Number of deaths, crude mortality rates and age standardized mortality rates (based on 2011 population) for selected grouped causes, by sex, 2000 to most recent year.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Death rates for all causes (per 1,000 population) for Glasgow and Scotland from 1991 to 2012. The Glasgow death rates are given for the crude death rate or as standardised using the age/sex- specific rates for Scotland. They were calculated using the 'rebased' mid-year population estimates for 2002 to 2011. More information about this is available from Births and Deaths Rates: breaks in series circa 2011 Data extracted 2014-04-09 from the General Register Office for Scotland Licence: None
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundLymphocytic leukemia (LL) is a prominent group of hematological cancers afflicting both children and adults of all backgrounds and demographics. While treatment is improving, the confounding variables on mortality and prevalence within the patient population are poorly understood. This study utilizes the Center for Disease Control and Prevention (CDC)-WONDER database to further elucidate age-adjusted mortality rates (AAMRs) in the U.S. from 1999-2022.MethodsMortality data was obtained from the CDC-WONDER database from 1999-2022. AAMRs and trends by gender, race, region, state, urban vs. rural, and age were analyzed using a Joinpoint analysis program to calculate average annual percentage change. Statistical significance was set at p ≤0.05.ResultsBetween 1999 and 2022, there was a decrease in overall mortality rates up until 2018, followed by an increase from 2018 to 2022. Men experienced higher age-adjusted mortality rates (AAMRs) than women, though women saw a greater decrease in mortality. Patients aged 85 and older had the highest crude mortality rates from 1999 to 2019. From 2019 to 2022, the White patients/White population had the highest AAMRs, while the American Indian/Alaska Native population experienced the largest increase in mortality between 2016 and 2022. Regionally, the Midwest and West consistently had higher AAMRs compared to other regions, with the Midwest having the highest AAMR and the smallest decline in mortality. From 1999 to 2019, Iowa saw the largest increase in AAMRs, while Kansas experienced the largest increase from 2019 to 2022. Rural areas consistently had higher AAMRs than urban areas throughout the period from 1999 to 2022, with both regions showing a decline in AAMRs starting in 2020.ConclusionLL overall mortality decreased from 1999–2022 but varied significantly amongst demographic groups. The Midwest, rural, older, and non-Hispanic white populations experienced the largest mortality rates. Thus, policies and management plans should be developed accordingly to these biases in disparities.
The 2022 Nepal Demographic and Health Survey (NDHS) is the sixth survey of its kind implemented in the country as part of the worldwide Demographic and Health Surveys (DHS) Program. It was implemented by New ERA under the aegis of the Ministry of Health and Population (MoHP) of the Government of Nepal with the objective of providing reliable, accurate, and up-to-date data for the country.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2022 NDHS collected information on fertility, marriage, family planning, breastfeeding practices, nutrition, food insecurity, maternal and child health, childhood mortality, awareness and behavior regarding HIV/AIDS and other sexually transmitted infections (STIs), women’s empowerment, domestic violence, fistula, mental health, accident and injury, disability, and other healthrelated issues such as smoking, knowledge of tuberculosis, and prevalence of hypertension.
The information collected through the 2022 NDHS is intended to assist policymakers and program managers in evaluating and designing programs and strategies for improving the health of Nepal’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nepal.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2022 NDHS is an updated version of the frame from the 2011 Nepal Population and Housing Census (NPHC) provided by the National Statistical Office. The 2022 NDHS considered wards from the 2011 census as sub-wards, the smallest administrative unit for the survey. The census frame includes a complete list of Nepal’s 36,020 sub-wards. Each sub-ward has a residence type (urban or rural), and the measure of size is the number of households.
In September 2015, Nepal’s Constituent Assembly declared changes in the administrative units and reclassified urban and rural areas in the country. Nepal is divided into seven provinces: Koshi Province, Madhesh Province, Bagmati Province, Gandaki Province, Lumbini Province, Karnali Province, and Sudurpashchim Province. Provinces are divided into districts, districts into municipalities, and municipalities into wards. Nepal has 77 districts comprising a total of 753 (local-level) municipalities. Of the municipalities, 293 are urban and 460 are rural.
Originally, the 2011 NPHC included 58 urban municipalities. This number increased to 217 as of 2015. On March 10, 2017, structural changes were made in the classification system for urban (Nagarpalika) and rural (Gaonpalika) locations. Nepal currently has 293 Nagarpalika, with 65% of the population living in these urban areas. The 2022 NDHS used this updated urban-rural classification system. The survey sample is a stratified sample selected in two stages. Stratification was achieved by dividing each of the seven provinces into urban and rural areas that together formed the sampling stratum for that province. A total of 14 sampling strata were created in this way. Implicit stratification with proportional allocation was achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at the different levels, and by using a probability-proportional-to-size selection at the first stage of sampling. In the first stage of sampling, 476 primary sampling units (PSUs) were selected with probability proportional to PSU size and with independent selection in each sampling stratum within the sample allocation. Among the 476 PSUs, 248 were from urban areas and 228 from rural areas. A household listing operation was carried out in all of the selected PSUs before the main survey. The resulting list of households served as the sampling frame for the selection of sample households in the second stage. Thirty households were selected from each cluster, for a total sample size of 14,280 households. Of these households, 7,440 were in urban areas and 6,840 were in rural areas. Some of the selected sub-wards were found to be overly large during the household listing operation. Selected sub-wards with an estimated number of households greater than 300 were segmented. Only one segment was selected for the survey with probability proportional to segment size.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used in the 2022 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Nepal. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.
Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Nepali, Maithili, and Bhojpuri. The Household, Woman’s, and Man’s Questionnaires were programmed into tablet computers to facilitate computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the three languages for each questionnaire. The Biomarker Questionnaire was completed on paper during data collection and then entered in the CAPI system.
Data capture for the 2022 NDHS was carried out with Microsoft Surface Go 2 tablets running Windows 10.1. Software was prepared for the survey using CSPro. The processing of the 2022 NDHS data began shortly after the fieldwork started. When data collection was completed in each cluster, the electronic data files were transferred via the Internet File Streaming System (IFSS) to the New ERA central office in Kathmandu. The data files were registered and checked for inconsistencies, incompleteness, and outliers. Errors and inconsistencies were immediately communicated to the field teams for review so that problems would be mitigated going forward. Secondary editing, carried out in the central office at New ERA, involved resolving inconsistencies and coding the open-ended questions. The New ERA senior data processor coordinated the exercise at the central office. The NDHS core team members assisted with the secondary editing. The paper Biomarker Questionnaires were compared with the electronic data file to check for any inconsistencies in data entry. The pictures of vaccination cards that were captured during data collection were verified with the data entered. Data processing and editing were carried out using the CSPro software package. The concurrent data collection and processing offered a distinct advantage because it maximized the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed by July 2022, and the final cleaning of the data set was completed by the end of August.
A total of 14,243 households were selected for the sample, of which 13,833 were found to be occupied. Of the occupied households, 13,786 were successfully interviewed, yielding a response rate of more than 99%. In the interviewed households, 15,238 women age 15-49 were identified as eligible for individual interviews. Interviews were completed with 14,845 women, yielding a response rate of 97%. In the subsample of households selected for the men’s survey, 5,185 men age 15-49 were identified as eligible for individual interviews and 4,913 were successfully interviewed, yielding a response rate of 95%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors result from mistakes made in implementing data collection and in data processing, such as failing to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and entering the data incorrectly. Although numerous efforts were made during the implementation of the 2022 Nepal Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected sample size. Each of these samples would yield results that differ somewhat from the results of the selected sample. Sampling errors are a measure of the variability among all possible samples. Although the exact degree of variability is unknown, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, and so on), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Number of deaths, crude mortality rates and age standardized mortality rates (based on 2011 population) for selected grouped causes, by sex, 2000 to most recent year.