Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.
The crude birth rate in India saw no significant changes in 2023 in comparison to the previous year 2022 and remained at around 16.15 live births per 1,000 inhabitants. But still, the rate reached its lowest value of the observation period in 2023. The crude birth rate is the annual number of live births in a given population, expressed per 1,000 people. When looked at in unison with the crude death rate, the rate of natural increase can be determined.Find more statistics on other topics about India with key insights such as death rate, total fertility rate, and life expectancy of women at birth.
The Office for National Statistics Longitudinal Study (ONS-LS) includes birth information taken from the annual ONS birth file, which contains information on all births (live and stillbirths) registered in England and Wales. Combining ONS-LS census data with birth information gives an estimate of the population and the number of births in the period. This guidance aims to outline the fertility data that are available in the ONS-LS and show how to calculate measures of population fertility using the ONS-LS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains statistics about births and fertility rates for Australia, states and territories, and sub-state regions. It includes all births that occurred and were registered in Australia, including births to mothers whose place of usual residence was overseas. Estimated resident populations (ERPs) are used as denominators to calculate fertility rates and are based on the results of the 2016 Census. This dataset uses the ABS Statistical Area Level 3 (SA3) boundaries of the Australian Statistical Geography Standard (ASGS) 2016. For more information such as the scope, coverage and exclusions used in this dataset please visit the Australian Bureau of Statistics (ABS) methodology documentation. AURIN has spatially enabled the original data from the ABS with the 2016 SA3 boundaries.
This dataset provides a range of demographic and socio-economic variables for Registration Sub-Districts (RSDs) in England and Wales, 1851-1911. The measures have mainly been derived from the computerised individual level census enumerators' books (and household schedules for 1911) for England and Wales enhanced under the I-CeM project. I-CeM does not currently include data for 1871, although the project has been able to access a version of the data for that year it does not contain information necessary to calculate many of the variables presented here. Users should therefore beware that 1871 does not contain data for many of the variables. Additional data, for some indicators, has been derived from the tables summarising numbers of births and deaths by year and areas, which were published by the Registrar General in his quarterly, annual and decennial reports of births, deaths and marriages. More information on the data, including overviews of the geographical patterns and changes over time, can be found on the Populations Past – Atlas of Victorian and Edwardian Population website, which provides an interactive mapping facility for these data. The second half of the nineteenth century was a period of major change in the dynamics of the British population. This was a time of transformation from a relatively 'high pressure' demographic regime characterised by medium to high birth and death rates towards a 'low pressure' regime of low birth and death rates, a transformation known as the 'demographic transition'. This transition was not uniform across England and Wales: certain places and social groups appear to have led the declines while others lagged behind. Exploring these geographical patterns can provide insights into the process of change and the influence of economic and geographical factors. This project aimed to utilise the individual-level data of the Integrated Census Microdata (I-CeM) project to calculate age-specific fertility rates both for a range of fine geographical units covering England and Wales and for occupational groups and then to investigate the relationships between these rates and other socioeconomic variables. This was to provide, for the first time, widespread information of the age patterns of fertility which render insight into ‘starting’, ‘spacing’ or ‘stopping’ fertility regulating behaviour. A time series of such measures across geographical and social space is also vital when trying to identify how new forms of behaviour spread through the population. This database contains a variety of measures of fertility, marriage and infant and child mortality, and also a range of socio-economic indicators (related to households, age structure, and social class) for the 2000+ Registration Sub Districts (RSDs) in both England and Wales, for each census year between 1851 and 1871. Most of these data can be mapped using our interactive website www.populationspast.org. This data collection was derived from near complete count individual level census data, from which we have created demographic and socio-economic indicators at a Registration Sub-District level, using a variety of demographic and statistical techniques. For a few variables, birth and death summary data (at Sub-Registration District level) were also used.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Survey variables needed to calculate fertility and childhood mortality rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains statistics about births and fertility rates for Australia, states and territories, and sub-state regions. It includes all births that occurred and were registered in Australia, including births to mothers whose place of usual residence was overseas.
Estimated resident populations (ERPs) are used as denominators to calculate fertility rates and are based on the results of the 2016 Census. This dataset uses the ABS Statistical Area Level 3 (SA3) boundaries of the Australian Statistical Geography Standard (ASGS) 2016.
For more information such as the scope, coverage and exclusions used in this dataset please visit the Australian Bureau of Statistics (ABS) methodology documentation.
AURIN has spatially enabled the original data from the ABS with the 2016 SA3 boundaries. AURIN has spatially enabled the original data from the ABS with the 2016 SA3 boundaries.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Cases and Deaths by Race/Ethnicity’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3fdc6593-c708-4a6a-8073-5ca862caa279 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More infor
--- Original source retains full ownership of the source dataset ---
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
These indicators are designed to accompany the SHMI publication. The SHMI methodology includes an adjustment for admission method. This is because crude mortality rates for elective admissions tend to be lower than crude mortality rates for non-elective admissions. Contextual indicators on the crude percentage mortality rates for elective and non-elective admissions where a death occurred either in hospital or within 30 days (inclusive) of being discharged from hospital are produced to support the interpretation of the SHMI. Notes: 1. As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. Activity that is being coded as COVID-19, and therefore excluded, is monitored in the contextual indicator 'Percentage of provider spells with COVID-19 coding' which is part of this publication. 2. Please note that there was a fall in the overall number of spells from March 2020 due to COVID-19 impacting on activity for England and the number has not returned to pre-pandemic levels. Further information at Trust level is available in the contextual indicator ‘Provider spells compared to the pre-pandemic period’ which is part of this publication. 3. There is a shortfall in the number of records for County Durham and Darlington NHS Foundation Trust (trust code RXP), East Lancashire Hospitals NHS Trust (trust code RXR), Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1), King’s College Hospital NHS Foundation Trust (trust code RJZ) and The Princess Alexandra Hospital NHS Trust (trust code RQW). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 4. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 5. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 6. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of the total scores of the fertility decision model by socio-demographic variables.
The DHS is intended to serve as a primary source for international population and health information for policymakers and for the research community. In general, DHS has four objectives: - To provide participating countries with a database and analysis useful for informed choices, - To expand the international population and health database, - To advance survey methodology, and - To help develop in participating countries technical skills and resources necessary to conduct demographic and health surveys.
Apart from estimating fertility and contraceptive prevalence rates, DHS also covers the topic of child health, which has become the focus of many development programs aimed at improving the quality of life in general. The Indonesian DHS survey did not include health-related questions because this information was collected in the 1987 SUSENAS in more detail and with wider geographic coverage. Hence, the Indonesian DHS was named the "National Indonesian Contraceptive Prevalence Survey" (NICPS).
The National Indonesia Contraceptive Prevalence Survey (NICPS) was a collaborative effort between the Indonesian National Family Planning Coordinating Board (NFPCB), the Institute for Resource Development of Westinghouse and the Central Bureau of Statistics (CBS). The survey was part of an international program in which similar surveys are being implemented in developing countries in Asia, Africa, and Latin America.
The 1987 NICPS was specifically designed to meet the following objectives: - To provide data on the family planning and fertility behavior of the Indonesian population necessary for program organizers and policymakers in evaluating and enhancing the national family planning program, and - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and availability of contraception.
National
Sample survey data
The 1987 NICPS sample was drawn from the annual National Socioeconomic Survey (popularly called SUSENAS) which was conducted in January and February 1987. Each year the SUSENAS consists of one set of core questions and several modules which are rotated every three years. The 1987 SUSENAS main modules covered household income, expenditure, and consumption. In addition, in collaboration with the Ministry of Health, information pertaining to children under 5 years of age was collected, including food supplement patterns, and measurement of height, weight, and arm circumference. In this module, information on prenatal care, type of birth attendant, and immunization was also asked.
This national survey covered over 60,000 households which were scattered in almost all of the districts. The data were collected by the "Mantri Statistik", a CBS officer in charge of data collection at the sub-district level. All households covered in the selected census blocks were listed on the SSN 87-LI form. This form was then used in selecting samples for each of the modules included in the SUSENAS. This particular form was also used to select the sample households in the 1987 NICPS.
Sample selection in the 1987 SUSENAS utilized a multistage sampling procedure. The first stage consisted of selecting a number of census blocks with probability proportional to the number of households in the block. Census blocks are statistical areas formed before the 1980 Population Census and contain approximately 100 households. At the second stage, households were selected systematically from each sampled census block.
Selection of the 1987 NICPS sample was also done in two stages. The first stage was to select census blocks from the those selected in the 1987 SUSENAS. At the second stage a number of households was selected systematically from the selected census block.
Face-to-face [f2f]
The household questionnaire was used to record all members of the selected households who usually live in the household. The questionnaire was utilized to identify the eligible respondents in the household, and to provide the numerator for the computation of demographic measurements such as fertility and contraceptive use rates.
The individual questionnaire was used for all ever-married women aged 15-49, and consisted of the following eight sections:
Section 1 Respondent's Background
This part collected information related to the respondent and the household, such as current and past mobility, age, education, literacy, religion, and media exposure. Information related to the household includes source of water for drinking, for bathing and washing, type of toilet, ownership of durable goods, and type of floor.
Section 2 Reproduction
This part gathered information on all children ever born, sex of the child, month and year of birth, survival status of the child, age when the child died, and whether the child lived with the respondent. Using the information collected in this section, one can compute measures of fertility and mortality, especially infant and child mortality rates. With the birth history data collected in this section, it is possible to calculate trends in fertility over time. This section also included a question about whether the respondent was pregnant at the time of interview, and her knowledge regarding women's fertile period in the monthly menstrual cycle.
Section 3 Knowledge and Practice of Family Planning
This section is one of the most important parts of the 1987 NICPS survey. Here the respondent was asked whether she had ever heard of or used any of the family planning methods listed. If the respondent had used a contraceptive method, she was asked detailed questions about the method. For women who gave birth to a child since January 1982, questions on family planning methods used in the intervals between births were also asked. The section also included questions on source of methods, quality of use, reasons for nonuse, and intentions for future use. These data are expected to answer questions on the effectiveness of family planning use. Finally, the section also included questions about whether the respondent had been visited by a family planning field worker, which community-level people she felt were most appropriate to give family planning information, and whether she had ever heard of the condom, DuaLima, the brand being promoted by a social marketing program.
Section 4 Breastfeeding
The objective of this part was to collect information on maternal and child health, primarily that concerning place of birth, type of assistance at birth, breastfeeding practices, and supplementary food. Information was collected for children born since January 1982.
Section 5 Marriage
This section gathered information regarding the respondent's age at first marriage, number of times married, and whether the respondent and her husband ever lived with any of their parents. Several questions in this section were related to the frequency of sexual intercourse to determine the respondent's risk of pregnancy. Not all of the data collected in this section are presented in this report; some require more extensive analysis than is feasible at this stage.
Section 6 Fertility Preferences
Intentions about having another child, preferred birth interval, and ideal number of children were covered in this section.
Section 7 Husband's Background and Respondent's Work
Education, literacy and occupation of the respondent's husband made up this section of the questionnaire. It also collected information on the respondent's work pattern before and after marriage, and whether she was working at the time of interview.
Section 8 Interview Particulars
This section was used to record the language used in the interview and information about whether the interviewer was assisted by an interpreter. The individual questionnaire also included information regarding the duration of interview and presence of other persons at particular points during the interview. In addition to the questionnaires, two manuals were developed. The manual for interviewers contained explanations of how to conduct an interview, how to carry out the field activity, and how to fill out the questionnaires. Since information regarding age was vital in this survey, a table to convert months from Javanese, Sundanese and Islamic calendar systems to the Gregorian calendar was attached to the 1987 NICPS manual for the interviewers.
The NICPS covered a sample of nearly 15,000 households to interview 11,884 respondents. Respondents for the individual interview were ever-married women aged 15-49. During the data collection, 14,141 out of the 14,227 existing households and 11,884 out of 12,065 eligible women were successfully interviewed. In general, few problems were encountered during interviewing, and the response rate was high--99 percent for households and 99 percent for individual respondents.
Note: See APPENDIX A in the report for more information.
The results from sample surveys are affected by two types of errors: (1) non-sampling error and (2) sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way questions are asked, misunderstanding of the questions on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and
The Pakistan Demographic and Health Survey PDHS 2017-18 was the fourth of its kind in Pakistan, following the 1990-91, 2006-07, and 2012-13 PDHS surveys.
The primary objective of the 2017-18 PDHS is to provide up-to-date estimates of basic demographic and health indicators. The PDHS provides a comprehensive overview of population, maternal, and child health issues in Pakistan. Specifically, the 2017-18 PDHS collected information on:
The information collected through the 2017-18 PDHS is intended to assist policymakers and program managers at the federal and provincial government levels, in the private sector, and at international organisations in evaluating and designing programs and strategies for improving the health of the country’s population. The data also provides information on indicators relevant to the Sustainable Development Goals.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2017-18 PDHS is a complete list of enumeration blocks (EBs) created for the Pakistan Population and Housing Census 2017, which was conducted from March to May 2017. The Pakistan Bureau of Statistics (PBS) supported the sample design of the survey and worked in close coordination with NIPS. The 2017-18 PDHS represents the population of Pakistan including Azad Jammu and Kashmir (AJK) and the former Federally Administrated Tribal Areas (FATA), which were not included in the 2012-13 PDHS. The results of the 2017-18 PDHS are representative at the national level and for the urban and rural areas separately. The survey estimates are also representative for the four provinces of Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan; for two regions including AJK and Gilgit Baltistan (GB); for Islamabad Capital Territory (ICT); and for FATA. In total, there are 13 secondlevel survey domains.
The 2017-18 PDHS followed a stratified two-stage sample design. The stratification was achieved by separating each of the eight regions into urban and rural areas. In total, 16 sampling strata were created. Samples were selected independently in every stratum through a two-stage selection process. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at different levels, and by using a probability-proportional-to-size selection at the first stage of sampling.
The first stage involved selecting sample points (clusters) consisting of EBs. EBs were drawn with a probability proportional to their size, which is the number of households residing in the EB at the time of the census. A total of 580 clusters were selected.
The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters, and a fixed number of 28 households per cluster was selected with an equal probability systematic selection process, for a total sample size of approximately 16,240 households. The household selection was carried out centrally at the NIPS data processing office. The survey teams only interviewed the pre-selected households. To prevent bias, no replacements and no changes to the pre-selected households were allowed at the implementing stages.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Six questionnaires were used in the 2017-18 PDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, Biomarker Questionnaire, Fieldworker Questionnaire, and the Community Questionnaire. The first five questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Pakistan. The Community Questionnaire was based on the instrument used in the previous rounds of the Pakistan DHS. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the National Bioethics Committee, Pakistan Health Research Council, and ICF Institutional Review Board. After the questionnaires were finalised in English, they were translated into Urdu and Sindhi. The 2017-18 PDHS used paper-based questionnaires for data collection, while computerassisted field editing (CAFE) was used to edit the questionnaires in the field.
The processing of the 2017-18 PDHS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via IFSS to the NIPS central office in Islamabad. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing was carried out in the central office, which involved resolving inconsistencies and coding the openended questions. The NIPS data processing manager coordinated the exercise at the central office. The PDHS core team members assisted with the secondary editing. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage as it maximised the likelihood of the data being error-free and accurate. The secondary editing of the data was completed in the first week of May 2018. The final cleaning of the data set was carried out by The DHS Program data processing specialist and completed on 25 May 2018.
A total of 15,671 households were selected for the survey, of which 15,051 were occupied. The response rates are presented separately for Pakistan, Azad Jammu and Kashmir, and Gilgit Baltistan. Of the 12,338 occupied households in Pakistan, 11,869 households were successfully interviewed, yielding a response rate of 96%. Similarly, the household response rates were 98% in Azad Jammu and Kashmir and 99% in Gilgit Baltistan.
In the interviewed households, 94% of ever-married women age 15-49 in Pakistan, 97% in Azad Jammu and Kashmir, and 94% in Gilgit Baltistan were interviewed. In the subsample of households selected for the male survey, 87% of ever-married men age 15-49 in Pakistan, 94% in Azad Jammu and Kashmir, and 84% in Gilgit Baltistan were successfully interviewed.
Overall, the response rates were lower in urban than in rural areas. The difference is slightly less pronounced for Azad Jammu and Kashmir and Gilgit Baltistan. The response rates for men are lower than those for women, as men are often away from their households for work.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Pakistan Demographic and Health Survey (2017-18 PDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 PDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that
The primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.
National coverage
The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.
Sample survey data [ssd]
The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).
The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.
Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.
For further details on sample design, see Appendix B of the final report.
Face-to-face [f2f]
The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.
Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.
In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix D of the survey final report.
The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.
The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5
The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).
The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.
For further details on sample design, see APPENDIX A of the final report.
Face-to-face computer-assisted interviews [capi]
Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.
The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.
DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.
From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.
A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
The purpose of the study is to get a better understanding of unintended pregnancy and how it affects people's lives and reasons for not using family planning.
The objectives of this study are: 1.To measure the validity of enhanced prospective fertility preference data in terms of the power to predict subsequent pregnancy/births. 2.To measure the validity of enhanced prospective fertility preference and other possible influences to predict contraceptive use-continuation, adoption and unmet need for family planning. 3.To assess consistency of prospective fertility intentions and retrospective statements about intendedness
Two informal settlements (slums) in Nairobi county, Kenya (specifically, Korogocho and Viwandani slums).
All Women aged 15-39 and are married or living with a partner.
All married (living together with a partner)women aged 15-39 living in the Nairobi DSS(Korogocho and Viwandani).
We assume both exposure/predictor and outcome variables are dichotomous, with say 20% in the unexposed and 40% in the exposed positive on outcome variable, such as current contraceptive use. Our sample size calculation will be based on the following formulae to be able to detect 20-50% differences in two proportions (Fleiss, Levin, and Paik 2003). We use power of 80% and 90% and significance level of 0.05. As the distribution of exposure is unknown, different ratios of sample size of the exposed to the unexposed (20% vs 80%, 30% vs70%, 80% vs 20%) are used to calculate sample sizes. The calculation for HDSS assumes a simple random sampling in the database.
In addition, the continuity correction factor is applied to the normal approximation of the discrete distribution. A 10% non-response rate is assumed.
The primary interest in the single round survey is women who are in need for family planning, i.e. women who are not currently pregnant, are not in postpartum amenorrhea, and do not want a child soon. Based on the latest KDHS survey, it is estimated that these women account for about 50% of women in union aged 15-39.
In addition, follow-up data collection to measure predictive validity of prospective intentions on reporting of pregnancy or childbirths, contraceptive use-continuation, adoption and unmet need for family planning, and the validity of retrospective fertility preferences are taken into account in the sample size calculations. It is estimated that about 15% of women would report being pregnant or having had a birth at 1-year follow-up and 30% in 2 years among women among the unexposed group at the baseline. The sample sizes were calculated for the prospective study using the same formulae and assumptions used in the single round survey. It is estimated that women who are pregnant or want a child within 2 years accounts for about 30% of women aged 20-39, so the overall sample sizes are calculated by multiplying by 1.3.
According to the calculations, if time and budget allows, it is desirable to recruit 2,600 women in union aged 15-39 to be able to detect at least 30% of differences with 80% of power both in single round and prospective surveys.
na
Face-to-face [f2f]
Strengthening evidence for programming on unintended pregnancy (step up) developing and validating a measure of unintended pregnancy and reasons for contraceptive non-use form
Data editing took place at a number of stages throughout the processing, including: 1. Quality control through back-checks on 10 percent of completed questionnaires and editing of all completed questionnaires by supervisors and project management staff. 2. A quality control officer performed internal consistency checks for all questionnaires and edited all paper questionnaires coming from the field before their submission for data entry with return of incorrectly filled questionnaires to the field for error-resolution. 3. During data entry, any questionnaires that were found to be inconsistent were returned to the field for resolution. 4. Data cleaning and editting was carried out using STATA Version 13 software.
Detailed documentation of the editing of data can be found in the "Standard Procedures Manual" document provided as an external resource.
Some corrections are made automatically by the program (80%) and the rest by visual control of the questionnaire (20%).
Where changes are made by the program, a cold deck imputation is preferred; where incorrect values are imputed using existing data from another dataset. If cold deck is found to be insufficient, hot deck imputation is used. In this case, a missing value is imputed from a randomly selected similar record in the same dataset.
na
na
The 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.
The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.
The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.
For further details on sample selection, see Appendix A of the final report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.
The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.
A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)
Note: See detailed data quality tables in APPENDIX C of the report.
The primary objective of the 2016 Nepal Demographic and Health Survey (NDHS) is to provide up-to-date estimates of basic demographic and health indicators. The NDHS provides a comprehensive overview of population, maternal, and child health issues in Nepal. Specifically, the 2016 NDHS: - Collected data that allowed calculation of key demographic indicators, particularly fertility and under-5 mortality rates, at the national level, for urban and rural areas, and for the country’s seven provinces - Collected data that allowed for calculation of adult and maternal mortality rates at the national level - Explored the direct and indirect factors that determine levels and trends of fertility and child mortality - Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunization coverage among children, prevalence and treatment of diarrhea and other diseases among children under age 5, maternity care indicators such as antenatal visits and assistance at delivery, and newborn care - Obtained data on child feeding practices, including breastfeeding - Collected anthropometric measures to assess the nutritional status of children under age 5 and women and men age 15-49 - Conducted hemoglobin testing on eligible children age 6-59 months and women age 15-49 to provide information on the prevalence of anemia in these groups - Collected data on knowledge and attitudes of women and men about sexually transmitted diseases and HIV/AIDS and evaluated potential exposure to the risk of HIV infection by exploring high-risk behaviors and condom use - Measured blood pressure among women and men age 15 and above - Obtained data on women’s experience of emotional, physical, and sexual violence
The information collected through the 2016 NDHS is intended to assist policymakers and program managers in the Ministry of Health and other organizations in designing and evaluating programs and strategies for improving the health of the country’s population. The 2016 NDHS also provides data on indicators relevant to the Nepal Health Sector Strategy (NHSS) 2016-2021 and the Sustainable Development Goals (SDGs).
National coverage
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2016 NDHS is an updated version of the frame from the 2011 National Population and Housing Census (NPHC), conducted by the Central Bureau of Statistics (CBS).
The sampling frame contains information about ward location, type of residence (urban or rural), estimated number of residential households, and estimated population. In rural areas, the wards are small in size (average of 104 households) and serve as the primary sampling units (PSUs). In urban areas, the wards are large, with average of 800 households per ward. The CBS has a frame of enumeration areas (EAs) for each ward in the original 58 municipalities. However, for the 159 municipalities declared in 2014 and 2015, each municipality is composed of old wards, which are small in size and can serve as EAs.
The 2016 NDHS sample was stratified and selected in two stages in rural areas and three stages in urban areas. In rural areas, wards were selected as primary sampling units, and households were selected from the sample PSUs. In urban areas, wards were selected as PSUs, one EA was selected from each PSU, and then households were selected from the sample EAs.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Six questionnaires were administered in the 2016 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, the Fieldworker Questionnaire, and the Verbal Autopsy Questionnaire (for neonatal deaths). The first five questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nepal. The Verbal Autopsy Questionnaire was based on the recent 2014 World Health Organization (WHO) verbal autopsy instruments (WHO 2015a).
The processing of the 2016 NDHS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the New ERA central office in Kathmandu. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The biomarker paper questionnaires were compared with the electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The secondary editing of the data was completed in the second week of February 2017. The final cleaning of the data set was carried out by The DHS Program data processing specialist and was completed by the end of February 2017.
A total of 11,473 households were selected for the sample, of which 11,203 were occupied. Of the occupied households, 11,040 were successfully interviewed, yielding a response rate of 99%.
In the interviewed households, 13,089 women age 15-49 were identified for individual interviews; interviews were completed with 12,862 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 4,235 men age 15-49 were identified and 4,063 were successfully interviewed, yielding a response rate of 96%.
Response rates were lower in urban areas than in rural areas. The difference was slightly more prominent for men than for women, as men in urban areas were often away from their households for work.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Non-sampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2016 Nepal DHS (NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2016 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2016 NDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in either ISSA or SAS, using programs developed by ICF. These programs use the Taylor linearization method of variance estimation for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Sibling size and sex ratio of siblings - Pregnancy-related mortality trends
See details of the data quality tables in Appendix C of the survey final report.
Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.