Facebook
TwitterThis data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterOur dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).
Facebook
TwitterThis map presents the full data available on the MLTSD GeoHub, and maps several of the key variables reflected by the Employment Services Program of ETD.Employment Services are a suite of services delivered to the public to help Ontarians find sustainable employment. The services are delivered by third-party service providers at service delivery sites (SDS) across Ontario on behalf of the Ministry of Labour, Training and Skills Development (MLTSD). The services are tailored to meet the individual needs of each client and can be provided one-on-one or in a group format. Employment Services fall into two broad categories: unassisted and assisted services.
Unassisted services include the following components:resources and information on all aspects of employment including detailed facts on the local labour marketresources on how to conduct a job search.assistance in registering for additional schoolinghelp with career planningreference to other Employment and government programs.
Unassisted services are available to all Ontarians without reference to eligibility criteria. These unassisted services can be delivered through structured orientation or information sessions (on or off site), e-learning sessions, or one-to-one sessions up to two days in duration. Employers can also use unassisted services to access information on post-employment opportunities and supports available for recruitment and workplace training.
The second category is assisted services, and it includes the following components:assistance with the job search (including individualized assistance in career goal setting, skills assessment, and interview preparation) job matching, placement and incentives (which match client skills and interested with employment opportunities, and include placement into employment, on-the-job training opportunities, and incentives to employers to hire ES clients), and job training/retention (which supports longer-term attachment to or advancement in the labour market or completion of training)For every assisted services client a service plan is maintained by the service provider, which gives details on the types of assisted services the client has accessed. To be eligible for assisted services, clients must be unemployed (defined as working less than twenty hours a week) and not participating in full-time education or training. Clients are also assessed on a number of suitability indicators covering economic, social and other barriers to employment, and service providers are to prioritize serving those clients with multiple suitability indicators.
About This Dataset
This dataset contains data on ES clients for each of the twenty-six Local Board (LB) areas in Ontario for the 2015/16 fiscal year, based on data provided to Local Boards and Local Employment Planning Councils (LEPC) in June 2016 (see below for details on Local Boards). This includes all assisted services clients whose service plan was closed in the 2015/16 fiscal year and all unassisted services clients who accessed unassisted services in the 2015/16 fiscal year. These clients have been distributed across Local Board areas based on the address of each client’s service delivery site, not the client’s home address. Note that clients who had multiple service plans close in the 2015/16 fiscal year (i.e. more than one distinct period during which the client was accessing assisted services) will be counted multiple times in this dataset (once for each closed service plan). Assisted services clients who also accessed unassisted services either before or after accessing assisted services would also be included in the count of unassisted clients (in addition to their assisted services data).
Demographic data on ES assisted services clients, including a client’s suitability indicators and barriers to employment, are collected by the service provider when a client registers for ES (i.e. at intake). Outcomes data on ES assisted services clients is collected through surveys at exit (i.e. when the client has completed accessing ES services and the client’s service plan is closed) and at three, six, and twelve months after exit. As demographic and outcomes data is only collected for assisted services clients, all fields in this dataset contain data only on assisted services clients except for the ‘Number of Clients – Unassisted R&I Clients’ field.
Note that ES is the gateway for other Employment Ontario programs and services; the majority of Second Career (SC) clients, some apprentices, and some Literacy and Basic Skills (LBS) clients have also accessed ES. It is standard procedure for SC, LBS and apprenticeship client and outcome data to be entered as ES data if the program is part of ES service plan. However, for this dataset, SC client and outcomes data has been separated from ES, which as a result lowers the client and outcome counts for ES.
About Local Boards
Local Boards are independent not-for-profit corporations sponsored by the Ministry of Labour, Training and Skills Development to improve the condition of the labour market in their specified region. These organizations are led by business and labour representatives, and include representation from constituencies including educators, trainers, women, Francophones, persons with disabilities, visible minorities, youth, Indigenous community members, and others. For the 2015/16 fiscal year there were twenty-six Local Boards, which collectively covered all of the province of Ontario.
The primary role of Local Boards is to help improve the conditions of their local labour market by:engaging communities in a locally-driven process to identify and respond to the key trends, opportunities and priorities that prevail in their local labour markets;facilitating a local planning process where community organizations and institutions agree to initiate and/or implement joint actions to address local labour market issues of common interest; creating opportunities for partnership development activities and projects that respond to more complex and/or pressing local labour market challenges; and organizing events and undertaking activities that promote the importance of education, training and skills upgrading to youth, parents, employers, employed and unemployed workers, and the public in general.
In December 2015, the government of Ontario launched an eighteen-month Local Employment Planning Council pilot program, which established LEPCs in eight regions in the province formerly covered by Local Boards. LEPCs expand on the activities of existing Local Boards, leveraging additional resources and a stronger, more integrated approach to local planning and workforce development to fund community-based projects that support innovative approaches to local labour market issues, provide more accurate and detailed labour market information, and develop detailed knowledge of local service delivery beyond Employment Ontario (EO).
Eight existing Local Boards were awarded LEPC contracts that were effective as of January 1st, 2016. As such, from January 1st, 2016 to March 31st, 2016, these eight Local Boards were simultaneously Local Employment Planning Councils. The eight Local Boards awarded contracts were:Durham Workforce Authority Peel-Halton Workforce Development GroupWorkforce Development Board - Peterborough, Kawartha Lakes, Northumberland, HaliburtonOttawa Integrated Local Labour Market PlanningFar Northeast Training BoardNorth Superior Workforce Planning Board Elgin Middlesex Oxford Workforce Planning & Development BoardWorkforce Windsor-Essex
MLTSD has provided Local Boards and LEPCs with demographic and outcome data for clients of Employment Ontario (EO) programs delivered by service providers across the province on an annual basis since June 2013. This was done to assist Local Boards in understanding local labour market conditions. These datasets may be used to facilitate and inform evidence-based discussions about local service issues – gaps, overlaps and under-served populations - with EO service providers and other organizations as appropriate to the local context.
Data on the following EO programs for the 2015/16 fiscal year was made available to Local Boards and LEPCs in June 2016:Employment Services (ES)Literacy and Basic Skills (LBS) Second Career (SC) Apprenticeship
This dataset contains the 2015/16 ES data that was sent to Local Boards and LEPCs. Datasets covering past fiscal years will be released in the future.
Notes and Definitions
NAICS – The North American Industry Classification System (NAICS) is an industry classification system developed by the statistical agencies of Canada, the United States, and Mexico against the backdrop of the North American Free Trade Agreement. It is a comprehensive system that encompasses all economic activities in a hierarchical structure. At the highest level, it divides economic activity into twenty sectors, each of which has a unique two-digit identifier. These sectors are further divided into subsectors (three-digit codes), industry groups (four-digit codes), and industries (five-digit codes). This dataset uses two-digit NAICS codes from the 2007 edition to identify the sector of the economy an Employment Services client is employed in prior to and after participation in ES.
NOC – The National Organizational Classification (NOC) is an occupational classification system developed by Statistics Canada and Human Resources and Skills Development Canada to provide a standard lexicon to describe and group occupations in Canada primarily on the basis of the work being performed in the occupation. It is a comprehensive system that encompasses all occupations in Canada in a hierarchical structure. At the highest level are ten broad occupational categories, each of which has a unique one-digit identifier. These broad occupational categories are further divided into forty major groups (two-digit codes), 140 minor groups
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.
GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.
The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Facebook
TwitterData set that contains information on archaeological remains of the pre historic settlement of the Letolo valley on Savaii on Samoa. It is built in ArcMap from ESRI and is based on previously unpublished surveys made by the Peace Corps Volonteer Gregory Jackmond in 1976-78, and in a lesser degree on excavations made by Helene Martinsson Wallin and Paul Wallin. The settlement was in use from at least 1000 AD to about 1700- 1800. Since abandonment it has been covered by thick jungle. However by the time of the survey by Jackmond (1976-78) it was grazed by cattle and the remains was visible. The survey is at file at Auckland War Memorial Museum and has hitherto been unpublished. A copy of the survey has been accessed by Olof Håkansson through Martinsson Wallin and Wallin and as part of a Masters Thesis in Archeology at Uppsala University it has been digitised.
Olof Håkansson has built the data base structure in the software from ESRI, and digitised the data in 2015 to 2017. One of the aims of the Masters Thesis was to discuss hierarchies. To do this, subsets of the data have been displayed in various ways on maps. Another aim was to discuss archaeological methodology when working with spatial data, but the data in itself can be used without regard to the questions asked in the Masters Thesis. All data that was unclear has been removed in an effort to avoid errors being introduced. Even so, if there is mistakes in the data set it is to be blamed on the researcher, Olof Håkansson. A more comprehensive account of the aim, questions, purpose, method, as well the results of the research, is to be found in the Masters Thesis itself. Direkt link http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1149265&dswid=9472
Purpose:
The purpose is to examine hierarchies in prehistoric Samoa. The purpose is further to make the produced data sets available for study.
Prehistoric remains of the settlement of Letolo on the Island of Savaii in Samoa in Polynesia
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22121490%2F7189944f8fc292a094c90daa799d08ca%2FChatGPT%20Image%2015%20Kas%202025%2014_07_37.png?generation=1763204959770660&alt=media" alt="">
This synthetic dataset simulates 300 global cities across 6 major geographic regions, designed specifically for unsupervised machine learning and clustering analysis. It explores how economic status, environmental quality, infrastructure, and digital access shape urban lifestyles worldwide.
| Feature | Description | Range |
|---|---|---|
| 10 Features | Economic, environmental & social indicators | Realistically scaled |
| 300 Cities | Europe, Asia, Americas, Africa, Oceania | Diverse distributions |
| Strong Correlations | Income ↔ Rent (+0.8), Density ↔ Pollution (+0.6) | ML-ready |
| No Missing Values | Clean, preprocessed data | Ready for analysis |
| 4-5 Natural Clusters | Metropolitan hubs, eco-towns, developing centers | Pre-validated |
✅ Realistic Correlations: Income strongly predicts rent (+0.8), internet access (+0.7), and happiness (+0.6)
✅ Regional Diversity: Each region has distinct economic and environmental characteristics
✅ Clustering-Ready: Naturally separable into 4-5 lifestyle archetypes
✅ Beginner-Friendly: No data cleaning required, includes example code
✅ Documented: Comprehensive README with methodology and use cases
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Load and prepare
df = pd.read_csv('city_lifestyle_dataset.csv')
X = df.drop(['city_name', 'country'], axis=1)
X_scaled = StandardScaler().fit_transform(X)
# Cluster
kmeans = KMeans(n_clusters=5, random_state=42)
df['cluster'] = kmeans.fit_predict(X_scaled)
# Analyze
print(df.groupby('cluster').mean())
After working with this dataset, you will be able to: 1. Apply K-Means, DBSCAN, and Hierarchical Clustering 2. Use PCA for dimensionality reduction and visualization 3. Interpret correlation matrices and feature relationships 4. Create geographic visualizations with cluster assignments 5. Profile and name discovered clusters based on characteristics
| Cluster | Characteristics | Example Cities |
|---|---|---|
| Metropolitan Tech Hubs | High income, density, rent | Silicon Valley, Singapore |
| Eco-Friendly Towns | Low density, clean air, high happiness | Nordic cities |
| Developing Centers | Mid income, high density, poor air | Emerging markets |
| Low-Income Suburban | Low infrastructure, income | Rural areas |
| Industrial Mega-Cities | Very high density, pollution | Manufacturing hubs |
Unlike random synthetic data, this dataset was carefully engineered with: - ✨ Realistic correlation structures based on urban research - 🌍 Regional characteristics matching real-world patterns - 🎯 Optimal cluster separability (validated via silhouette scores) - 📚 Comprehensive documentation and starter code
✓ Learn clustering without data cleaning hassles
✓ Practice PCA and dimensionality reduction
✓ Create beautiful geographic visualizations
✓ Understand feature correlation in real-world contexts
✓ Build a portfolio project with clear business insights
This dataset was designed for educational purposes in machine learning and data science. While synthetic, it reflects real patterns observed in global urban development research.
Happy Clustering! 🎉
Facebook
TwitterPakistani Cities and Their Provinces Dataset Description This dataset contains a comprehensive list of cities from Pakistan, along with their corresponding provinces. It serves as a valuable resource for anyone seeking geographical insights into Pakistan’s urban areas. The dataset covers major cities from all provinces, including Sindh, Punjab, Khyber Pakhtunkhwa, and Balochistan, making it suitable for various applications such as urban planning, population studies, and regional analysis.
Key Features:
City Names Province Names Country: Pakistan Potential Use Cases Geographical Analysis: Ideal for researchers and students performing geographical, demographic, or regional studies of Pakistan's urban landscape. Data Science Projects: Can be used for machine learning projects involving geospatial analysis, regional clustering, and city-level modeling. Visualization Projects: Helpful for creating maps, charts, and visual representations of Pakistan’s provinces and cities in tools like Power BI or Tableau. Business Insights: Useful for businesses analyzing market expansion strategies, targeting regional demographics, or performing location-based analysis. Education: A helpful resource for students and educators in geography, data science, and economics to understand the distribution of cities across provinces. Applications Machine Learning (Geospatial data, clustering models) Data Visualization (Map plotting, heatmaps) Policy Making (Urban development, resource allocation) Educational Projects (Geography, demographics) Feel free to download, explore, and incorporate this dataset into your projects. I welcome any feedback or suggestions to improve its utility!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This collection of gridded data layers provides the extent of inundation in May 2020 resulting from the cyclone Amphan in 39 coastal districts in India and Bangladesh.
Input data:
These geospatial data layers are derived from Sentinel-1 dual-polarization C-band Synthetic Aperture Radar (SAR) data for pre-Amphan (May 5-18, 2020) and post-Amphan (May 22-30, 2020) periods. We accessed ready-to-use SAR data on Google Earth Engine (GEE). These input data were preprocessed using Ground Range Detected (GRD) border-noise removal, thermal noise removal, radiometric calibration, and terrain correction, to derive backscatter coefficients (σ°) in decibels (dB). We used VH polarisation instead of VV, since the latter is known to be affected by windy conditions as compared to VH.
Methods:
We developed a binary water/non-water classification scheme for the pre- and post-Amphan images using the automated Otsu thresholding approach that finds optimum threshold values based on clusters found in the histograms of pixel values. This analysis resulted in eight images: four each for pre-Amphan and post-Amphan periods (one each for coastal districts of Odisha and West Bengal and two for Bangladesh for each period). The pixels in these images have two values: 0 for non-water and 1 for water.
We then used a decision rule to identify areas that changed from ‘non-water’ to ‘water’ after the cyclone. The decision rule generated the ‘inundation layer’ with the permanent water bodies such as river, lakes, oceans and aquaculture masked out. This analysis resulted in four images, each with pixels with a value of 1 for inundated regions.
Data set format:
The spatial resolution of all the derived datasets is 10m. These georeferenced datasets are distributed in GEOTIFF format, and are compatible with GIS and/or image processing software, such as R and ArcGIS. The GIS-ready raster files can be used directly in mapping and geospatial analysis.
Data set for download:
A. Three data layers for Odisha, India:
OD_pre_binary.tif
OD_post_binary.tif
OD_inundation.tif
These data layers cover 10 districts: Baleshwar, Bhadrak, Cuttack, Jagatsinghpur, Jajpur, Kendrapara, Keonjhar, Khordha, Mayurbhanj and Puri.
B. Three data layers for West Bengal, India:
WB_pre_binary.tif
WB_post_binary.tif
WB_inundation.tif
These data layers cover 9 districts: Barddhaman, East Midnapore, Haora, Hugli, Kolkata, Nadia, North 24 Parganas, South 24 Parganas, and West Midnapore.
C. Six data layers for Bangladesh – three each for lower (L) region and upper (U) region.
BNG_L_pre_binary.tif
BNG_L_post_binary.tif
BNG_L_inundation.tif
BNG_U_pre_binary.tif
BNG_U_post_binary.tif
BNG_U_inundation.tif
The data layers for the lower region cover 11 districts: Bagerhat, Barguna, Barisal, Bhola, Jhalokati, Khulna, Lakshmipur, Noakhali, Patuakhali, Pirojpur, and Satkhira.
The data layers for the upper region cover 9 districts: Chuadanga, Jessore, Jhenaidah, Kushtia, Meherpur, Naogaon, Natore, Pabna, and Rajshahi.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents a water shortage vulnerability analysis performed by DWR using Small Water System boundaries pulled from the SWRCB (State Water Resource Control Board) water system boundary layer (SABL). The water systems were then restricted to only active water systems with under 3000 connections that had SDWIS (Safe Drinking Water Information System) data. This data is from the 2024 analysis.
The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR. These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the source metadata for more information on completeness.
The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.
Facebook
TwitterThe World Terrestrial Ecosystems map classifies the world into areas of similar climate, landform, and land cover, which form the basic components of any terrestrial ecosystem structure. This map is important because it uses objectively derived and globally consistent data to characterize the ecosystems at a much finer spatial resolution (250-m) than existing ecoregionalizations, and a much finer thematic resolution (431 classes) than existing global land cover products. This item was updated on Apr 14, 2023 to distinguish between Boreal and Polar climate regions in the terrestrial ecosystems. Cell Size: 250-meter Source Type: ThematicPixel Type: 16 Bit UnsignedData Projection: GCS WGS84Extent: GlobalSource: USGS, The Nature Conservancy, EsriUpdate Cycle: NoneAnalysis: Optimized for analysis What can you do with this layer?This map allows you to query the land surface pixels and returns the values of all the input parameters (landform type, landcover/vegetation type, climate region) and the name of the terrestrial ecosystem at that location. This layer can be used in analysis at global and local regions. However, for large scale spatial analysis, we have also provided an ArcGIS Pro Package that contains the original raster data with multiple table attributes. For simple mapping applications, there is also a raster tile layer. This layer can be combined with the World Protected Areas Database to assess the types of ecosystems that are protected, and progress towards meeting conservation goals. The WDPA layer updates monthly from the United Nations Environment Programme. Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See the Living Atlas Imagery Layers Optimized for Analysis Group for a complete list of imagery layers optimized for analysis. Developing the World Terrestrial EcosystemsWorld Terrestrial Ecosystems map was produced by adopting and modifying the Intergovernmental Panel on Climate Change (IPCC) approach on the definition of Terrestrial Ecosystems and development of standardized global climate regions using the values of environmental moisture regime and temperature regime. We then combined the values of Global Climate Regions, Landforms and matrix-forming vegetation assemblage or land use, using the ArcGIS Combine tool (Spatial Analyst) to produce World Ecosystems Dataset. This combination resulted of 431 World Ecosystems classes. Each combination was assigned a color using an algorithm that blended traditional color schemes for each of the three components. Every pixel in this map is symbolized by a combination of values for each of these fields. The work from this collaboration is documented in the publication:Sayre et al. 2020. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems - Global Ecology and Conservation More information about World Terrestrial Ecosystems can be found in this Story Map.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs — Evaluation Report for ATDM Program," and FHWA-JPO-16-389, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs : Evaluation Report for the San Diego Testbed : Draft Report". The files in this zip file are specifically related to the San Diego Testbed. The compressed zip files total 3.17 GB in size. The files have been uploaded as-is; no further documentation was supplied by NTL. Direct download of data zip file: https://doi.org/10.21949/1500873 All located .docx files were converted to .pdf document files which are an open, archival format. These pdfs were then added to the zip file alongside the original .docx files. These files can be unzipped using any zip compression/decompression software. This zip file contains files in the following formats: .pdf document files which can be read using any pdf reader; .cvs text files which can be read using any text editor; .txt text files which can be read using any text editor; .docx document files which can be read in Microsoft Word and some other word processing programs; . xlsx spreadsheet files which can be read in Microsoft Excel and some other spreadsheet programs; .dat data files which may be text or multimedia; as well as GIS or mapping files in the following formats: .mxd, .dbf, .prj, .sbn, .shp., .shp.xml; which may be opened in ArcGIS or other GIS software. [software requirements] These files were last accessed in 2017.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Last Update: 10/10/2025The statewide roads dataset is a multi-purpose statewide roads dataset for cartography and range based-address location. This dataset is also used as the base geometry for deriving the GIS-representation of UDOT's highway linear referencing system (LRS). A network analysis dataset for route-finding can also be derived from this dataset.This dataset utilizes a data model based on Next-Generation 911 standards and the Federal Highway Administration's All Roads Network Of Linear-referenced Data (ARNOLD) reporting requirements for state DOTs. UGRC adopted this data model on September 13th, 2017.The statewide roads dataset is maintained by UGRC in partnership with local governments, the Utah 911 Committee, and UDOT. This dataset is updated monthly with Davis, Salt Lake, Utah, Washington and Weber represented every month, along with additional counties based on an annual update schedule. UGRC obtains the data from the authoritative data source (typically county agencies), projects the data and attributes into the current data model, spatially assigns polygon-based fields based on the appropriate SGID boundary, and then standardizes the attribute values to ensure statewide consistency. UGRC also generates a UNIQUE_ID field based on the segment's location in the US National Grid, with the street name then tacked on. The UNIQUE_ID field is static and is UGRC's current, ad hoc solution to a persistent global id. More information about the data model can be found here: https://docs.google.com/spreadsheets/d/1jQ_JuRIEtzxj60F0FAGmdu5JrFpfYBbSt3YzzCjxpfI/edit#gid=811360546 More information about the data model transition can be found here: https://gis.utah.gov/major-updates-coming-to-roads-data-model/We are currently working with US Forest Service to improve the Forest Service roads in this dataset, however, for the most up-to-date and complete set of USFS roads, please visit their data portal where you can download the "National Forest System Roads" dataset.More information can be found on the UGRC data page for this layer:https://gis.utah.gov/data/transportation/roads-system/
Facebook
TwitterRTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
Facebook
TwitterBy Homeland Infrastructure Foundation [source]
Within this dataset, users can find numerous attributes that provide insight into various aspects of shoreline construction lines. The Category_o field categorizes these structures based on certain characteristics or purposes they serve. Additionally, each object in the dataset possesses a unique name or identifier represented by the Object_Nam column.
Another crucial piece of information captured in this dataset is the status of each shoreline construction line. The Status field indicates whether a particular structure is currently active or inactive. This helps users understand if it still serves its intended purpose or has been decommissioned.
Furthermore, the dataset includes data pertaining to multiple water levels associated with different shoreline construction lines. This information can be found in the Water_Leve column and provides relevant context for understanding how these artificial coastlines interact with various water bodies.
To aid cartographic representations and proper utilization of this data source for mapping purposes at different scales, there is also an attribute called Scale_Mini. This value denotes the minimum scale necessary to visualize a specific shoreline construction line accurately.
Data sources are important for reproducibility and quality assurance purposes in any GIS analysis project; hence identifying who provided and contributed to collecting this data can be critical in assessing its reliability. In this regard, individuals or organizations responsible for providing source data are specified in the column labeled Source_Ind.
Accompanying descriptive information about each source used to create these shoreline constructions lines can be found in the Source_D_1 field. This supplemental information provides additional context and details about the data's origin or collection methodology.
The dataset also includes a numerical attribute called SHAPE_Leng, representing the length of each shoreline construction line. This information complements the geographic and spatial attributes associated with these structures.
Understanding the Categories:
- The Category_o column classifies each shoreline construction line into different categories. This can range from seawalls and breakwaters to jetties and groins.
- Use this information to identify specific types of shoreline constructions based on your analysis needs.
Identifying Specific Objects:
- The Object_Nam column provides unique names or identifiers for each shoreline construction line.
- These identifiers help differentiate between different segments of construction lines in a region.
Determining Status:
- The Status column indicates whether a shoreline construction line is active or inactive.
- Active constructions are still in use and may be actively maintained or monitored.
- Inactive constructions are no longer operational or may have been demolished.
Analyzing Water Levels:
- The Water_Leve column describes the water level at which each shoreline construction line is located.
- Different levels may impact the suitability or effectiveness of these structures based on tidal changes or flood zones.
Exploring Additional Information:
- The Informatio column contains additional details about each shoreline construction line.
- This can include various attributes such as materials used, design specifications, ownership details, etc.
Determining Minimum Visible Scale:
-- The Scale_Mini column specifies the minimum scale at which you can observe the coastline's man-made structures clearly.Verifying Data Sources: -- In order to understand data reliability and credibility for further analysis,Source_Ind, Source_D_1, SHAPE_Leng,and Source_Dat columns provide information about the individual or organization that provided the source data and length, and date of the source data used to create the shoreline construction lines.
Utilize this dataset to perform various analyses related to shorelines, coastal developments, navigational channels, and impacts of man-made structures on marine ecosystems. The combination of categories, object names, status, water levels, additional information, minimum visible scale and reliable source information offers a comprehensive understanding of shoreline constructions across different regions.
Remember to refer back to the dataset documentation for any specific deta...
Facebook
TwitterAbstract:
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
Purpose:
The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains a set of synthetic data that can be used to evaluate the efficiency of geosaptial datasbases. The datasets is composed of four json file, characterized by different size. They can be used to analyze the scalability of geospatial datasets with respect to the database size. Each json file contains a set of "points", each one characterized by a set of random attributes (description, url of a picture linked to the point, creation date, delete date, update date, identifier, partition identifier). The synthetically generated points are uniformly distributed among the world.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains the pre-computed land indication datasets (also known as the "Prior" datasets) developed for the preprint "Methodological Framework for Determining the Land Eligibility of Renewable Energy Sources" [1] and evaluated in the publication "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe" [2]. Please cite these sources if this data is used in published works. Note that the original sources from which these datasets were processed are also indicated in the README.txt file, which should also be credited.
The main aspects of the Prior datasets are: 1. Each Prior dataset is a raster file covering the European domain (see note N1) * Spatial reference system is set as "EPSG:3035" * Spatial resolution is 100 meters * Datatype is "UInt8" 2. Each dataset represents exactly one geospatial criteria * Example: "road_proximity" = The distance of each pixel from the nearest roadway 3. Pixel values represent edge indexes, rather than the explicit values themselves * This was chosen to conserve storage space * Example: For "road_proximity"... "Index Value" "Edge Value" 0 = "within 0 meters" 1 = "within 50 meters" 2 = "within 100 meters" 3 = "within 200 meters" 4. Each prior dataset represents a processed view of the fundamental data source, therefore if any of this data is used in a published work the fundamental source should also be cited
View README.txt for more information
The following datasets are available with this resource: 1. agriculture_arable_proximity 2. agriculture_heterogeneous_proximity 3. agriculture_pasture_proximity 4. agriculture_permanent_crop_proximity 5. agriculture_proximity 6. airfield_proximity 7. airport_proximity 8. camping_proximity 9. dni_threshold 10. elevation_threshold 11. ghi_threshold 12. industrial_proximity 13. lake_proximity 14. leisure_proximity 15. mining_proximity 16. ocean_proximity 17. power_line_proximity 18. connection_distance 19. protected_biosphere_proximity 20. protected_bird_proximity 21. protected_habitat_proximity 22. protected_landscape_proximity 23. protected_natural_monument_proximity 24. protected_park_proximity 25. protected_reserve_proximity 26. protected_wilderness_proximity 27. railway_proximity 28. river_proximity 29. roads_main_proximity 30. roads_proximity 31. access_distance 32. roads_secondary_proximity 33. sand_proximity 34. settlement_proximity 35. settlement_urban_proximity 36. slope_north_facing_threshold 37. slope_threshold 38. touristic_proximity 39. waterbody_proximity 40. wetland_proximity 41. windspeed_100m_threshold 42. windspeed_50m_threshold 43. woodland_coniferous_proximity 44. woodland_deciduous_proximity 45. woodland_mixed_proximity 46. woodland_proximity
Facebook
TwitterThis data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.