3 datasets found
  1. f

    Data from: Sensitivity examination of YOLOv4 regarding test image distortion...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenan Yuan; Daeun Choi; Dimitrios Bolkas; Paul Heinz Heinemann; Long He (2023). Sensitivity examination of YOLOv4 regarding test image distortion and training dataset attribute for apple flower bud classification [Dataset]. http://doi.org/10.6084/m9.figshare.20047313.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Wenan Yuan; Daeun Choi; Dimitrios Bolkas; Paul Heinz Heinemann; Long He
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Applications of convolutional neural network (CNN)-based object detectors in agriculture have been a popular research topic in recent years. However, complicated agricultural environments bring many difficulties for ground truth annotation as well as potential uncertainties for image data quality. Using YOLOv4 as a representation of state-of-the-art object detectors, this study quantified YOLOv4’s sensitivity against artificial image distortions including white noise, motion blur, hue shift, saturation change, and intensity change, and examined the importance of various training dataset attributes based on model classification accuracies, including dataset size, label quality, negative sample presence, image sequence, and image distortion levels. The YOLOv4 model trained and validated on the original datasets failed at 31.91% white noise, 22.05-pixel motion blur, 77.38° hue clockwise shift, 64.81° hue counterclockwise shift, 89.98% saturation decrease, 895.35% saturation increase, 79.80% intensity decrease, and 162.71% intensity increase with 30% mean average precisions (mAPs) for four apple flower bud growth stages. The performance of YOLOv4 decreased with both declining training dataset size and training image label quality. Negative samples and training image sequence did not make a substantial difference in model performance. Incorporating distorted images during training improved the classification accuracies of YOLOv4 models on noisy test datasets by 13 to 390%. In the context of apple flower bud growth-stage classification, except for motion blur, YOLOv4 is sufficiently robust for potential image distortions by white noise, hue shift, saturation change, and intensity change in real life. Training image label quality and training instance number are more important factors than training dataset size. Exposing models to test-image-alike training images is crucial for optimal model classification accuracies. The study enhances understanding of implementing object detectors in agricultural research.

  2. R

    Uno Cards Dataset

    • universe.roboflow.com
    zip
    Updated Jul 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Nelson (2022). Uno Cards Dataset [Dataset]. https://universe.roboflow.com/joseph-nelson/uno-cards/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 24, 2022
    Dataset authored and provided by
    Joseph Nelson
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Variables measured
    Card Types Bounding Boxes
    Description

    Overview

    This dataset contains 8,992 images of Uno cards and 26,976 labeled examples on various textured backgrounds.

    This dataset was collected, processed, and released by Roboflow user Adam Crawshaw, released with a modified MIT license: https://firstdonoharm.dev/

    https://i.imgur.com/P8jIKjb.jpg" alt="Image example">

    Use Cases

    Adam used this dataset to create an auto-scoring Uno application:

    Getting Started

    Fork or download this dataset and follow our How to train state of the art object detector YOLOv4 for more.

    Annotation Guide

    See here for how to use the CVAT annotation tool.

    About Roboflow

    Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. :fa-spacer: Developers reduce 50% of their boilerplate code when using Roboflow's workflow, save training time, and increase model reproducibility. :fa-spacer:

    Roboflow Wordmark

  3. R

    Aerial Maritime Drone Object Detection Dataset - tiled

    • public.roboflow.com
    zip
    Updated Sep 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Solawetz (2022). Aerial Maritime Drone Object Detection Dataset - tiled [Dataset]. https://public.roboflow.com/object-detection/aerial-maritime/9
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 28, 2022
    Dataset authored and provided by
    Jacob Solawetz
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Variables measured
    Bounding Boxes of movable-objects
    Description

    Overview

    Drone Example

    This dataset contains 74 images of aerial maritime photographs taken with via a Mavic Air 2 drone and 1,151 bounding boxes, consisting of docks, boats, lifts, jetskis, and cars. This is a multi class problem. This is an aerial object detection dataset. This is a maritime object detection dataset.

    The drone was flown at 400 ft. No drones were harmed in the making of this dataset.

    This dataset was collected and annotated by the Roboflow team, released with MIT license.

    https://i.imgur.com/9ZYLQSO.jpg" alt="Image example">

    Use Cases

    • Identify number of boats on the water over a lake via quadcopter.
    • Boat object detection dataset
    • Aerial Object Detection proof of concept
    • Identify if boat lifts have been taken out via a drone
    • Identify cars with a UAV drone
    • Find which lakes are inhabited and to which degree.
    • Identify if visitors are visiting the lake house via quad copter.
    • Proof of concept for UAV imagery project
    • Proof of concept for maritime project
    • Etc.

    This dataset is a great starter dataset for building an aerial object detection model with your drone.

    Getting Started

    Fork or download this dataset and follow our How to train state of the art object detector YOLOv4 for more. Stay tuned for particular tutorials on how to teach your UAV drone how to see and comprable airplane imagery and airplane footage.

    Annotation Guide

    See here for how to use the CVAT annotation tool that was used to create this dataset.

    About Roboflow

    Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. :fa-spacer: Developers reduce 50% of their boilerplate code when using Roboflow's workflow, save training time, and increase model reproducibility. :fa-spacer:

    Roboflow Wordmark

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Wenan Yuan; Daeun Choi; Dimitrios Bolkas; Paul Heinz Heinemann; Long He (2023). Sensitivity examination of YOLOv4 regarding test image distortion and training dataset attribute for apple flower bud classification [Dataset]. http://doi.org/10.6084/m9.figshare.20047313.v2

Data from: Sensitivity examination of YOLOv4 regarding test image distortion and training dataset attribute for apple flower bud classification

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
Taylor & Francis
Authors
Wenan Yuan; Daeun Choi; Dimitrios Bolkas; Paul Heinz Heinemann; Long He
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Applications of convolutional neural network (CNN)-based object detectors in agriculture have been a popular research topic in recent years. However, complicated agricultural environments bring many difficulties for ground truth annotation as well as potential uncertainties for image data quality. Using YOLOv4 as a representation of state-of-the-art object detectors, this study quantified YOLOv4’s sensitivity against artificial image distortions including white noise, motion blur, hue shift, saturation change, and intensity change, and examined the importance of various training dataset attributes based on model classification accuracies, including dataset size, label quality, negative sample presence, image sequence, and image distortion levels. The YOLOv4 model trained and validated on the original datasets failed at 31.91% white noise, 22.05-pixel motion blur, 77.38° hue clockwise shift, 64.81° hue counterclockwise shift, 89.98% saturation decrease, 895.35% saturation increase, 79.80% intensity decrease, and 162.71% intensity increase with 30% mean average precisions (mAPs) for four apple flower bud growth stages. The performance of YOLOv4 decreased with both declining training dataset size and training image label quality. Negative samples and training image sequence did not make a substantial difference in model performance. Incorporating distorted images during training improved the classification accuracies of YOLOv4 models on noisy test datasets by 13 to 390%. In the context of apple flower bud growth-stage classification, except for motion blur, YOLOv4 is sufficiently robust for potential image distortions by white noise, hue shift, saturation change, and intensity change in real life. Training image label quality and training instance number are more important factors than training dataset size. Exposing models to test-image-alike training images is crucial for optimal model classification accuracies. The study enhances understanding of implementing object detectors in agricultural research.

Search
Clear search
Close search
Google apps
Main menu