4 datasets found
  1. f

    Experimental results of YOLOv8+WIOU.

    • plos.figshare.com
    xls
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang (2024). Experimental results of YOLOv8+WIOU. [Dataset]. http://doi.org/10.1371/journal.pone.0299902.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 21, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accurate identification of small tea buds is a key technology for tea harvesting robots, which directly affects tea quality and yield. However, due to the complexity of the tea plantation environment and the diversity of tea buds, accurate identification remains an enormous challenge. Current methods based on traditional image processing and machine learning fail to effectively extract subtle features and morphology of small tea buds, resulting in low accuracy and robustness. To achieve accurate identification, this paper proposes a small object detection algorithm called STF-YOLO (Small Target Detection with Swin Transformer and Focused YOLO), which integrates the Swin Transformer module and the YOLOv8 network to improve the detection ability of small objects. The Swin Transformer module extracts visual features based on a self-attention mechanism, which captures global and local context information of small objects to enhance feature representation. The YOLOv8 network is an object detector based on deep convolutional neural networks, offering high speed and precision. Based on the YOLOv8 network, modules including Focus and Depthwise Convolution are introduced to reduce computation and parameters, increase receptive field and feature channels, and improve feature fusion and transmission. Additionally, the Wise Intersection over Union loss is utilized to optimize the network. Experiments conducted on a self-created dataset of tea buds demonstrate that the STF-YOLO model achieves outstanding results, with an accuracy of 91.5% and a mean Average Precision of 89.4%. These results are significantly better than other detectors. Results show that, compared to mainstream algorithms (YOLOv8, YOLOv7, YOLOv5, and YOLOx), the model improves accuracy and F1 score by 5-20.22 percentage points and 0.03-0.13, respectively, proving its effectiveness in enhancing small object detection performance. This research provides technical means for the accurate identification of small tea buds in complex environments and offers insights into small object detection. Future research can further optimize model structures and parameters for more scenarios and tasks, as well as explore data augmentation and model fusion methods to improve generalization ability and robustness.

  2. f

    Data processing.

    • plos.figshare.com
    xls
    Updated Mar 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang (2024). Data processing. [Dataset]. http://doi.org/10.1371/journal.pone.0299902.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 21, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accurate identification of small tea buds is a key technology for tea harvesting robots, which directly affects tea quality and yield. However, due to the complexity of the tea plantation environment and the diversity of tea buds, accurate identification remains an enormous challenge. Current methods based on traditional image processing and machine learning fail to effectively extract subtle features and morphology of small tea buds, resulting in low accuracy and robustness. To achieve accurate identification, this paper proposes a small object detection algorithm called STF-YOLO (Small Target Detection with Swin Transformer and Focused YOLO), which integrates the Swin Transformer module and the YOLOv8 network to improve the detection ability of small objects. The Swin Transformer module extracts visual features based on a self-attention mechanism, which captures global and local context information of small objects to enhance feature representation. The YOLOv8 network is an object detector based on deep convolutional neural networks, offering high speed and precision. Based on the YOLOv8 network, modules including Focus and Depthwise Convolution are introduced to reduce computation and parameters, increase receptive field and feature channels, and improve feature fusion and transmission. Additionally, the Wise Intersection over Union loss is utilized to optimize the network. Experiments conducted on a self-created dataset of tea buds demonstrate that the STF-YOLO model achieves outstanding results, with an accuracy of 91.5% and a mean Average Precision of 89.4%. These results are significantly better than other detectors. Results show that, compared to mainstream algorithms (YOLOv8, YOLOv7, YOLOv5, and YOLOx), the model improves accuracy and F1 score by 5-20.22 percentage points and 0.03-0.13, respectively, proving its effectiveness in enhancing small object detection performance. This research provides technical means for the accurate identification of small tea buds in complex environments and offers insights into small object detection. Future research can further optimize model structures and parameters for more scenarios and tasks, as well as explore data augmentation and model fusion methods to improve generalization ability and robustness.

  3. f

    Effectiveness of attention mechanisms.

    • figshare.com
    xls
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang (2024). Effectiveness of attention mechanisms. [Dataset]. http://doi.org/10.1371/journal.pone.0299902.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 21, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accurate identification of small tea buds is a key technology for tea harvesting robots, which directly affects tea quality and yield. However, due to the complexity of the tea plantation environment and the diversity of tea buds, accurate identification remains an enormous challenge. Current methods based on traditional image processing and machine learning fail to effectively extract subtle features and morphology of small tea buds, resulting in low accuracy and robustness. To achieve accurate identification, this paper proposes a small object detection algorithm called STF-YOLO (Small Target Detection with Swin Transformer and Focused YOLO), which integrates the Swin Transformer module and the YOLOv8 network to improve the detection ability of small objects. The Swin Transformer module extracts visual features based on a self-attention mechanism, which captures global and local context information of small objects to enhance feature representation. The YOLOv8 network is an object detector based on deep convolutional neural networks, offering high speed and precision. Based on the YOLOv8 network, modules including Focus and Depthwise Convolution are introduced to reduce computation and parameters, increase receptive field and feature channels, and improve feature fusion and transmission. Additionally, the Wise Intersection over Union loss is utilized to optimize the network. Experiments conducted on a self-created dataset of tea buds demonstrate that the STF-YOLO model achieves outstanding results, with an accuracy of 91.5% and a mean Average Precision of 89.4%. These results are significantly better than other detectors. Results show that, compared to mainstream algorithms (YOLOv8, YOLOv7, YOLOv5, and YOLOx), the model improves accuracy and F1 score by 5-20.22 percentage points and 0.03-0.13, respectively, proving its effectiveness in enhancing small object detection performance. This research provides technical means for the accurate identification of small tea buds in complex environments and offers insights into small object detection. Future research can further optimize model structures and parameters for more scenarios and tasks, as well as explore data augmentation and model fusion methods to improve generalization ability and robustness.

  4. f

    Effectiveness of modules(Ablation experiment results).

    • plos.figshare.com
    xls
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang (2024). Effectiveness of modules(Ablation experiment results). [Dataset]. http://doi.org/10.1371/journal.pone.0299902.t008
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 21, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Effectiveness of modules(Ablation experiment results).

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang (2024). Experimental results of YOLOv8+WIOU. [Dataset]. http://doi.org/10.1371/journal.pone.0299902.t006

Experimental results of YOLOv8+WIOU.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Mar 21, 2024
Dataset provided by
PLOS ONE
Authors
Meiling Shi; Dongling Zheng; Tianhao Wu; Wenjing Zhang; Ruijie Fu; Kailiang Huang
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Accurate identification of small tea buds is a key technology for tea harvesting robots, which directly affects tea quality and yield. However, due to the complexity of the tea plantation environment and the diversity of tea buds, accurate identification remains an enormous challenge. Current methods based on traditional image processing and machine learning fail to effectively extract subtle features and morphology of small tea buds, resulting in low accuracy and robustness. To achieve accurate identification, this paper proposes a small object detection algorithm called STF-YOLO (Small Target Detection with Swin Transformer and Focused YOLO), which integrates the Swin Transformer module and the YOLOv8 network to improve the detection ability of small objects. The Swin Transformer module extracts visual features based on a self-attention mechanism, which captures global and local context information of small objects to enhance feature representation. The YOLOv8 network is an object detector based on deep convolutional neural networks, offering high speed and precision. Based on the YOLOv8 network, modules including Focus and Depthwise Convolution are introduced to reduce computation and parameters, increase receptive field and feature channels, and improve feature fusion and transmission. Additionally, the Wise Intersection over Union loss is utilized to optimize the network. Experiments conducted on a self-created dataset of tea buds demonstrate that the STF-YOLO model achieves outstanding results, with an accuracy of 91.5% and a mean Average Precision of 89.4%. These results are significantly better than other detectors. Results show that, compared to mainstream algorithms (YOLOv8, YOLOv7, YOLOv5, and YOLOx), the model improves accuracy and F1 score by 5-20.22 percentage points and 0.03-0.13, respectively, proving its effectiveness in enhancing small object detection performance. This research provides technical means for the accurate identification of small tea buds in complex environments and offers insights into small object detection. Future research can further optimize model structures and parameters for more scenarios and tasks, as well as explore data augmentation and model fusion methods to improve generalization ability and robustness.

Search
Clear search
Close search
Google apps
Main menu