Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Site Address Points dataset was created and moved into GIS production January 31st, 2018. The feature class was created as part of a consultant project to add missing addresses to the GIS address points. Several sources of addresses such as AMANDA property records, County GIS points, Assessor records, a commercial mailing list, and the phone company's ALI database were checked against each other and the most valid addresses were added increasing the address points from the original 264,375 to over 365,000. The project also adopted a NENA-compliant data model to become more NG 9-1-1 ready.
In 2023, a project was completed to enhance this dataset by populating a Place Type field indicating the use type category associated with each address. Following are the codes and definitions used in the Place Type field:
Data is updated on an ongoing basis with changes published weekly on Monday morning.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract: Annual average wind resource potential for Wisconsin at a 50 meter height.
Purpose: Provide information on the wind resource development potential in Wisconsin.
Supplemental Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects.
Other Citation Details: This map has been validated with available surface data by NREL and wind energy meteorological consultants.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Abstract: Annual average wind resource potential for the state of Georgia at a 50 meter height.
Purpose: Provide information on the wind resource development potential within the state of Georgia.
Supplemental Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 17, datum WGS 84 projection system.
Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
To better serve the public and encourage cooperation, CAL FIRE has released the largest dataset of local fire districts within the State of California. This dataset is currently being updated on a yearly basis to incorporate boundary shifts as well as updated Fire Department Identification (FDID) records kept by the Office of the State Fire Marshal.This web app was created to help local jurisdictions including cities, counties, contracted GIS consultants, as well as other authoritative organizations to submit updated GIS boundaries for local fire departments.If this is your first time using this app, please take a look at this quick guide regarding how to upload your fire district's GIS boundaries. If you do not have an ArcGIS Online account, you will need to upload a zipped shape file (.zip).
Using the coronavirus infographic template in Business/Community Analyst Web (ArcGIS Blog).Business Analyst (BA) Web infographics are a powerful way to understand demographics and other information in context. This blog article explains how your organization can use the Coronavirus infographic template that was added to the infographics gallery on March 1, 2020._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Annual average wind resource development potential for the state of Texas.
This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile is in a UTM zone 19, datum WGS 84 projection system.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Comprises de location of fish species records within the Okavango Basin. Source: Africa Water Resources Database (FAO). This dataset is part of the GIS Database for the Environment Protection and Sustainable Management of the Okavango River Basin project (EPSMO). Detailed information on the database can be found in the “GIS Database for the EPSMO Project” document produced by Luis Veríssimo (FAO consultant) in July 2009, and here available for download.
The POI Dataset is a digital representation of the physical, geographic and commercial features across all of Santa Clara County. This dataset aims to provide accurate location information in the map. Sources: California Department Of Education (2021), Santa Clara County Combined data (2022).THE GIS DATA IS PROVIDED "AS IS". THE COUNTY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OR MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE ACCURACY, COMPLETENESS, VALUE, QUALITY, VALIDITY, MERCHANTABILITY, SUITABILITY, AND CONDITION, OF THE GIS DATA. USER'S OF COUNTY'S GIS DATA ARE HEREBY NOTIFIED THAT CURRENT PUBLIC PRIMARY INFORMATION SOURCES SHOULD BE CONSULTED FOR VERIFICATION OF THE DATA AND INFORMATION CONTAINED HEREIN. SINCE THE GIS DATA IS DYNAMIC, IT WILL BY ITS NATURE BE INCONSISTENT WITH THE OFFICIAL COUNTY DATA. ANY USE OF COUNTY'S GIS DATA WITHOUT CONSULTING OFFICIAL PUBLIC RECORDS FOR VERIFICATION IS DONE EXCLUSIVELY AT THE RISK OF THE PARTY MAKING SUCH USE.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Internal view of the parcel layer. This view contains all the attributes that can be seen by County employees.There are approximately 51,300 real property parcels in Napa County. Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. GIS parcel boundaries are maintained by the Information Technology Services GIS team. Assessor Parcel Maps are created and maintained by the Assessor Division Mapping Section. Each parcel has an Assessor Parcel Number (APN) that is its unique identifier. The APN is the link to various Napa County databases containing information such as owner name, situs address, property value, land use, zoning, flood data, and other related information. Data for this map service is sourced from the Napa County Parcels dataset which is updated nightly with any recent changes made by the mapping team. There may at times be a delay between when a document is recorded and when the new parcel boundary configuration and corresponding information is available in the online GIS parcel viewer.From 1850 to early 1900s assessor staff wrote the name of the property owner and the property value on map pages. They began using larger maps, called “tank maps” because of the large steel cabinet they were kept in, organized by school district (before unification) on which names and values were written. In the 1920s, the assessor kept large books of maps by road district on which names were written. In the 1950s, most county assessors contracted with the State Board of Equalization for board staff to draw standardized 11x17 inch maps following the provisions of Assessor Handbook 215. Maps were originally drawn on linen. By the 1980’s Assessor maps were being drawn on mylar rather than linen. In the early 1990s Napa County transitioned from drawing on mylar to creating maps in AutoCAD. When GIS arrived in Napa County in the mid-1990s, the AutoCAD images were copied over into the GIS parcel layer. Sidwell, an independent consultant, was then contracted by the Assessor’s Office to convert these APN files into the current seamless ArcGIS parcel fabric for the entire County. Beginning with the 2024-2025 assessment roll, the maps are being drawn directly in the parcel fabric layer.Parcels in the GIS parcel fabric are drawn according to the legal description using coordinate geometry (COGO) drawing tools and various reference data such as Public Lands Survey section boundaries and road centerlines. The legal descriptions are not defined by the GIS parcel fabric. Any changes made in the GIS parcel fabric via official records, filed maps, and other source documents are uploaded overnight. There is always at least a 6-month delay between when a document is recorded and when the new parcel configuration and corresponding information is available in the online parcel viewer for search or download.Parcel boundary accuracy can vary significantly, with errors ranging from a few feet to several hundred feet. These distortions are caused by several factors such as: the map projection - the error derived when a spherical coordinate system model is projected into a planar coordinate system using the local projected coordinate system; and the ground to grid conversion - the distortion between ground survey measurements and the virtual grid measurements. The aim of the parcel fabric is to construct a visual interpretation that is adequate for basic geographic understanding. This digital data is intended for illustration and demonstration purposes only and is not considered a legal resource, nor legally authoritative.SFAP & CFAP DISCLAIMER: Per the California Code, RTC 606. some legal parcels may have been combined for assessment purposes (CFAP) or separated for assessment purposes (SFAP) into multiple parcels for a variety of tax assessment reasons. SFAP and CFAP parcels are assigned their own APN number and primarily result from a parcel being split by a tax rate area boundary, due to a recorded land use lease, or by request of the property owner. Assessor parcel (APN) maps reflect when parcels have been separated or combined for assessment purposes, and are one legal entity. The goal of the GIS parcel fabric data is to distinguish the SFAP and CFAP parcel configurations from the legal configurations, to convey the legal parcel configurations. This workflow is in progress. Please be advised that while we endeavor to restore SFAP and CFAP parcels back to their legal configurations in the primary parcel fabric layer, SFAP and CFAP parcels may be distributed throughout the dataset. Parcels that have been restored to their legal configurations, do not reflect the SFAP or CFAP parcel configurations that correspond to the current property tax delineations. We intend for parcel reports and parcel data to capture when a parcel has been separated or combined for assessment purposes, however in some cases, information may not be available in GIS for the SFAP/CFAP status of a parcel configuration shown. For help or questions regarding a parcel’s SFAP/CFAP status, or property survey data, please visit Napa County’s Surveying Services or Property Mapping Information. For more information you can visit our website: When a Parcel is Not a Parcel | Napa County, CA
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. Parcel boundaries in GIS are created and maintained by the Assessor’s Division Mapping section and Information Technology Services. There are approximately 51,300 real property parcels in Napa County. Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. GIS parcel boundaries are maintained by the Information Technology Services GIS team. Assessor Parcel Maps are created and maintained by the Assessor Division Mapping Section. Each parcel has an Assessor Parcel Number (APN) that is its unique identifier. The APN is the link to various Napa County databases containing information such as owner name, situs address, property value, land use, zoning, flood data, and other related information. Data for this map service is sourced from the Napa County Parcels dataset which is updated nightly with any recent changes made by the mapping team. There may at times be a delay between when a document is recorded and when the new parcel boundary configuration and corresponding information is available in the online GIS parcel viewer.From 1850 to early 1900s assessor staff wrote the name of the property owner and the property value on map pages. They began using larger maps, called “tank maps” because of the large steel cabinet they were kept in, organized by school district (before unification) on which names and values were written. In the 1920s, the assessor kept large books of maps by road district on which names were written. In the 1950s, most county assessors contracted with the State Board of Equalization for board staff to draw standardized 11x17 inch maps following the provisions of Assessor Handbook 215. Maps were originally drawn on linen. By the 1980’s Assessor maps were being drawn on mylar rather than linen. In the early 1990s Napa County transitioned from drawing on mylar to creating maps in AutoCAD. When GIS arrived in Napa County in the mid-1990s, the AutoCAD images were copied over into the GIS parcel layer. Sidwell, an independent consultant, was then contracted by the Assessor’s Office to convert these APN files into the current seamless ArcGIS parcel fabric for the entire County. Beginning with the 2024-2025 assessment roll, the maps are being drawn directly in the parcel fabric layer.Parcels in the GIS parcel fabric are drawn according to the legal description using coordinate geometry (COGO) drawing tools and various reference data such as Public Lands Survey section boundaries and road centerlines. The legal descriptions are not defined by the GIS parcel fabric. Any changes made in the GIS parcel fabric via official records, filed maps, and other source documents are uploaded overnight. There is always at least a 6-month delay between when a document is recorded and when the new parcel configuration and corresponding information is available in the online parcel viewer for search or download.Parcel boundary accuracy can vary significantly, with errors ranging from a few feet to several hundred feet. These distortions are caused by several factors such as: the map projection - the error derived when a spherical coordinate system model is projected into a planar coordinate system using the local projected coordinate system; and the ground to grid conversion - the distortion between ground survey measurements and the virtual grid measurements. The aim of the parcel fabric is to construct a visual interpretation that is adequate for basic geographic understanding. This digital data is intended for illustration and demonstration purposes only and is not considered a legal resource, nor legally authoritative.SFAP & CFAP DISCLAIMER: Per the California Code, RTC 606. some legal parcels may have been combined for assessment purposes (CFAP) or separated for assessment purposes (SFAP) into multiple parcels for a variety of tax assessment reasons. SFAP and CFAP parcels are assigned their own APN number and primarily result from a parcel being split by a tax rate area boundary, due to a recorded land use lease, or by request of the property owner. Assessor parcel (APN) maps reflect when parcels have been separated or combined for assessment purposes, and are one legal entity. The goal of the GIS parcel fabric data is to distinguish the SFAP and CFAP parcel configurations from the legal configurations, to convey the legal parcel configurations. This workflow is in progress. Please be advised that while we endeavor to restore SFAP and CFAP parcels back to their legal configurations in the primary parcel fabric layer, SFAP and CFAP parcels may be distributed throughout the dataset. Parcels that have been restored to their legal configurations, do not reflect the SFAP or CFAP parcel configurations that correspond to the current property tax delineations. We intend for parcel reports and parcel data to capture when a parcel has been separated or combined for assessment purposes, however in some cases, information may not be available in GIS for the SFAP/CFAP status of a parcel configuration shown. For help or questions regarding a parcel’s SFAP/CFAP status, or property survey data, please visit Napa County’s Surveying Services or Property Mapping Information. For more information you can visit our website: When a Parcel is Not a Parcel | Napa County, CA
Data last synced 09-12-2025 04:29. Data synced on a Weekly interval.
Location of large irrigation schemes, in Namibia, that share geographical overlapping with the Okavango Basin. Source: Ministry of Agriculture, Water and Forestry of Namibia. This dataset is part of the GIS Database for the Environment Protection and Sustainable Management of the Okavango River Basin project (EPSMO). Detailed information on the database can be found in the GIS Database for the EPSMO Project document produced by Luis Veríssimo (FAO consultant) in July 2009, and here available for download.
Road Center Line within Santa Clara County. THE GIS DATA IS PROVIDED "AS IS". THE COUNTY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OR MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE ACCURACY, COMPLETENESS, VALUE, QUALITY, VALIDITY, MERCHANTABILITY, SUITABILITY, AND CONDITION, OF THE GIS DATA. USER'S OF COUNTY'S GIS DATA ARE HEREBY NOTIFIED THAT CURRENT PUBLIC PRIMARY INFORMATION SOURCES SHOULD BE CONSULTED FOR VERIFICATION OF THE DATA AND INFORMATION CONTAINED HEREIN. SINCE THE GIS DATA IS DYNAMIC, IT WILL BY ITS NATURE BE INCONSISTENT WITH THE OFFICIAL COUNTY DATA. ANY USE OF COUNTY'S GIS DATA WITHOUT CONSULTING OFFICIAL PUBLIC RECORDS FOR VERIFICATION IS DONE EXCLUSIVELY AT THE RISK OF THE PARTY MAKING SUCH USE.
School Boundaries data built from parcel database, extracted parcels based on overlay with gschools.shp. Verified site by site to add or delete based on changes since gschools created. FIELDSNAME - School NameSHORT_NAME - Short school name_DISTRICT - School District nameSTATUS - School statusADDRESS - Street number, name, and typeCITY - City nameZIP - ZipcodeMOD_DATE - Date record modified. gschools from http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?id=5681&pid=5673&topicname=United_States_Geographic_Names_Information_System_Schools
THE GIS DATA IS PROVIDED "AS IS". THE COUNTY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OR MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE ACCURACY, COMPLETENESS, VALUE, QUALITY, VALIDITY, MERCHANTABILITY, SUITABILITY, AND CONDITION, OF THE GIS DATA. USER'S OF COUNTY'S GIS DATA ARE HEREBY NOTIFIED THAT CURRENT PUBLIC PRIMARY INFORMATION SOURCES SHOULD BE CONSULTED FOR VERIFICATION OF THE DATA AND INFORMATION CONTAINED HEREIN. SINCE THE GIS DATA IS DYNAMIC, IT WILL BY ITS NATURE BE INCONSISTENT WITH THE OFFICIAL COUNTY DATA. ANY USE OF COUNTY'S GIS DATA WITHOUT CONSULTING OFFICIAL PUBLIC RECORDS FOR VERIFICATION IS DONE EXCLUSIVELY AT THE RISK OF THE PARTY MAKING SUCH USE.
A set of 2 features depicting the distribution of two important fish species (Clarias gariepinus and Pseudocrenilabrtus philander) within the Okavango Basin. Source: Africa Water Resources Database (FAO). This dataset is part of the GIS Database for the Environment Protection and Sustainable Management of the Okavango River Basin project (EPSMO). Detailed information on the database can be found in the “GIS Database for the EPSMO Project” document produced by Luis Veríssimo (FAO consultant) in July 2009, and here available for download.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract: Annual average wind resource potential for the state of South Carolina at a 50 meter height.
Purpose: Provide information on the wind resource development potential within the state of South Carolina.
Supplemental Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a WGS 84 projection system.
Other Citation Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset includes a multimodal assessment of the Cleveland Transportation Network, conducted as part of the Cleveland Moves initiative. It assesses need and comfort levels as we work to improve safety and mobility on Cleveland streets.The Pedestrian Crossing Level of Stress layer was created by our Cleveland Moves consultant, Toole Design. It uses information about the number of lanes, the speed limit, and the presence of a pedestrian island to calculate how stressful a crossing is for someone crossing. These attributes are provided by Ohio and City of Cleveland data about streets and intersections. This data was generated in 2024. The Bicycle Level of Traffic Stress layer was created by our Cleveland Moves consultant, Toole Design. It uses information about the number of lanes, the speed limit, the type of bikeway, and more to calculate the level of stress for someone riding a bicycle on a given street. These attributes are provided by Ohio and City of Cleveland data about streets and intersections. This data was generated in 2024. The ODOT Active Transportation Need layer was created by the Ohio Department of transportation, and uses several factors to determine need including access to a vehicle, poverty rates, and more.Update FrequencyThis dataset will be updated with additional analysis from the Cleveland Moves planning process by early 2025. After that point, it will be updated annually to reflect changes to Cleveland streets geared towards improving safety and mobility. Related ApplicationsA summary of this dataset can be found in the Cleveland Moves Network Assessment Dashboard.Data GlossaryThe ODOT Active Transportation Need dataset was developed by the Ohio Department of Transportation. More information about this dataset is available on their website: https://gis.dot.state.oh.us/tims_classic/Glossary ContactSarah Davis, Active Transportation Senior Plannersdavis2@clevelandohio.gov
Data repository for solar measurements from 4 WB funded stations in Armenia. The four solar measuring stations and the associated measurement campaign have been financed by the Scaling-Up Renewable Energy Program (SREP) as part of the preparation activities for the Armenia Utility-Scale Solar Project. This project, which is being jointly supported by SREP and the World Bank, will deliver the first utility-scale solar plant in the country. The locations for the measuring stations were selected by the Renewable Resources and Energy Efficiency Fund, the project’s implementing entity, following the recommendations from Effergy, the expert consultant firm. For download access to GIS layers, please visit the Global Solar Atlas: http://globalsolaratlas.info/
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The facilities (Police) data set is a digital representation of the facilities across all of Santa Clara County. This data set aims to provide accurate location information in the map. THE GIS DATA IS PROVIDED "AS IS". THE COUNTY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OR MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE ACCURACY, COMPLETENESS, VALUE, QUALITY, VALIDITY, MERCHANTABILITY, SUITABILITY, AND CONDITION, OF THE GIS DATA. USER'S OF COUNTY'S GIS DATA ARE HEREBY NOTIFIED THAT CURRENT PUBLIC PRIMARY INFORMATION SOURCES SHOULD BE CONSULTED FOR VERIFICATION OF THE DATA AND INFORMATION CONTAINED HEREIN. SINCE THE GIS DATA IS DYNAMIC, IT WILL BY ITS NATURE BE INCONSISTENT WITH THE OFFICIAL COUNTY DATA. ANY USE OF COUNTY'S GIS DATA WITHOUT CONSULTING OFFICIAL PUBLIC RECORDS FOR VERIFICATION IS DONE EXCLUSIVELY AT THE RISK OF THE PARTY MAKING SUCH USE.
Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum