10 datasets found
  1. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 26, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  2. m

    Replication Dataset - Effective corporate income taxation and its effect on...

    • data.mendeley.com
    Updated Mar 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Goda (2024). Replication Dataset - Effective corporate income taxation and its effect on capital accumulation: Cross-country evidence [Dataset]. http://doi.org/10.17632/5ynyk2w435.3
    Explore at:
    Dataset updated
    Mar 7, 2024
    Authors
    Thomas Goda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Replication dataset for "Effective corporate income taxation and its effect on capital accumulation: Cross-country evidence"

    Abstract It is debated to what extent corporate taxation discourages capital formation, and the related empirical cross-country evidence is inconclusive. This paper provides new insights into this matter for a large sample of developed and developing countries. In a first step, national accounts data is used to calculate backward-looking effective corporate income tax rates (ECTR) for 77 countries during 1995–2018. In a second step, dynamic panel data regressions are used to estimate the effect of ECTR on aggregate corporate investment. The main findings of this exercise are that (i) statutory corporate income tax rates (SCTR), on average, are twice as high as ECTR, (ii) average ECTR have been relatively stable but show distinct dynamics across countries, and (iii) no significant negative relationship exists between ECTR and aggregate corporate investment. The latter finding is robust to different specifications and samples and when publicly available SCTR or forward-looking effective tax rate measures are used as alternative tax rate proxies.

  3. ERA5-Land post-processed daily statistics from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land post-processed daily statistics from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e9c9c792
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1950 - Jul 26, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses ERA5 atmospheric variables, such as air temperature and air humidity, as input to control the simulated land fields. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'. This catalogue entry provides post-processed ERA5-land hourly data aggregated to daily time steps. Note that the accumulated variables are omitted (e.g. total precipitation, runoff, etc - please refer to table 3 in the ERA5-Land online documentation for a full list of accumulated variables). In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code and advice on how to return daily statistics for the accumulated variables, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5-land hourly data catalogue entry and the documentation found therein.

  4. Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-cases-and-deaths-by-county-archived
    Explore at:
    xsl, rdf, json, csvAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: The cumulative case count for some counties (with small population) is higher than expected due to the inclusion of non-permanent residents in COVID-19 case counts.

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration. CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • Cases and deaths are based on date of report and not on the date of symptom onset. CDC calculates rates in this data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data were organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts were calculated as the week-to-week change in reported cumulative cases and deaths (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the week before.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues. CDC also worked with jurisdictions after the end of the public health emergency declaration to finalize county data.

    • Source: The weekly archived dataset is based on county-level aggregate count data
    • Confirmed/Probable Cases/Death breakdown: Cumulative cases and deaths for each county are included. Total reported cases include probable and confirmed cases.
    • Time Series Frequency: The weekly archived dataset contains weekly time series data (i.e., one record per week per county)

    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the daily archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implement these case classifications. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, counts of confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report

  5. h

    medical_asr_recording_dataset

    • huggingface.co
    Updated Oct 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hani. M (2023). medical_asr_recording_dataset [Dataset]. https://huggingface.co/datasets/Hani89/medical_asr_recording_dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 19, 2023
    Authors
    Hani. M
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Data Source Kaggle Medical Speech, Transcription, and Intent Context

    8.5 hours of audio utterances paired with text for common medical symptoms.

    Content

    This data contains thousands of audio utterances for common medical symptoms like “knee pain” or “headache,” totaling more than 8 hours in aggregate. Each utterance was created by individual human contributors based on a given symptom. These audio snippets can be used to train conversational agents in the medical field. This Figure Eight… See the full description on the dataset page: https://huggingface.co/datasets/Hani89/medical_asr_recording_dataset.

  6. Atlas of the Working Group I Contribution to the IPCC Sixth Assessment...

    • catalogue.ceda.ac.uk
    Updated Jun 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maialen Iturbide; José Manuel Gutiérrez; Joaquín Bedia; Ezequiel Cimadevilla; Javier Díez-Sierra; Rodrigo Manzanas; Ana Casanueva; Jorge Baño-Medina; Josipa Milovac; Sixto Milovac; Antonio S. Cofiño; Daniel San Martín; Markel García-Díez; Mathias Hauser; David Huard; Özge Yelekci; Jesús Fernández (2023). Atlas of the Working Group I Contribution to the IPCC Sixth Assessment Report - data for Figure Atlas.16 (v20221104) [Dataset]. https://catalogue.ceda.ac.uk/uuid/b140e520e22e45daa8525d18c1c8cced
    Explore at:
    Dataset updated
    Jun 19, 2023
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Maialen Iturbide; José Manuel Gutiérrez; Joaquín Bedia; Ezequiel Cimadevilla; Javier Díez-Sierra; Rodrigo Manzanas; Ana Casanueva; Jorge Baño-Medina; Josipa Milovac; Sixto Milovac; Antonio S. Cofiño; Daniel San Martín; Markel García-Díez; Mathias Hauser; David Huard; Özge Yelekci; Jesús Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1850 - Dec 31, 2099
    Area covered
    Description

    Data for Figure Atlas.16 from Atlas of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).

    Figure Atlas.16 shows changes in annual mean surface air temperature and precipitation from reference regions in Africa for different lines of evidence (CMIP5, CORDEX and CMIP6).

    How to cite this dataset

    When citing this dataset, please include both the data citation below (under 'Citable as') and the following citations: For the report component from which the figure originates: Gutiérrez, J.M., R.G. Jones, G.T. Narisma, L.M. Alves, M. Amjad, I.V. Gorodetskaya, M. Grose, N.A.B. Klutse, S. Krakovska, J. Li, D. Martínez-Castro, L.O. Mearns, S.H. Mernild, T. Ngo-Duc, B. van den Hurk, and J.-H. Yoon, 2021: Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1927–2058, doi:10.1017/9781009157896.021

    Iturbide, M. et al., 2021: Repository supporting the implementation of FAIR principles in the IPCC-WG1 Interactive Atlas. Zenodo. Retrieved from: http://doi.org/10.5281/zenodo.5171760

    Figure subpanels

    The figure has twenty-eight panels, with data provided for all panels in the master GitHub repository linked in the documentation.

    List of data provided

    This dataset contains global monthly precipitation and near surface temperature aggregated by reference region for model output datasets: - CMIP5, CMIP6 (1850-2100) - CORDEX (1970-2100) These are presented separately for land, sea, and land-sea gridboxes (a single run per model). Regional averages are weighted by the cosine of latitude in all cases. An observation-based product (1979-2016) is also provided in the same format for reference: W5E5 (Lange, 2019).

    Data provided in relation to figure

    All datasets of monthly precipitation and near surface temperature aggregated by region for CMIP5, CMIP6 and CORDEX models are provided in the labelled directories and regions over Africa are used for the production of this figure.

    CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. CORDEX is The Coordinated Regional Downscaling Experiment from the WCRP. SSP1-2.6 is based on SSP1 with low climate change mitigation and adaptation challenges and RCP2.6, a future pathway with a radiative forcing of 2.6 W/m2 in the year 2100. SSP2-4.5 is based on SSP2 with medium challenges to climate change mitigation and adaptation and RCP4.5, a future pathway with a radiative forcing of 4.5 W/m2 in the year 2100. SSP5-8.5 is based on SSP5 where climate change mitigation challenges dominate and RCP8.5, a future pathway with a radiative forcing of 8.5 W/m2 in the year 2100. RCP2.6 is the Representative Concentration Pathway for 2.6 Wm-2 global warming by 2100. RCP4.5 is the Representative Concentration Pathway for 4.5 Wm-2 global warming by 2100. RCP8.5 is the Representative Concentration Pathway for 8.5 Wm-2 global warming by 2100. GWL stands for global warming levels. JJAS and DJFM stand for June, July, August, September and December, January, February, March respectively.

    Notes on reproducing the figure from the provided data

    Data and figures are produced by the Jupyter Notebooks that live inside the notebooks directory. To reproduce each panel in this figure using the 'regional-scatter-plots_R.ipynb' notebook, in regions: select each of the 9 regions over Africa in the top right panel of the figure, area: 'land', cordex.domain: 'AFR' and scatter.seasons: list of months by number e.g. JJAS: list(c(12, 1, 2),6:9).

    The notebooks describe step by step the basic process followed to generate some key figures of the AR6 WGI Atlas and some products underpinning the Interactive Atlas, such as reference regions, global warming levels, aggregated datasets. They include comments and hints to extend the analysis, thus promoting reusability of the r... For full abstract see: https://catalogue.ceda.ac.uk/uuid/b140e520e22e45daa8525d18c1c8cced.

  7. m

    DNS Exfiltration Dataset

    • data.mendeley.com
    Updated Jul 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristijan Ziza (2023). DNS Exfiltration Dataset [Dataset]. http://doi.org/10.17632/c4n7fckkz3.3
    Explore at:
    Dataset updated
    Jul 11, 2023
    Authors
    Kristijan Ziza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DNS exfiltration dataset was recorded in a realistic network environment. More than 50 million DNS requests were recorded on one of the ISP's DNS servers. The data in the dataset was anonymised by changing all IP addresses using injective mapping. Features in the dataset are split into single request and aggregate features. Single request or DNS label-based features can be calculated for each DNS request independently using only the textual characteristics of the request. On the other hand, aggregate features are calculated using multiple subsequent request from one client to a particular TLD. This reduces the size of the dataset to about 35 million records. The complete list of features with descriptions can be found in dataset_description.txt file. For all of the features which are based on finding English words in the request we used about 60.000 most commom English words. The list of used words can be found in english_words.txt. The main dataset (dataset.csv) contains regular requests and exfiltrations performed using DNSExfiltrator and Iodine tools. Additional dataset (dataset_modified.csv) contains only exfiltrations executed with modified DNSExfiltrator tool. Waiting times between two consecutive requests in this dataset are randomised and the requests also have lower entropy causing the detection to be much harder.

    If you use this dataset for your research, please cite: Žiža, K., Tadić, P. & Vuletić, P. DNS exfiltration detection in the presence of adversarial attacks and modified exfiltrator behaviour. Int. J. Inf. Secur. (2023). https://doi.org/10.1007/s10207-023-00723-w

  8. Weekly United States COVID-19 Hospitalization Metrics by County – ARCHIVED

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2025). Weekly United States COVID-19 Hospitalization Metrics by County – ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-United-States-COVID-19-Hospitalization-Metr/akn2-qxic
    Explore at:
    application/rssxml, csv, json, tsv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
    Calculation of county-level hospital metrics:
    • County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level.
    • Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hospitals within the selected HSA. Therefore, admissions, capacity, and occupancy are not limited to residents of the selected HSA.
    • For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.
    • For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.
    Metric details:
    • Time period: data for the previous MMWR week (Sunday-Saturday) will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New hospital admissions (count): Total number of admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction
    • New Hospital Admissions Rate Value (Admissions per 100k): Total number of new admissions of patients with laboratory-confirmed COVID-19 in the past week (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000. (Note: This metric is used to determine each county’s COVID-19 Hospital Admissions Level for a given week).
    • New COVID-19 Hospital Admissions Rate Level: qualitative value of new COVID-19 hospital admissions rate level [Low, Medium, High, Insufficient Data]
    • New hospital admissions percent change from prior week: Percent change in the current weekly total new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week.
    • New hospital admissions percent change from prior week level: Qualitative value of percent change in hospital admissions rate from prior week [Substantial decrease, Moderate decrease, Stable, Moderate increase, Substantial increase, Insufficient data]
    • COVID-19 Inpatient Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the in the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 Inpatient Bed Occupancy Level: Qualitative value of inpatient beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data]
    • COVID-19 Inpatient Bed Occupancy percent change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past week, compared with the prior week, in the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy Level: Qualitative value of ICU beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data]
    • COVID-19 ICU Bed Occupancy percent change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past week, compared with the prior week, in the in the entire jurisdiction.
    • For all metrics, if there are no data in the specified locality for a given week, the metric value is displayed as “insufficient data”.

    Notes: June 1, 2023: Due to incomplete or missing hospital data received for the May 21, 2023, through May 27, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for the Commonwealth of the Northern Mariana Islands (CNMI) and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 1, 2023.

    June 8, 2023: Due to incomplete or missing hospital data received for the May 28, 2023, through June 3, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and American Samoa (AS) and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 8, 2023.

    June 15, 2023: Due to incomplete or missing hospital data received for the June 4, 2023, through June 10, 2023, reporting period,

  9. Z

    Database of physicochemical and optical properties of black carbon fractal...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marius (2023). Database of physicochemical and optical properties of black carbon fractal aggregates [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7523057
    Explore at:
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    Thomas
    Marius
    Tobias
    Jaikrishna
    Baseerat
    Mira
    Description

    In order to estimate the climate impact of highly absorbing black carbon (BC) aerosols, it is necessary to know their optical properties. The Lorentz-Mie theory, often used to calculate the optical properties of BC under the spherical morphological assumption, produces discrepancies when compared to measurements. In light of this, researchers are currently investigating the possibility of computing the optical properties of BC using a realistic fractal aggregate morphology. To determine the optical properties of such BC fractal aggregates, the Multiple Sphere T-Matrix method (MSTM) is used, which can take more than 24 hours for a single simulation depending on the aggregate properties. This study provides a highly accurate benchmark machine-learning algorithm that can be used to generate the optical properties of BC fractal aggregate in a fraction of a second. The machine learning algorithm was trained over an extensive database of physicochemical and optical properties of BC fractal aggregates. The extensive training data helped develop an ML algorithm that can accurately predict the optical properties of BC fractal aggregates with an average deviation of less than one percent from their actual values. Specifically, the ML algorithm provides the option to generate the optical properties in the visible spectrum using either kernel ridge regression (KRR) or artificial neural networks (ANN) for a BC fractal aggregate of desired physicochemical properties like size, morphology, and organic coating. The dataset of physicochemical and optical properties of BC fractal aggregates are provided here. The developed ML algorithm for predicting the optical properties of BC fractal aggregates (https://github.com/jaikrishnap/Machine-learning-for-prediction-of-BCFAs) is highly useful for real-world applications due to its wide parameter range, high accuracy, and low computational cost.

    Contents

    database_optical_properties_black_carbon_fractal_aggregtates.csv, data file, comma-separated values

    database_header.txt, metadata, text

    Citation for the database:

    B., Romshoo, T., Müller, B., Patil, J., Michels, T., Kloft, M., and Pöhlker, M.: Database of physicochemical and optical properties of black carbon fractal aggregates, Dataset, https://doi.org/10.5281/zenodo.7523058, 2023.

  10. Z

    Monthly aggregated Water Vapor MODIS MCD19A2 (1 km): Long-term data...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leandro Parente (2024). Monthly aggregated Water Vapor MODIS MCD19A2 (1 km): Long-term data (2000-2022) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8192543
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Rolf Simoes
    Tomislav Hengl
    Leandro Parente
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This data is part of the Monthly aggregated Water Vapor MODIS MCD19A2 (1 km) dataset. Check the related identifiers section on the Zenodo side panel to access other parts of the dataset. General Description The monthly aggregated water vapor dataset is derived from MCD19A2 v061. The Water Vapor data measures the column above ground retrieved from MODIS near-IR bands at 0.94μm. The dataset time spans from 2000 to 2022 and provides data that covers the entire globe. The dataset can be used in many applications like water cycle modeling, vegetation mapping, and soil mapping. This dataset includes:

    Monthly time-series:Derived from MCD19A2 v061, this data provides a monthly aggregated mean and standard deviation of daily water vapor time-series data from 2000 to 2022. Only positive non-cloudy pixels were considered valid observations to derive the mean and the standard deviation. The remaining no-data values were filled using the TMWM algorithm. This dataset also includes smoothed mean and standard deviation values using the Whittaker method. The quality assessment layers and the number of valid observations for each month can provide an indication of the reliability of the monthly mean and standard deviation values. Yearly time-series:Derived from monthly time-series, this data provides a yearly time-series aggregated statistics of the monthly time-series data. Long-term data (2000-2022):Derived from monthly time-series, this data provides long-term aggregated statistics for the whole series of monthly observations. Data Details

    Time period: 2000–2022 Type of data: Water vapor column above the ground (0.001cm) How the data was collected or derived: Derived from MCD19A2 v061 using Google Earth Engine. Cloudy pixels were removed and only positive values of water vapor were considered to compute the statistics. The time-series gap-filling and time-series smoothing were computed using the Scikit-map Python package. Statistical methods used: Four statistics were derived: standard deviation, percentiles 25, 50, and 75. Limitations or exclusions in the data: The dataset does not include data for Antarctica. Coordinate reference system: EPSG:4326 Bounding box (Xmin, Ymin, Xmax, Ymax): (-180.00000, -62.00081, 179.99994, 87.37000) Spatial resolution: 1/120 d.d. = 0.008333333 (1km) Image size: 43,200 x 17,924 File format: Cloud Optimized Geotiff (COG) format. Support If you discover a bug, artifact, or inconsistency, or if you have a question please use some of the following channels:

    Technical issues and questions about the code: GitLab Issues General questions and comments: LandGIS Forum Name convention To ensure consistency and ease of use across and within the projects, we follow the standard Open-Earth-Monitor file-naming convention. The convention works with 10 fields that describes important properties of the data. In this way users can search files, prepare data analysis etc, without needing to open files. The fields are:

    generic variable name: wv = Water vapor variable procedure combination: mcd19a2v061.seasconv = MCD19A2 v061 with gap-filling algorithm Position in the probability distribution / variable type: m = mean | sd = standard deviation | n = number of observations | qa = quality assessment Spatial support: 1km Depth reference: s = surface Time reference begin time: 20000101 = 2000-01-01 Time reference end time: 20221231 = 2022-12-31 Bounding box: go = global (without Antarctica) EPSG code: epsg.4326 = EPSG:4326 Version code: v20230619 = 2023-06-19 (creation date)

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
Organization logo

ERA5 post-processed daily statistics on single levels from 1940 to present

Explore at:
23 scholarly articles cite this dataset (View in Google Scholar)
gribAvailable download formats
Dataset updated
Aug 1, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

Time period covered
Jan 1, 1940 - Jul 26, 2025
Description

ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

Search
Clear search
Close search
Google apps
Main menu