharMingen) and sample tags were added to the respective samples and incubated for 20 min at RT. After incubation, 2 successive washes were performed by addition of 2 mL stain buffer and centrifugation for 5 min at 300 g. Cells were then re- suspended in 620 μL cold BD Sample Buffer, stained with 3.1 μL of both 2 mM Calcein AM (Thermo Fisher Scientific) and 0.3 mM Draq7 (BD Biosciences) and finally counted on the BD Rhapsody scanner. Samples were then diluted and/or pooled equally in 650 μL cold BD Sample Buffer. The BD Rhapsody cartridges were then loaded with up to 40 000 – 50 000 cells. Single cells were isolated using Single-Cell Capture and cDNA Synthesis with the BD Rhapsody Express Single-Cell Analysis System according to the manufacturer’s recommendations (BD Biosciences). cDNA libraries were prepared using the Whole Transcriptome Analysis Amplification Kit following the BD Rhapsody System mRNA Whole Transcriptome Analysis (WTA) and Sample Tag Library Preparation Protocol (BD Biosciences). Indexed WTA and sample tags libraries were quantified and quality controlled on the Qubit Fluorometer using the Qubit dsDNA HS Assay, and on the Agilent 2100 Bioanalyzer system using the Agilent High Sensitivity DNA Kit. Sequencing was performed on a Novaseq 6000 (Illumina) in paired-end mode (64-8- 58) with Novaseq6000 S2 v1 or Novaseq6000 SP v1.5 reagents kits (100 cycles). scRNAseq data analysis: Sequencing data was processed using the BD Rhapsody Analysis pipeline (v 1.0 https://www.bd.com/documents/guides/user-guides/GMX_BD-Rhapsody-genomics- informatics_UG_EN.pdf) on the Seven Bridges Genomics platform. Briefly, read pairs with low sequencing quality were first removed and the cell label and UMI identified for further quality check and filtering. Valid reads were then mapped to the human reference genome (GRCh38-PhiX-gencodev29) using the aligner Bowtie2 v2.2.9, and reads with the same cell label, same UMI sequence and same gene were collapsed into a single raw molecule while undergoing further error correction and quality checks. Cell labels were filtered with a multi-step algorithm to distinguish those associated with putative cells from those associated with noise. After determining the putative cells, each cell was assigned to the sample of origin through the sample tag (only for cartridges with multiplex loading). Finally, the single-cell gene expression matrices were generated and a metrics summary was provided. After pre-processing with BD’s pipeline, the count matrices and metadata of each sample were aggregated into a single adata object and loaded into the besca v2.3 pipeline for the single cell RNA sequencing analysis (43). First, we filtered low quality cells with less than 200 genes, less than 500 counts or more than 30% of mitochondrial reads. This permissive filtering was used in order to preserve the neutrophils. We further excluded potential multiplets (cells with more than 5,000 genes or 20,000 counts), and genes expressed in less than 30 cells. Normalization, log-transformed UMI counts per 10,000 reads [log(CP10K+1)], was applied before downstream analysis. After normalization, technical variance was removed by regressing out the effects of total UMI counts and percentage of mitochondrial reads, and gene expression was scaled. The 2,507 most variable genes (having a minimum mean expression of 0.0125, a maximum mean expression of 3 and a minimum dispersion of 0.5) were used for principal component analysis. Finally, the first 50 PCs were used as input for calculating the 10 nearest neighbours and the neighbourhood graph was then embedded into the two-dimensional space using the UMAP algorithm at a resolution of 2. Cell type annotation was performed using the Sig-annot semi-automated besca module, which is a signature- based hierarchical cell annotation method. The used signatures, configuration and nomenclature files can be found at https://github.com/bedapub/besca/tree/master/besca/datasets. For more details, please refer to the publication.

  17. Z

    Example RNA-seq analysis of data from GSE119855

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geert van Geest (2023). Example RNA-seq analysis of data from GSE119855 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7691546
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset authored and provided by
    Geert van Geest
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of four samples of GEO accession GSE119855 with the IBU RNA-seq pipeline

  18. n

    Data from: Single cell RNA-seq analysis reveals that prenatal arsenic...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Jun 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Britton Goodale; Kevin Hsu; Kenneth Ely; Thomas Hampton; Bruce Stanton; Richard Enelow (2020). Single cell RNA-seq analysis reveals that prenatal arsenic exposure results in long-term, adverse effects on immune gene expression in response to Influenza A infection [Dataset]. http://doi.org/10.5061/dryad.vt4b8gtp6
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2020
    Dataset provided by
    Dartmouth College
    Dartmouth–Hitchcock Medical Center
    Authors
    Britton Goodale; Kevin Hsu; Kenneth Ely; Thomas Hampton; Bruce Stanton; Richard Enelow
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Arsenic exposure via drinking water is a serious environmental health concern. Epidemiological studies suggest a strong association between prenatal arsenic exposure and subsequent childhood respiratory infections, as well as morbidity from respiratory diseases in adulthood, long after systemic clearance of arsenic. We investigated the impact of exclusive prenatal arsenic exposure on the inflammatory immune response and respiratory health after an adult influenza A (IAV) lung infection. C57BL/6J mice were exposed to 100 ppb sodium arsenite in utero, and subsequently infected with IAV (H1N1) after maturation to adulthood. Assessment of lung tissue and bronchoalveolar lavage fluid (BALF) at various time points post IAV infection reveals greater lung damage and inflammation in arsenic exposed mice versus control mice. Single-cell RNA sequencing analysis of immune cells harvested from IAV infected lungs suggests that the enhanced inflammatory response is mediated by dysregulation of innate immune function of monocyte derived macrophages, neutrophils, NK cells, and alveolar macrophages. Our results suggest that prenatal arsenic exposure results in lasting effects on the adult host innate immune response to IAV infection, long after exposure to arsenic, leading to greater immunopathology. This study provides the first direct evidence that exclusive prenatal exposure to arsenic in drinking water causes predisposition to a hyperinflammatory response to IAV infection in adult mice, which is associated with significant lung damage.

    Methods Whole lung homogenate preparation for single cell RNA sequencing (scRNA-seq).

    Lungs were perfused with PBS via the right ventricle, harvested, and mechanically disassociated prior to straining through 70- and 30-µm filters to obtain a single-cell suspension. Dead cells were removed (annexin V EasySep kit, StemCell Technologies, Vancouver, Canada), and samples were enriched for cells of hematopoetic origin by magnetic separation using anti-CD45-conjugated microbeads (Miltenyi, Auburn, CA). Single-cell suspensions of 6 samples were loaded on a Chromium Single Cell system (10X Genomics) to generate barcoded single-cell gel beads in emulsion, and scRNA-seq libraries were prepared using Single Cell 3’ Version 2 chemistry. Libraries were multiplexed and sequenced on 4 lanes of a Nextseq 500 sequencer (Illumina) with 3 sequencing runs. Demultiplexing and barcode processing of raw sequencing data was conducted using Cell Ranger v. 3.0.1 (10X Genomics; Dartmouth Genomics Shared Resource Core). Reads were aligned to mouse (GRCm38) and influenza A virus (A/PR8/34, genome build GCF_000865725.1) genomes to generate unique molecular index (UMI) count matrices. Gene expression data have been deposited in the NCBI GEO database and are available at accession # GSE142047.

    Preprocessing of single cell RNA sequencing (scRNA-seq) data

    Count matrices produced using Cell Ranger were analyzed in the R statistical working environment (version 3.6.1). Preliminary visualization and quality analysis were conducted using scran (v 1.14.3, Lun et al., 2016) and Scater (v. 1.14.1, McCarthy et al., 2017) to identify thresholds for cell quality and feature filtering. Sample matrices were imported into Seurat (v. 3.1.1, Stuart., et al., 2019) and the percentage of mitochondrial, hemoglobin, and influenza A viral transcripts calculated per cell. Cells with < 1000 or > 20,000 unique molecular identifiers (UMIs: low quality and doublets), fewer than 300 features (low quality), greater than 10% of reads mapped to mitochondrial genes (dying) or greater than 1% of reads mapped to hemoglobin genes (red blood cells) were filtered from further analysis. Total cells per sample after filtering ranged from 1895-2482, no significant difference in the number of cells was observed in arsenic vs. control. Data were then normalized using SCTransform (Hafemeister et al., 2019) and variable features identified for each sample. Integration anchors between samples were identified using canonical correlation analysis (CCA) and mutual nearest neighbors (MNNs), as implemented in Seurat V3 (Stuart., et al., 2019) and used to integrate samples into a shared space for further comparison. This process enables identification of shared populations of cells between samples, even in the presence of technical or biological differences, while also allowing for non-overlapping populations that are unique to individual samples.

    Clustering and reference-based cell identity labeling of single immune cells from IAV-infected lung with scRNA-seq

    Principal components were identified from the integrated dataset and were used for Uniform Manifold Approximation and Projection (UMAP) visualization of the data in two-dimensional space. A shared-nearest-neighbor (SNN) graph was constructed using default parameters, and clusters identified using the SLM algorithm in Seurat at a range of resolutions (0.2-2). The first 30 principal components were used to identify 22 cell clusters ranging in size from 25 to 2310 cells. Gene markers for clusters were identified with the findMarkers function in scran. To label individual cells with cell type identities, we used the singleR package (v. 3.1.1) to compare gene expression profiles of individual cells with expression data from curated, FACS-sorted leukocyte samples in the Immgen compendium (Aran D. et al., 2019; Heng et al., 2008). We manually updated the Immgen reference annotation with 263 sample group labels for fine-grain analysis and 25 CD45+ cell type identities based on markers used to sort Immgen samples (Guilliams et al., 2014). The reference annotation is provided in Table S2, cells that were not labeled confidently after label pruning were assigned “Unknown”.

    Differential gene expression by immune cells

    Differential gene expression within individual cell types was performed by pooling raw count data from cells of each cell type on a per-sample basis to create a pseudo-bulk count table for each cell type. Differential expression analysis was only performed on cell types that were sufficiently represented (>10 cells) in each sample. In droplet-based scRNA-seq, ambient RNA from lysed cells is incorporated into droplets, and can result in spurious identification of these genes in cell types where they aren’t actually expressed. We therefore used a method developed by Young and Behjati (Young et al., 2018) to estimate the contribution of ambient RNA for each gene, and identified genes in each cell type that were estimated to be > 25% ambient-derived. These genes were excluded from analysis in a cell-type specific manner. Genes expressed in less than 5 percent of cells were also excluded from analysis. Differential expression analysis was then performed in Limma (limma-voom with quality weights) following a standard protocol for bulk RNA-seq (Law et al., 2014). Significant genes were identified using MA/QC criteria of P < .05, log2FC >1.

    Analysis of arsenic effect on immune cell gene expression by scRNA-seq.

    Sample-wide effects of arsenic on gene expression were identified by pooling raw count data from all cells per sample to create a count table for pseudo-bulk gene expression analysis. Genes with less than 20 counts in any sample, or less than 60 total counts were excluded from analysis. Differential expression analysis was performed using limma-voom as described above.

  19. n

    Transcription start site analysis for heterogenous CD4+ T cells using 5′...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akiko Oguchi; Yasuhiro Murakawa (2024). Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq [Dataset]. http://doi.org/10.5061/dryad.gtht76hv9
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 22, 2024
    Dataset provided by
    RIKEN Center for Integrative Medical Sciences
    Authors
    Akiko Oguchi; Yasuhiro Murakawa
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    These datasets are generated by ReapTEC (read-level pre-filtering and transcribed enhancer call) using 5' single-cell RNA-seq data on human heterogenous CD4+ T cells. By taking advantage of a unique “cap signature” derived from the 5′-end of a transcript, ReapTEC simultaneously profiles gene expression and enhancer activity at nucleotide resolution using 5′-end single-cell RNA-sequencing (5′ scRNA-seq). The detail of ReapTEC pipeline is described in https://github.com/MurakawaLab/ReapTEC.

  20. n

    BioXpress

    • neuinfo.org
    • dknet.org
    • +1more
    Updated Oct 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). BioXpress [Dataset]. http://identifiers.org/RRID:SCR_014191
    Explore at:
    Dataset updated
    Oct 16, 2019
    Description

    BioXpress is a gene expression and cancer association database in which the expression levels are mapped to genes using RNA-seq data obtained from The Cancer Genome Atlas, International Cancer Genome Consortium, Expression Atlas and publications. BioXpress can be searched by gene name or cancer type. To search the database by gene name, select the appropriate identifier type from the dropdown menu and type in the corresponding identifier in the adjacent text box. The results are computed and presented to the user with information such as variable expression levels and tumor expression. To search by cancer type, select the desired type from the dropdown menu, such as "Cancer Type", "Significant", "Expression", "Adjusted p-value" and "p-value". Results are shown in a graph displaying the top 10 differentially expressed genes for the specified cancer type in terms of the frequency of significant altered expression between the tumor and normal pairs.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Irina Mohorianu; Amanda Bretman; Damian T. Smith; Emily K. Fowler; Tamas Dalmay; Tracey Chapman (2023). Comparison of alternative approaches for analysing multi-level RNA-seq data [Dataset]. http://doi.org/10.1371/journal.pone.0182694

Comparison of alternative approaches for analysing multi-level RNA-seq data

Explore at:
9 scholarly articles cite this dataset (View in Google Scholar)
pdfAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
PLOS ONE
Authors
Irina Mohorianu; Amanda Bretman; Damian T. Smith; Emily K. Fowler; Tamas Dalmay; Tracey Chapman
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

RNA sequencing (RNA-seq) is widely used for RNA quantification in the environmental, biological and medical sciences. It enables the description of genome-wide patterns of expression and the identification of regulatory interactions and networks. The aim of RNA-seq data analyses is to achieve rigorous quantification of genes/transcripts to allow a reliable prediction of differential expression (DE), despite variation in levels of noise and inherent biases in sequencing data. This can be especially challenging for datasets in which gene expression differences are subtle, as in the behavioural transcriptomics test dataset from D. melanogaster that we used here. We investigated the power of existing approaches for quality checking mRNA-seq data and explored additional, quantitative quality checks. To accommodate nested, multi-level experimental designs, we incorporated sample layout into our analyses. We employed a subsampling without replacement-based normalization and an identification of DE that accounted for the hierarchy and amplitude of effect sizes within samples, then evaluated the resulting differential expression call in comparison to existing approaches. In a final step to test for broader applicability, we applied our approaches to a published set of H. sapiens mRNA-seq samples, The dataset-tailored methods improved sample comparability and delivered a robust prediction of subtle gene expression changes. The proposed approaches have the potential to improve key steps in the analysis of RNA-seq data by incorporating the structure and characteristics of biological experiments.

Search
Clear search
Close search
Google apps
Main menu