100+ datasets found
  1. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. A

    Pattern-based GIS for understanding content of very large Earth Science...

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Jan 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Pattern-based GIS for understanding content of very large Earth Science datasets [Dataset]. https://data.amerigeoss.org/dataset/pattern-based-gis-for-understanding-content-of-very-large-earth-science-datasets1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 29, 2020
    Dataset provided by
    United States
    Area covered
    Earth
    Description

    The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.

    GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.

    The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.

  3. A

    ‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2018-ct-data-catalog-gis-8148/4aa04a6c/?iid=001-829&v=presentation
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘2018 CT Data Catalog (GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/5a93e011-4ea8-40b1-a888-0f573e6b785d on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management. This catalog contains information on high value GIS data only. A catalog of high value non-GIS data may be found at the following link: https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn

    As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.

    High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

    This dataset was last updated 1/2/2019 and will continue to be updated as high value data inventories are submitted to OPM.

    --- Original source retains full ownership of the source dataset ---

  4. d

    Data from: Data and Results for GIS-Based Identification of Areas that have...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska [Dataset]. https://catalog.data.gov/dataset/data-and-results-for-gis-based-identification-of-areas-that-have-resource-potential-for-lo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.

  5. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  6. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

  7. A

    ‘2019 CT Data Catalog (GIS)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘2019 CT Data Catalog (GIS)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2019-ct-data-catalog-gis-3c2a/ad5ab34f/?iid=001-826&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘2019 CT Data Catalog (GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/168eaac6-5f52-4015-be99-93031db2fd0d on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management, updated in 2019. This catalog contains information on high value GIS data only. A catalog of high value non-GIS data may be found at the following link: https://data.ct.gov/Government/2019-CT-Data-Catalog-Non-GIS-/f6rf-n3ke

    As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.

    High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

    This dataset was last updated 2/3/2020 and will continue to be updated as high value data inventories are submitted to OPM.

    The 2018 high value data inventories for Non-GIS and GIS data can be found at the following links: CT Data Catalog (Non GIS): https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn/ CT Data Catalog (GIS): https://data.ct.gov/Government/CT-Data-Catalog-GIS-/p7we-na27 Less

    --- Original source retains full ownership of the source dataset ---

  8. d

    Converting analog interpretive data to digital formats for use in database...

    • datadiscoverystudio.org
    Updated Jun 6, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2008). Converting analog interpretive data to digital formats for use in database and GIS applications [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ed9bb80881c64dc38dfc614d7d454022/html
    Explore at:
    Dataset updated
    Jun 6, 2008
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  9. A

    ‘Delta In-Channel Islands’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Delta In-Channel Islands’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-delta-in-channel-islands-f878/124b24cf/?iid=004-167&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Channel Islands of California
    Description

    Analysis of ‘Delta In-Channel Islands’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/5cd67f4f-ca7d-44b0-881c-741b0d70381a on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Data contains historical polygons of in-channel islands within the Sacramento San Joaquin Delta. Data consists of merged datasets from 1929, 1940, 1949, 1952, 1995, 2002, and 2017. The 2017 polygons are digitized from the 2017 Delta LiDAR imagery by the Division of Engineering, Geomatics Branch, Geospatial Data Support Section. The older pre-2017 polygons were all digitized by staff in the Delta Levees Program. Data can be queried for a single year or date range using the 'Year' field. Historical data was compiled and merged from datasets provided by the Delta Levees program. Data coverage differs between years. Absences or gaps in historical data may occur. Older acquisitions generally have a smaller footprint than recent imagery acquisitions. The 2017 in-channel islands cover the Legal Delta, and also include Chipps Island. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.1, dated September 11, 2019. DWR makes no warranties or guarantees — either expressed or implied — as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to the official GIS steward as available and appropriate at gis@water.ca.gov.

    --- Original source retains full ownership of the source dataset ---

  10. S

    Two residential districts datasets from Kielce, Poland for building semantic...

    • scidb.cn
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agnieszka Łysak (2022). Two residential districts datasets from Kielce, Poland for building semantic segmentation task [Dataset]. http://doi.org/10.57760/sciencedb.02955
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Agnieszka Łysak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Poland, Kielce
    Description

    Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.

  11. M

    Status of Free and Open Public Geospatial Data from Minnesota Counties

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +3
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2025). Status of Free and Open Public Geospatial Data from Minnesota Counties [Dataset]. https://gisdata.mn.gov/dataset/bdry-mn-county-open-data-status
    Explore at:
    printable_map, jpeg, fgdb, html, shp, gpkgAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    This map shows the free and open data status of county public geospatial (GIS) data across Minnesota. The accompanying data set can be used to make similar maps using GIS software.

    Counties shown in this dataset as having free and open public geospatial data (with or without a policy) are: Aitkin, Anoka, Becker, Beltrami, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Grant, Hennepin, Hubbard, Isanti, Itasca, Kittson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Meeker, Mille Lacs, Morrison, Mower, Norman, Olmsted, Otter Tail, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Scott, Sherburne, Stearns, Steele, Stevens, St. Louis, Traverse, Waseca, Washington, Wilkin, Winona, Wright and Yellow Medicine.

    To see if a county's data is distributed via the Minnesota Geospatial Commons, check the Commons organizations page: https://gisdata.mn.gov/organization

    To see if a county distributes data via its website, check the link(s) on the Minnesota County GIS Contacts webpage: https://www.mngeo.state.mn.us/county_contacts.html

  12. Data from: Indoor GIS Solution for Space Use Assessment

    • ckan.americaview.org
    • data.amerigeoss.org
    Updated Aug 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2023). Indoor GIS Solution for Space Use Assessment [Dataset]. https://ckan.americaview.org/dataset/indoor-gis-solution-for-space-use-assessment
    Explore at:
    Dataset updated
    Aug 7, 2023
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.

  13. d

    PLACES: County Data (GIS Friendly Format), 2022 release

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: County Data (GIS Friendly Format), 2022 release [Dataset]. https://catalog.data.gov/dataset/places-county-data-gis-friendly-format-2022-release
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based county-level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2020 or 2019 county population estimates, and American Community Survey (ACS) 2016–2020 or 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census 2020 county boundary file in a GIS system to produce maps for 29 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  14. Grand Canyon National Park Road GIS Dataset

    • datasets.ai
    • catalog.data.gov
    57
    Updated Aug 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Grand Canyon National Park Road GIS Dataset [Dataset]. https://datasets.ai/datasets/grand-canyon-national-park-road-gis-dataset
    Explore at:
    57Available download formats
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    United States Department of the Interiorhttp://www.doi.gov/
    Authors
    Department of the Interior
    Description

    Roads data are intended to be used for a variety of mapping, resource management, planning, and analysis applications.

  15. Z

    Selkie GIS Techno-Economic Tool input datasets

    • data.niaid.nih.gov
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cullinane, Margaret (2023). Selkie GIS Techno-Economic Tool input datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10083960
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset authored and provided by
    Cullinane, Margaret
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data was prepared as input for the Selkie GIS-TE tool. This GIS tool aids site selection, logistics optimization and financial analysis of wave or tidal farms in the Irish and Welsh maritime areas. Read more here: https://www.selkie-project.eu/selkie-tools-gis-technoeconomic-model/

    This research was funded by the Science Foundation Ireland (SFI) through MaREI, the SFI Research Centre for Energy, Climate and the Marine and by the Sustainable Energy Authority of Ireland (SEAI). Support was also received from the European Union's European Regional Development Fund through the Ireland Wales Cooperation Programme as part of the Selkie project.

    File Formats

    Results are presented in three file formats:

    tif Can be imported into a GIS software (such as ARC GIS) csv Human-readable text format, which can also be opened in Excel png Image files that can be viewed in standard desktop software and give a spatial view of results

    Input Data

    All calculations use open-source data from the Copernicus store and the open-source software Python. The Python xarray library is used to read the data.

    Hourly Data from 2000 to 2019

    • Wind - Copernicus ERA5 dataset 17 by 27.5 km grid
      10m wind speed

    • Wave - Copernicus Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis dataset 3 by 5 km grid

    Accessibility

    The maximum limits for Hs and wind speed are applied when mapping the accessibility of a site.
    The Accessibility layer shows the percentage of time the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5) are below these limits for the month.

    Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined by checking if
    the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total number of hours for the month.

    Environmental data is from the Copernicus data store (https://cds.climate.copernicus.eu/). Wave hourly data is from the 'Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis' dataset.
    Wind hourly data is from the ERA 5 dataset.

    Availability

    A device's availability to produce electricity depends on the device's reliability and the time to repair any failures. The repair time depends on weather
    windows and other logistical factors (for example, the availability of repair vessels and personnel.). A 2013 study by O'Connor et al. determined the
    relationship between the accessibility and availability of a wave energy device. The resulting graph (see Fig. 1 of their paper) shows the correlation between accessibility at Hs of 2m and wind speed of 15.0m/s and availability. This graph is used to calculate the availability layer from the accessibility layer.

    The input value, accessibility, measures how accessible a site is for installation or operation and maintenance activities. It is the percentage time the
    environmental conditions, i.e. the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5), are below operational limits.
    Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined
    by checking if the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total
    number of hours for the month. Once the accessibility was known, the percentage availability was calculated using the O'Connor et al. graph of the relationship between the two. A mature technology reliability was assumed.

    Weather Window

    The weather window availability is the percentage of possible x-duration windows where weather conditions (Hs, wind speed) are below maximum limits for the
    given duration for the month.

    The resolution of the wave dataset (0.05° × 0.05°) is higher than that of the wind dataset
    (0.25° x 0.25°), so the nearest wind value is used for each wave data point. The weather window layer is at the resolution of the wave layer.

    The first step in calculating the weather window for a particular set of inputs (Hs, wind speed and duration) is to calculate the accessibility at each timestep.
    The accessibility is based on a simple boolean evaluation: are the wave and wind conditions within the required limits at the given timestep?

    Once the time series of accessibility is calculated, the next step is to look for periods of sustained favourable environmental conditions, i.e. the weather
    windows. Here all possible operating periods with a duration matching the required weather-window value are assessed to see if the weather conditions remain
    suitable for the entire period. The percentage availability of the weather window is calculated based on the percentage of x-duration windows with suitable
    weather conditions for their entire duration.The weather window availability can be considered as the probability of having the required weather window available
    at any given point in the month.

    Extreme Wind and Wave

    The Extreme wave layers show the highest significant wave height expected to occur during the given return period. The Extreme wind layers show the highest wind speed expected to occur during the given return period.

    To predict extreme values, we use Extreme Value Analysis (EVA). EVA focuses on the extreme part of the data and seeks to determine a model to fit this reduced
    portion accurately. EVA consists of three main stages. The first stage is the selection of extreme values from a time series. The next step is to fit a model
    that best approximates the selected extremes by determining the shape parameters for a suitable probability distribution. The model then predicts extreme values
    for the selected return period. All calculations use the python pyextremes library. Two methods are used - Block Maxima and Peaks over threshold.

    The Block Maxima methods selects the annual maxima and fits a GEVD probability distribution.

    The peaks_over_threshold method has two variable calculation parameters. The first is the percentile above which values must be to be selected as extreme (0.9 or 0.998). The second input is the time difference between extreme values for them to be considered independent (3 days). A Generalised Pareto Distribution is fitted to the selected
    extremes and used to calculate the extreme value for the selected return period.

  16. a

    Indian Lands

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Oct 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2020). Indian Lands [Dataset]. https://hub.arcgis.com/maps/FDEP::indian-lands
    Explore at:
    Dataset updated
    Oct 27, 2020
    Dataset authored and provided by
    Florida Department of Environmental Protection
    Area covered
    Description

    The purpose of the American Indian and Alaska Native Land Area Representation (AIAN-LAR) Geographic Information System (GIS) dataset is to depict the external extent of federal Indian reservations and the external extent of associated land held in “trust” by the United States, “restricted fee” or “mixed ownership” status for federally recognized tribes and individual Indians. This dataset includes other land area types such as Public Domain Allotments, Dependent Indian Communities and Homesteads. This GIS Dataset is prepared strictly for illustrative and reference purposes only and should not be used, and is not intended for legal, survey, engineering or navigation purposes.No warranty is made by the Bureau of Indian Affairs (BIA) for the use of the data for purposes not intended by the BIA. This GIS Dataset may contain errors. There is no impact on the legal status of the land areas depicted herein and no impact on land ownership. No legal inference can or should be made from the information in this GIS Dataset. The GIS Dataset is to be used solely for illustrative, reference and statistical purposes and may be used for government to government Tribal consultation. Reservation boundary data is limited in authority to those areas where there has been settled Congressional definition or final judicial interpretation of the boundary. Absent settled Congressional definition or final judicial interpretation of a reservation boundary, the BIA recommends consultation with the appropriate Tribe and then the BIA to obtain interpretations of the reservation boundary.The land areas and their representations are compilations defined by the official land title records of the Bureau of Indian Affairs (BIA) which include treaties, statutes, Acts of Congress, agreements, executive orders, proclamations, deeds and other land title documents. The trust, restricted, and mixed ownership land area shown here, are suitable only for general spatial reference and do not represent the federal government’s position on the jurisdictional status of Indian country. Ownership and jurisdictional status is subject to change and must be verified with plat books, patents, and deeds in the appropriate federal and state offices.Included in this dataset are the exterior extent of off reservation trust, restricted fee tracts and mixed tracts of land including Public Domain allotments, Dependent Indian Communities, Homesteads and government administered lands and those set aside for schools and dormitories. There are also land areas where there is more than one tribe having an interest in or authority over a tract of land but this information is not specified in the AIAN-LAR dataset. The dataset includes both surface and subsurface tracts of land (tribal and individually held) “off reservation” tracts and not simply off reservation “allotments” as land has in many cases been subsequently acquired in trust.These data are public information and may be used by various organizations, agencies, units of government (i.e., Federal, state, county, and city), and other entities according to the restrictions on appropriate use. It is strongly recommended that these data be acquired directly from the BIA and not indirectly through some other source, which may have altered or integrated the data for another purpose for which they may not have been intended. Integrating land areas into another dataset and attempting to resolve boundary differences between other entities may produce inaccurate results. It is also strongly recommended that careful attention be paid to the content of the metadata file associated with these data. Users are cautioned that digital enlargement of these data to scales greater than those at which they were originally mapped can cause misinterpretation.The BIA AIAN-LAR dataset’s spatial accuracy and attribute information are continuously being updated, improved and is used as the single authoritative land area boundary data for the BIA mission. These data are available through the Bureau of Indian Affairs, Office of Trust Services, Division of Land Titles and Records, Branch of Geospatial Support.

  17. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  18. M

    School Program Locations, Minnesota, SY2024-25

    • gisdata.mn.gov
    ags_mapserver, csv +5
    Updated Nov 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education Department (2024). School Program Locations, Minnesota, SY2024-25 [Dataset]. https://gisdata.mn.gov/dataset/struc-school-program-locs
    Explore at:
    csv, html, jpeg, fgdb, shp, gpkg, ags_mapserverAvailable download formats
    Dataset updated
    Nov 6, 2024
    Dataset provided by
    Education Department
    Area covered
    Minnesota
    Description

    This dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.

    Maintenance of these locations are a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.

    Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. In particular, some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so some records included in this file may in fact be inactive or inaccurately located.

    Note that multiple programs may occur at the same location and are represented as separate records. For example, a junior and a senior high school may be in the same building, but each has a separate record in the data layer. Users leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.

    This data is now available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.

  19. H

    CELL5M: A Multidisciplinary Geospatial Database for Africa South of the...

    • dataverse.harvard.edu
    Updated Dec 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2017). CELL5M: A Multidisciplinary Geospatial Database for Africa South of the Sahara [Dataset]. http://doi.org/10.7910/DVN/G4TBLF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 5, 2017
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    CGIAR Research Program on Policies, Institutions, and Markets (PIM)
    The Bill and Melinda Gates Foundation
    Description

    Spatially-explicit data is increasingly becoming available across disciplines, yet they are often limited to a specific domain. In order to use such datasets in a coherent analysis, such as to decide where to target specific types of agricultural investment, there should be an effort to make such datasets harmonized and interoperable. For Africa South of the Sahara (SSA) region, the HarvestChoice CELL5M Database was developed in this spirit of moving multidisciplinary data into one harmonized, geospatial database. The database includes over 750 biophysical and socio-economic indicators, many of which can be easily expanded to global scale. The CELL5M database provides a platform for cross-cutting spatial analyses and fine-grain visualization of the mix of farming systems and populations across SSA. It was created as the central core to support a decision-making platform that would enable development practitioners and researchers to explore multi-faceted spatial relationships at the nexus of poverty, health and nutrition, farming systems, innovation, and environment. The database is a matrix populated by over 350,000 grid cells covering SSA at five arc-minute spatial resolution. Users of the database, including those conduct researches on agricultural policy, research, and development issues, can also easily overlay their own indicators. Numerical aggregation of the gridded data by specific geographical domains, either at subnational level or across country borders for more regional analysis, is also readily possible without needing to use any specific GIS software. See the HCID database (http://dx.doi.org/10.7910/DVN/MZLXVQ) for the geometry of each grid cell. The database also provides standard-compliant data API that currently powers several web-based data visualization and analytics tools.

  20. u

    Utah Roads

    • opendata.gis.utah.gov
    • hub.arcgis.com
    Updated Sep 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2016). Utah Roads [Dataset]. https://opendata.gis.utah.gov/datasets/utah-roads/explore
    Explore at:
    Dataset updated
    Sep 30, 2016
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Last Update: 08/29/2024The statewide roads dataset is a multi-purpose statewide roads dataset for cartography and range based-address location. This dataset is also used as the base geometry for deriving the GIS-representation of UDOT's highway linear referencing system (LRS). A network analysis dataset for route-finding can also be derived from this dataset. This dataset utilizes a data model based on Next-Generation 911 standards and the Federal Highway Administration's All Roads Network Of Linear-referenced Data (ARNOLD) reporting requirements for state DOTs. UGRC adopted this data model on September 13th, 2017.The statewide roads dataset is maintained by UGRC in partnership with local governments, the Utah 911 Committee, and UDOT. This dataset is updated monthly with Davis, Salt Lake, Utah, Washington and Weber represented every month, along with additional counties based on an annual update schedule. UGRC obtains the data from the authoritative data source (typically county agencies), projects the data and attributes into the current data model, spatially assigns polygon-based fields based on the appropriate SGID boundary, and then standardizes the attribute values to ensure statewide consistency. UGRC also generates a UNIQUE_ID field based on the segment's location in the US National Grid, with the street name then tacked on. The UNIQUE_ID field is static and is UGRC's current, ad hoc solution to a persistent global id. More information about the data model can be found here: https://docs.google.com/spreadsheets/d/1jQ_JuRIEtzxj60F0FAGmdu5JrFpfYBbSt3YzzCjxpfI/edit#gid=811360546 More information about the data model transition can be found here: https://gis.utah.gov/major-updates-coming-to-roads-data-model/We are currently working with US Forest Service to improve the Forest Service roads in this dataset, however, for the most up-to-date and complete set of USFS roads, please visit their data portal where you can download the "National Forest System Roads" dataset.More information can be found on the UGRC data page for this layer:https://gis.utah.gov/data/transportation/roads-system/

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
htmlAvailable download formats
Dataset updated
Oct 5, 2021
Dataset provided by
Statistics Canada
License

Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically

Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu