91 datasets found
  1. Mathematics Dataset

    • github.com
    • opendatalab.com
    • +1more
    Updated Apr 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DeepMind (2019). Mathematics Dataset [Dataset]. https://github.com/Wikidepia/mathematics_dataset_id
    Explore at:
    Dataset updated
    Apr 3, 2019
    Dataset provided by
    DeepMindhttp://deepmind.com/
    Description

    This dataset consists of mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models.

    ## Example questions

     Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
     Answer: 4
     
     Question: Calculate -841880142.544 + 411127.
     Answer: -841469015.544
     
     Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).
     Answer: 54*a - 30
    

    It contains 2 million (question, answer) pairs per module, with questions limited to 160 characters in length, and answers to 30 characters in length. Note the training data for each question type is split into "train-easy", "train-medium", and "train-hard". This allows training models via a curriculum. The data can also be mixed together uniformly from these training datasets to obtain the results reported in the paper. Categories:

    • algebra (linear equations, polynomial roots, sequences)
    • arithmetic (pairwise operations and mixed expressions, surds)
    • calculus (differentiation)
    • comparison (closest numbers, pairwise comparisons, sorting)
    • measurement (conversion, working with time)
    • numbers (base conversion, remainders, common divisors and multiples, primality, place value, rounding numbers)
    • polynomials (addition, simplification, composition, evaluating, expansion)
    • probability (sampling without replacement)
  2. GLAS/ICESat L1B Global Waveform-based Range Corrections Data (HDF5) V034 -...

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). GLAS/ICESat L1B Global Waveform-based Range Corrections Data (HDF5) V034 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/glas-icesat-l1b-global-waveform-based-range-corrections-data-hdf5-v034
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    GLAH05 Level-1B waveform parameterization data include output parameters from the waveform characterization procedure and other parameters required to calculate surface slope and relief characteristics. GLAH05 contains parameterizations of both the transmitted and received pulses and other characteristics from which elevation and footprint-scale roughness and slope are calculated. The received pulse characterization uses two implementations of the retracking algorithms: one tuned for ice sheets, called the standard parameterization, used to calculate surface elevation for ice sheets, oceans, and sea ice; and another for land (the alternative parameterization). Each data granule has an associated browse product.

  3. d

    Data from: Half interpercentile range (half of the difference between the...

    • catalog.data.gov
    • data.usgs.gov
    • +5more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_hIPR.SHP) [Dataset]. https://catalog.data.gov/dataset/half-interpercentile-range-half-of-the-difference-between-the-16th-and-84th-percentiles-of
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

  4. housing

    • kaggle.com
    zip
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HappyRautela (2023). housing [Dataset]. https://www.kaggle.com/datasets/happyrautela/housing
    Explore at:
    zip(809785 bytes)Available download formats
    Dataset updated
    Sep 22, 2023
    Authors
    HappyRautela
    Description

    The exercise after this contains questions that are based on the housing dataset.

    1. How many houses have a waterfront? a. 21000 b. 21450 c. 163 d. 173

    2. How many houses have 2 floors? a. 2692 b. 8241 c. 10680 d. 161

    3. How many houses built before 1960 have a waterfront? a. 80 b. 7309 c. 90 d. 92

    4. What is the price of the most expensive house having more than 4 bathrooms? a. 7700000 b. 187000 c. 290000 d. 399000

    5. For instance, if the ‘price’ column consists of outliers, how can you make the data clean and remove the redundancies? a. Calculate the IQR range and drop the values outside the range. b. Calculate the p-value and remove the values less than 0.05. c. Calculate the correlation coefficient of the price column and remove the values less than the correlation coefficient. d. Calculate the Z-score of the price column and remove the values less than the z-score.

    6. What are the various parameters that can be used to determine the dependent variables in the housing data to determine the price of the house? a. Correlation coefficients b. Z-score c. IQR Range d. Range of the Features

    7. If we get the r2 score as 0.38, what inferences can we make about the model and its efficiency? a. The model is 38% accurate, and shows poor efficiency. b. The model is showing 0.38% discrepancies in the outcomes. c. Low difference between observed and fitted values. d. High difference between observed and fitted values.

    8. If the metrics show that the p-value for the grade column is 0.092, what all inferences can we make about the grade column? a. Significant in presence of other variables. b. Highly significant in presence of other variables c. insignificance in presence of other variables d. None of the above

    9. If the Variance Inflation Factor value for a feature is considerably higher than the other features, what can we say about that column/feature? a. High multicollinearity b. Low multicollinearity c. Both A and B d. None of the above

  5. Math Formula Retrieval

    • kaggle.com
    • huggingface.co
    zip
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Math Formula Retrieval [Dataset]. https://www.kaggle.com/datasets/thedevastator/math-formula-pair-classification-dataset/data
    Explore at:
    zip(2021716728 bytes)Available download formats
    Dataset updated
    Dec 2, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Math Formula Retrieval

    Math Formula Pair Classification Dataset

    By ddrg (From Huggingface) [source]

    About this dataset

    With a total of six columns, including formula1, formula2, label (binary format), formula1, formula2, and label, the dataset provides all the necessary information for conducting comprehensive analysis and evaluation.

    The train.csv file contains a subset of the dataset specifically curated for training purposes. It includes an extensive range of math formula pairs along with their corresponding labels and unique ID names. This allows researchers and data scientists to construct models that can predict whether two given formulas fall within the same category or not.

    On the other hand, test.csv serves as an evaluation set. It consists of additional pairs of math formulas accompanied by their respective labels and unique IDs. By evaluating model performance on this test set after training it on train.csv data, researchers can assess how well their models generalize to unseen instances.

    By leveraging this informative dataset, researchers can unlock new possibilities in mathematics-related fields such as pattern recognition algorithms development or enhancing educational tools that involve automatic identification and categorization tasks based on mathematical formulas

    How to use the dataset

    Introduction

    Dataset Description

    train.csv

    The train.csv file contains a set of labeled math formula pairs along with their corresponding labels and formula name IDs. It consists of the following columns: - formula1: The first mathematical formula in the pair (text). - formula2: The second mathematical formula in the pair (text). - label: The classification label indicating whether the pair of formulas belong to the same category or not (binary). A label value of 1 indicates that both formulas belong to the same category, while a label value of 0 indicates different categories.

    test.csv

    The purpose of the test.csv file is to provide a set of formula pairs along with their labels and formula name IDs for testing and evaluation purposes. It has an identical structure to train.csv, containing columns like formula1, formula2, label, etc.

    Task

    The main task using this dataset is binary classification, where your objective is to predict whether two mathematical formulas belong to the same category or not based on their textual representation. You can use various machine learning algorithms such as logistic regression, decision trees, random forests, or neural networks for training models on this dataset.

    Exploring & Analyzing Data

    Before building your model, it's crucial to explore and analyze your data. Here are some steps you can take:

    • Load both CSV files (train.csv and test.csv) into your preferred data analysis framework or programming language (e.g., Python with libraries like pandas).
    • Examine the dataset's structure, including the number of rows, columns, and data types.
    • Check for missing values in the dataset and handle them accordingly.
    • Visualize the distribution of labels to understand whether it is balanced or imbalanced.

    Model Building

    Once you have analyzed and preprocessed your dataset, you can start building your classification model using various machine learning algorithms:

    • Split your train.csv data into training and validation sets for model evaluation during training.
    • Choose a suitable

    Research Ideas

    • Math Formula Similarity: This dataset can be used to develop a model that classifies whether two mathematical formulas are similar or not. This can be useful in various applications such as plagiarism detection, identifying duplicate formulas in databases, or suggesting similar formulas based on user input.
    • Formula Categorization: The dataset can be used to train a model that categorizes mathematical formulas into different classes or categories. For example, the model can classify formulas into algebraic expressions, trigonometric equations, calculus problems, or geometric theorems. This categorization can help organize and search through large collections of mathematical formulas.
    • Formula Recommendation: Using this dataset, one could build a recommendation system that suggests related math formulas based on user input. By analyzing the similarities between different formula pairs and their corresponding labels, the system could provide recommendations for relevant mathematical concepts that users may need while solving problems or studying specific topics in mathematics

    Acknowle...

  6. Optical constants of CO and CO2 in the IR ans THz ranges and code to...

    • data.europa.eu
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). Optical constants of CO and CO2 in the IR ans THz ranges and code to calculate the opacity of icy interstellar grains [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-8277043?locale=lt
    Explore at:
    unknown(1484)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data set of optical constants of CO and CO2 in the IR and THz ranges (0.3–12.0 THz). These data are used to compute the opacity of coated materials in an astrophysical context in our accepted article for publication in A&A, 2022. The following link provides access to the "qabs" open access code and its source to calculate the opacity using the optical constants. The code computes Qabs, Qsca, and Qext from the refractive index or the dielectric constant using Mie's theory: https://bitbucket.org/tgrassi/compute_qabs/src/master/ The link redirects you to an open-access environment where to execute the code properly.

  7. Electric Two-Wheeler Synthetic Dataset

    • kaggle.com
    zip
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prajwal M Poojary (2025). Electric Two-Wheeler Synthetic Dataset [Dataset]. https://www.kaggle.com/datasets/prajwalmpoojary/electric-two-wheeler-synthetic-dataset
    Explore at:
    zip(199123 bytes)Available download formats
    Dataset updated
    Jul 14, 2025
    Authors
    Prajwal M Poojary
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    This dataset is synthetically generated to simulate realistic operational data from electric two-wheelers. It includes common parameters such as vehicle speed, battery voltage, current, state of charge, motor and ambient temperatures, regenerative braking status, and trip duration.

    The feature distributions are designed to mimic real-world driving behavior and environmental conditions typically observed in urban commuting scenarios for electric scooters and bikes.

    The dataset is primarily intended for machine learning tasks such as EV range prediction, regression modeling, exploratory data analysis (EDA), and educational purposes.

    This can serve as a baseline dataset for practicing predictive modeling workflows, building dashboards, or testing data visualization techniques.

    Dataset Columns Explained:

    • vehicle_speed_kmph: Vehicle speed in km/h.
    • battery_voltage_V: Battery voltage in volts.
    • battery_current_A: Battery current draw in amperes.
    • state_of_charge_%: Battery charge percentage.
    • motor_temperature_C: Motor temperature in Celsius.
    • ambient_temperature_C: Outside temperature during trip.
    • regen_braking_active: Whether regenerative braking was active (1 = yes, 0 = no).
    • trip_duration_min: Duration of the trip in minutes.
    • estimated_range_km: Calculated estimated range of vehicle in km.
  8. A

    NIST Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions -...

    • data.amerigeoss.org
    • catalog.data.gov
    • +1more
    html
    Updated Jul 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). NIST Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions - SRD 124 [Dataset]. https://data.amerigeoss.org/de/dataset/nist-stopping-power-and-range-tables-for-electrons-protons-and-helium-ions-srd-124
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 27, 2019
    Dataset provided by
    United States
    License

    https://www.nist.gov/open/licensehttps://www.nist.gov/open/license

    Description

    The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range tables for electrons, protons, or helium ions. Stopping-power and range tables can be calculated for electrons in any user-specified material and for protons and helium ions in 74 materials.

  9. Netflix Stock Price With Indicators

    • kaggle.com
    zip
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aravind Pillai (2024). Netflix Stock Price With Indicators [Dataset]. https://www.kaggle.com/datasets/aspillai/netflix-stock-price-with-indicators
    Explore at:
    zip(338374 bytes)Available download formats
    Dataset updated
    Apr 12, 2024
    Authors
    Aravind Pillai
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset offers an in-depth analysis of Netflix's stock performance over the last decade, incorporating numerous technical indicators to examine its price fluctuations. It includes the recording date and several vital statistics: the opening, highest, lowest, and closing prices for each trading day, along with the trading volume. It also contains momentum indicators like the 7-day and 14-day Relative Strength Index (RSI) to determine if the stock is overbought or oversold. The Commodity Channel Index (CCI) for 7 and 14 days is also included, helping identify short- and medium-term market trends by comparing the current price to the historical average. The dataset integrates the 50-day and 100-day Simple Moving Average (SMA) and Exponential Moving Average (EMA), which shed light on the stock's trend direction. Additional important indicators are the Moving Average Convergence Divergence (MACD), Bollinger Bands for assessing price volatility, the True Range, and the 7-day and 14-day Average True Range (ATR), which provide a gauge of market volatility. This dataset is designed to forecast the closing price for the following day, making it a crucial tool for predicting future movements of Netflix's stock.

    Please find descriptions for the columns.

    • Open: The price at which a stock first trades upon the opening of an exchange on a trading day.

    • High: The highest price at which a stock traded during the trading day.

    • Low: The lowest price at which a stock traded during the trading day.

    • Close: The final price at which a stock trades during a trading day.

    • Volume: The total number of shares of a stock traded during a trading day.

    • RSI_7 / RSI_14: The Relative Strength Index (RSI) is a momentum oscillator that measures the speed and change of price movements. RSI_7 and RSI_14 indicate the RSI calculated over 7 days and 14 days, respectively. https://www.investopedia.com/terms/r/rsi.asp

    • CCI_7 / CCI_14: The Commodity Channel Index (CCI) is a versatile indicator that can be used to identify a new trend or warn of extreme conditions. CCI_7 and CCI_14 are calculated over 7 days and 14 days, respectively. https://www.investopedia.com/terms/c/commoditychannelindex.asp

    • SMA_50 / SMA_100: The Simple Moving Average (SMA) is calculated by averaging the price of a stock over a specific number of days. SMA_50 and SMA_100 are the averages over 50 days and 100 days, respectively. https://www.investopedia.com/terms/s/sma.asp

    • EMA_50 / EMA_100: The Exponential Moving Average (EMA) gives more weight to more recent prices and thus reacts more quickly to price changes than the SMA. EMA_50 and EMA_100 are calculated over 50 days and 100 days, respectively. https://www.investopedia.com/terms/e/ema.asp

    • MACD: The Moving Average Convergence Divergence (MACD) is a trend-following momentum indicator that shows the relationship between two moving averages of a stock’s price. https://www.investopedia.com/terms/m/macd.asp

    • Bollinger Bands (Bollinger): A set of lines plotted two standard deviations (positively and negatively) away from a simple moving average (SMA) of a stock's price. https://www.investopedia.com/terms/b/bollingerbands.asp

    • True Range: The greatest of the following: current high minus the current low, the absolute value of the current high minus the previous close, or the absolute value of the current low minus the previous close.

    • ATR_7 / ATR_14: The Average True Range (ATR) is a measure of volatility that shows how much a stock moves, on average, over a given period. ATR_7 and ATR_14 are calculated over 7 days and 14 days, respectively. https://www.investopedia.com/terms/a/atr.asp

    • Next Day Close: Future price. Closing price of a stock for the following trading day. Can be used as target variable for regression predictions.

  10. Google Analytics data of an E-commerce Company

    • kaggle.com
    zip
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fehu.zone (2024). Google Analytics data of an E-commerce Company [Dataset]. https://www.kaggle.com/datasets/fehu94/google-analytics-data-of-an-e-commerce-company
    Explore at:
    zip(3156 bytes)Available download formats
    Dataset updated
    Oct 19, 2024
    Authors
    fehu.zone
    Description

    📊 Dataset Title: Daily Active Users Dataset

    📝 Description

    This dataset provides detailed insights into daily active users (DAU) of a platform or service, captured over a defined period of time. The dataset includes information such as the number of active users per day, allowing data analysts and business intelligence teams to track usage trends, monitor platform engagement, and identify patterns in user activity over time.

    The data is ideal for performing time series analysis, statistical analysis, and trend forecasting. You can utilize this dataset to measure the success of platform initiatives, evaluate user behavior, or predict future trends in engagement. It is also suitable for training machine learning models that focus on user activity prediction or anomaly detection.

    📂 Dataset Structure

    The dataset is structured in a simple and easy-to-use format, containing the following columns:

    • Date: The date on which the data was recorded, formatted as YYYYMMDD.
    • Number of Active Users: The number of users who were active on the platform on the corresponding date.

    Each row in the dataset represents a unique date and its corresponding number of active users. This allows for time-based analysis, such as calculating the moving average of active users, detecting seasonality, or spotting sudden spikes or drops in engagement.

    🧐 Key Use Cases

    This dataset can be used for a wide range of purposes, including:

    1. Time Series Analysis: Analyze trends and seasonality of user engagement.
    2. Trend Detection: Discover peaks and valleys in user activity.
    3. Anomaly Detection: Use statistical methods or machine learning algorithms to detect anomalies in user behavior.
    4. Forecasting User Growth: Build forecasting models to predict future platform usage.
    5. Seasonality Insights: Identify patterns like increased activity on weekends or holidays.

    📈 Potential Analysis

    Here are some specific analyses you can perform using this dataset:

    • Moving Average and Smoothing: Calculate the moving average over a 7-day or 30-day period.
    • Correlation with External Factors: Correlate daily active users with other datasets.
    • Statistical Hypothesis Testing: Perform t-tests or ANOVA to determine significant differences in user activity.
    • Machine Learning for Prediction: Train machine learning models to predict user engagement.

    🚀 Getting Started

    To get started with this dataset, you can load it into your preferred analysis tool. Here's how to do it using Python's pandas library:

    import pandas as pd
    
    # Load the dataset
    data = pd.read_csv('path_to_dataset.csv')
    
    # Display the first few rows
    print(data.head())
    
    # Basic statistics
    print(data.describe())
    
  11. f

    Summary and methods used to calculate the physical characteristics used to...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan, Senthilvel K. S. S.; Saldivar, Diana A. Ramirez; Vaughan, Ian P.; Goossens, Benoit; Stark, Danica J. (2017). Summary and methods used to calculate the physical characteristics used to compare the home range estimators. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001743878
    Explore at:
    Dataset updated
    Mar 31, 2017
    Authors
    Nathan, Senthilvel K. S. S.; Saldivar, Diana A. Ramirez; Vaughan, Ian P.; Goossens, Benoit; Stark, Danica J.
    Description

    Summary and methods used to calculate the physical characteristics used to compare the home range estimators.

  12. c

    Data from: U.S. Geological Survey calculated half interpercentile range...

    • s.cnmilf.com
    • search.dataone.org
    • +1more
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). U.S. Geological Survey calculated half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_hIPR.shp, polygon shapefile, Geographic, WGS84) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/u-s-geological-survey-calculated-half-interpercentile-range-half-of-the-difference-between
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

  13. Dataset for the paper "Observation of Acceleration and Deceleration Periods...

    • zenodo.org
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yide Qian; Yide Qian (2025). Dataset for the paper "Observation of Acceleration and Deceleration Periods at Pine Island Ice Shelf from 1997–2023 " [Dataset]. http://doi.org/10.5281/zenodo.15022854
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Yide Qian; Yide Qian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pine Island Glacier
    Description

    Dataset and codes for "Observation of Acceleration and Deceleration Periods at Pine Island Ice Shelf from 1997–2023 "

    • Description of the data and file structure

    The MATLAB codes and related datasets are used for generating the figures for the paper "Observation of Acceleration and Deceleration Periods at Pine Island Ice Shelf from 1997–2023".

    Files and variables

    File 1: Data_and_Code.zip

    Directory: Main_function

    **Description:****Include MATLAB scripts and functions. Each script include discriptions that guide the user how to used it and how to find the dataset that used for processing.

    MATLAB Main Scripts: Include the whole steps to process the data, output figures, and output videos.

    Script_1_Ice_velocity_process_flow.m

    Script_2_strain_rate_process_flow.m

    Script_3_DROT_grounding_line_extraction.m

    Script_4_Read_ICESat2_h5_files.m

    Script_5_Extraction_results.m

    MATLAB functions: Five Files that includes MATLAB functions that support the main script:

    1_Ice_velocity_code: Include MATLAB functions related to ice velocity post-processing, includes remove outliers, filter, correct for atmospheric and tidal effect, inverse weited averaged, and error estimate.

    2_strain_rate: Include MATLAB functions related to strain rate calculation.

    3_DROT_extract_grounding_line_code: Include MATLAB functions related to convert range offset results output from GAMMA to differential vertical displacement and used the result extract grounding line.

    4_Extract_data_from_2D_result: Include MATLAB functions that used for extract profiles from 2D data.

    5_NeRD_Damage_detection: Modified code fom Izeboud et al. 2023. When apply this code please also cite Izeboud et al. 2023 (https://www.sciencedirect.com/science/article/pii/S0034425722004655).

    6_Figure_plotting_code:Include MATLAB functions related to Figures in the paper and support information.

    Director: data_and_result

    Description:**Include directories that store the results output from MATLAB. user only neeed to modify the path in MATLAB script to their own path.

    1_origin : Sample data ("PS-20180323-20180329", “PS-20180329-20180404”, “PS-20180404-20180410”) output from GAMMA software in Geotiff format that can be used to calculate DROT and velocity. Includes displacment, theta, phi, and ccp.

    2_maskccpN: Remove outliers by ccp < 0.05 and change displacement to velocity (m/day).

    3_rockpoint: Extract velocities at non-moving region

    4_constant_detrend: removed orbit error

    5_Tidal_correction: remove atmospheric and tidal induced error

    6_rockpoint: Extract non-aggregated velocities at non-moving region

    6_vx_vy_v: trasform velocities from va/vr to vx/vy

    7_rockpoint: Extract aggregated velocities at non-moving region

    7_vx_vy_v_aggregate_and_error_estimate: inverse weighted average of three ice velocity maps and calculate the error maps

    8_strain_rate: calculated strain rate from aggregate ice velocity

    9_compare: store the results before and after tidal correction and aggregation.

    10_Block_result: times series results that extrac from 2D data.

    11_MALAB_output_png_result: Store .png files and time serties result

    12_DROT: Differential Range Offset Tracking results

    13_ICESat_2: ICESat_2 .h5 files and .mat files can put here (in this file only include the samples from tracks 0965 and 1094)

    14_MODIS_images: you can store MODIS images here

    shp: grounding line, rock region, ice front, and other shape files.

    File 2 : PIG_front_1947_2023.zip

    Includes Ice front positions shape files from 1947 to 2023, which used for plotting figure.1 in the paper.

    File 3 : PIG_DROT_GL_2016_2021.zip

    Includes grounding line positions shape files from 1947 to 2023, which used for plotting figure.1 in the paper.

    Data was derived from the following sources:
    Those links can be found in MATLAB scripts or in the paper "**Open Research" **section.

  14. Salaries case study

    • kaggle.com
    zip
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shobhit Chauhan (2024). Salaries case study [Dataset]. https://www.kaggle.com/datasets/satyam0123/salaries-case-study
    Explore at:
    zip(13105509 bytes)Available download formats
    Dataset updated
    Oct 2, 2024
    Authors
    Shobhit Chauhan
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    To analyze the salaries of company employees using Pandas, NumPy, and other tools, you can structure the analysis process into several steps:

    Case Study: Employee Salary Analysis In this case study, we aim to analyze the salaries of employees across different departments and levels within a company. Our goal is to uncover key patterns, identify outliers, and provide insights that can support decisions related to compensation and workforce management.

    Step 1: Data Collection and Preparation Data Sources: The dataset typically includes employee ID, name, department, position, years of experience, salary, and additional compensation (bonuses, stock options, etc.). Data Cleaning: We use Pandas to handle missing or incomplete data, remove duplicates, and standardize formats. Example: df.dropna() to handle missing salary information, and df.drop_duplicates() to eliminate duplicate entries. Step 2: Data Exploration and Descriptive Statistics Exploratory Data Analysis (EDA): Using Pandas to calculate basic statistics such as mean, median, mode, and standard deviation for employee salaries. Example: df['salary'].describe() provides an overview of the distribution of salaries. Data Visualization: Leveraging tools like Matplotlib or Seaborn for visualizing salary distributions, box plots to detect outliers, and bar charts for department-wise salary breakdowns. Example: sns.boxplot(x='department', y='salary', data=df) provides a visual representation of salary variations by department. Step 3: Analysis Using NumPy Calculating Salary Ranges: NumPy can be used to calculate the range, variance, and percentiles of salary data to identify the spread and skewness of the salary distribution. Example: np.percentile(df['salary'], [25, 50, 75]) helps identify salary quartiles. Correlation Analysis: Identify the relationship between variables such as experience and salary using NumPy to compute correlation coefficients. Example: np.corrcoef(df['years_of_experience'], df['salary']) reveals if experience is a significant factor in salary determination. Step 4: Grouping and Aggregation Salary by Department and Position: Using Pandas' groupby function, we can summarize salary information for different departments and job titles to identify trends or inequalities. Example: df.groupby('department')['salary'].mean() calculates the average salary per department. Step 5: Salary Forecasting (Optional) Predictive Analysis: Using tools such as Scikit-learn, we could build a regression model to predict future salary increases based on factors like experience, education level, and performance ratings. Step 6: Insights and Recommendations Outlier Identification: Detect any employees earning significantly more or less than the average, which could signal inequities or high performers. Salary Discrepancies: Highlight any salary discrepancies between departments or gender that may require further investigation. Compensation Planning: Based on the analysis, suggest potential changes to the salary structure or bonus allocations to ensure fair compensation across the organization. Tools Used: Pandas: For data manipulation, grouping, and descriptive analysis. NumPy: For numerical operations such as percentiles and correlations. Matplotlib/Seaborn: For data visualization to highlight key patterns and trends. Scikit-learn (Optional): For building predictive models if salary forecasting is included in the analysis. This approach ensures a comprehensive analysis of employee salaries, providing actionable insights for human resource planning and compensation strategy.

  15. n

    Data from: Contrasting effects of host or local specialization: widespread...

    • data-staging.niaid.nih.gov
    • ourarchive.otago.ac.nz
    • +3more
    zip
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela de Angeli Dutra; Gabriel Moreira Félix; Robert Poulin (2024). Contrasting effects of host or local specialization: widespread haemosporidians are host generalist whereas local specialists are locally abundant [Dataset]. http://doi.org/10.5061/dryad.j3tx95xfb
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    University of Otago
    Universidade Estadual de Campinas (UNICAMP)
    Authors
    Daniela de Angeli Dutra; Gabriel Moreira Félix; Robert Poulin
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Aim: Despite the wide distribution of many parasites around the globe, the range of individual species varies significantly even among phylogenetically related taxa. Since parasites need suitable hosts to complete their development, parasite geographical and environmental ranges should be limited to communities where their hosts are found. Parasites may also suffer from a trade-off between being locally abundant or widely dispersed. We hypothesize that the geographical and environmental ranges of parasites are negatively associated to their host specificity and their local abundance. Location: Worldwide Time period: 2009 to 2021 Major taxa studied: Avian haemosporidian parasites Methods: We tested these hypotheses using a global database which comprises data on avian haemosporidian parasites from across the world. For each parasite lineage, we computed five metrics: phylogenetic host-range, environmental range, geographical range, and their mean local and total number of observations in the database. Phylogenetic generalized least squares models were ran to evaluate the influence of phylogenetic host-range and total and local abundances on geographical and environmental range. In addition, we analysed separately the two regions with the largest amount of available data: Europe and South America. Results: We evaluated 401 lineages from 757 localities and observed that generalism (i.e. phylogenetic host range) associates positively to both the parasites’ geographical and environmental ranges at global and Europe scales. For South America, generalism only associates with geographical range. Finally, mean local abundance (mean local number of parasite occurrences) was negatively related to geographical and environmental range. This pattern was detected worldwide and in South America, but not in Europe. Main Conclusions: We demonstrate that parasite specificity is linked to both their geographical and environmental ranges. The fact that locally abundant parasites present restricted ranges, indicates a trade-off between these two traits. This trade-off, however, only becomes evident when sufficient heterogeneous host communities are considered. Methods We compiled data on haemosporidian lineages from the MalAvi database (http://130.235.244.92/Malavi/ , Bensch et al. 2009) including all the data available from the “Grand Lineage Summary” representing Plasmodium and Haemoproteus genera from wild birds and that contained information regarding location. After checking for duplicated sequences, this dataset comprised a total of ~6200 sequenced parasites representing 1602 distinct lineages (775 Plasmodium and 827 Haemoproteus) collected from 1139 different host species and 757 localities from all continents except Antarctica (Supplementary figure 1, Supplementary Table 1). The parasite lineages deposited in MalAvi are based on a cyt b fragment of 478 bp. This dataset was used to calculate the parasites’ geographical, environmental and phylogenetic ranges. Geographical range All analyses in this study were performed using R version 4.02. In order to estimate the geographical range of each parasite lineage, we applied the R package “GeoRange” (Boyle, 2017) and chose the variable minimum spanning tree distance (i.e., shortest total distance of all lines connecting each locality where a particular lineage has been found). Using the function “create.matrix” from the “fossil” package, we created a matrix of lineages and coordinates and employed the function “GeoRange_MultiTaxa” to calculate the minimum spanning tree distance for each parasite lineage distance (i.e. shortest total distance in kilometers of all lines connecting each locality). Therefore, as at least two distinct sites are necessary to calculate this distance, parasites observed in a single locality could not have their geographical range estimated. For this reason, only parasites observed in two or more localities were considered in our phylogenetically controlled least squares (PGLS) models. Host and Environmental diversity Traditionally, ecologists use Shannon entropy to measure diversity in ecological assemblages (Pielou, 1966). The Shannon entropy of a set of elements is related to the degree of uncertainty someone would have about the identity of a random selected element of that set (Jost, 2006). Thus, Shannon entropy matches our intuitive notion of biodiversity, as the more diverse an assemblage is, the more uncertainty regarding to which species a randomly selected individual belongs. Shannon diversity increases with both the assemblage richness (e.g., the number of species) and evenness (e.g., uniformity in abundance among species). To compare the diversity of assemblages that vary in richness and evenness in a more intuitive manner, we can normalize diversities by Hill numbers (Chao et al., 2014b). The Hill number of an assemblage represents the effective number of species in the assemblage, i.e., the number of equally abundant species that are needed to give the same value of the diversity metric in that assemblage. Hill numbers can be extended to incorporate phylogenetic information. In such case, instead of species, we are measuring the effective number of phylogenetic entities in the assemblage. Here, we computed phylogenetic host-range as the phylogenetic Hill number associated with the assemblage of hosts found infected by a given parasite. Analyses were performed using the function “hill_phylo” from the “hillr” package (Chao et al., 2014a). Hill numbers are parameterized by a parameter “q” that determines the sensitivity of the metric to relative species abundance. Different “q” values produce Hill numbers associated with different diversity metrics. We set q = 1 to compute the Hill number associated with Shannon diversity. Here, low Hill numbers indicate specialization on a narrow phylogenetic range of hosts, whereas a higher Hill number indicates generalism across a broader phylogenetic spectrum of hosts. We also used Hill numbers to compute the environmental range of sites occupied by each parasite lineage. Firstly, we collected the 19 bioclimatic variables from WorldClim version 2 (http://www.worldclim.com/version2) for all sites used in this study (N = 713). Then, we standardized the 19 variables by centering and scaling them by their respective mean and standard deviation. Thereafter, we computed the pairwise Euclidian environmental distance among all sites and used this distance to compute a dissimilarity cluster. Finally, as for the phylogenetic Hill number, we used this dissimilarity cluster to compute the environmental Hill number of the assemblage of sites occupied by each parasite lineage. The environmental Hill number for each parasite can be interpreted as the effective number of environmental conditions in which a parasite lineage occurs. Thus, the higher the environmental Hill number, the more generalist the parasite is regarding the environmental conditions in which it can occur. Parasite phylogenetic tree A Bayesian phylogenetic reconstruction was performed. We built a tree for all parasite sequences for which we were able to estimate the parasite’s geographical, environmental and phylogenetic ranges (see above); this represented 401 distinct parasite lineages. This inference was produced using MrBayes 3.2.2 (Ronquist & Huelsenbeck, 2003) with the GTR + I + G model of nucleotide evolution, as recommended by ModelTest (Posada & Crandall, 1998), which selects the best-fit nucleotide substitution model for a set of genetic sequences. We ran four Markov chains simultaneously for a total of 7.5 million generations that were sampled every 1000 generations. The first 1250 million trees (25%) were discarded as a burn-in step and the remaining trees were used to calculate the posterior probabilities of each estimated node in the final consensus tree. Our final tree obtained a cumulative posterior probability of 0.999. Leucocytozoon caulleryi was used as the outgroup to root the phylogenetic tree as Leucocytozoon spp. represents a basal group within avian haemosporidians (Pacheco et al., 2020).

  16. Data from: Formula 1 Dataset

    • kaggle.com
    zip
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harry Bassi13 (2022). Formula 1 Dataset [Dataset]. https://www.kaggle.com/datasets/harrybassi13/formula-1
    Explore at:
    zip(683758 bytes)Available download formats
    Dataset updated
    Jun 23, 2022
    Authors
    Harry Bassi13
    Description

    Welcome to the Formula 1 dataset!

    This page includes a Formula 1 dataset that has been scraped from two main sources. The first source is the Formula 1 website, and the second source is data.world. Both sources are highly reliable, and the data from these sites have been used as part of Kaggle competitions in the past. Four csv files named circuits, constructors, drivers and driverGrid are available on this page. The data can be used for a range of beneficial outcomes, such as exploratory data analysis, back-end database building or for creating an application.

    I wish you all the best in your learning journey!

  17. c

    Data from: Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 -...

    • s.cnmilf.com
    • data.usgs.gov
    • +2more
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/variable-terrestrial-gps-telemetry-detection-rates-parts-1-7data
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Studies utilizing Global Positioning System (GPS) telemetry rarely result in 100% fix success rates (FSR). Many assessments of wildlife resource use do not account for missing data, either assuming data loss is random or because a lack of practical treatment for systematic data loss. Several studies have explored how the environment, technological features, and animal behavior influence rates of missing data in GPS telemetry, but previous spatially explicit models developed to correct for sampling bias have been specified to small study areas, on a small range of data loss, or to be species-specific, limiting their general utility. Here we explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use. We also evaluate patterns in missing data that relate to potential animal activities that change the orientation of the antennae and characterize home-range probability of GPS detection for 4 focal species; cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Part 1, Positive Openness Raster (raster dataset): Openness is an angular measure of the relationship between surface relief and horizontal distance. For angles less than 90 degrees it is equivalent to the internal angle of a cone with its apex at a DEM _location, and is constrained by neighboring elevations within a specified radial distance. 480 meter search radius was used for this calculation of positive openness. Openness incorporates the terrain line-of-sight or viewshed concept and is calculated from multiple zenith and nadir angles-here along eight azimuths. Positive openness measures openness above the surface, with high values for convex forms and low values for concave forms (Yokoyama et al. 2002). We calculated positive openness using a custom python script, following the methods of Yokoyama et. al (2002) using a USGS National Elevation Dataset as input. Part 2, Northern Arizona GPS Test Collar (csv): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. The model training data are provided here for fix attempts by hour. This table can be linked with the site _location shapefile using the site field. Part 3, Probability Raster (raster dataset): Bias correction in GPS telemetry datasets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix aquistion. We found terrain exposure and tall overstory vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The models predictive ability was evaluated using two independent datasets from stationary test collars of different make/model, fix interval programing, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. We evaluated GPS telemetry datasets by comparing the mean probability of a successful GPS fix across study animals home-ranges, to the actual observed FSR of GPS downloaded deployed collars on cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Comparing the mean probability of acquisition within study animals home-ranges and observed FSRs of GPS downloaded collars resulted in a approximatly 1:1 linear relationship with an r-sq= 0.68. Part 4, GPS Test Collar Sites (shapefile): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. Part 5, Cougar Home Ranges (shapefile): Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar as a means for evaluating if characteristics of an animal’s home-range have an effect on observed FSR. We estimated home-ranges using the Local Convex Hull (LoCoH) method using the 90th isopleth. Data obtained from GPS download of retrieved units were only used. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose as additional 10% of data. Comparisons with home-range mean probability of fix were also used as a reference for assessing if the frequency animals use areas of low GPS acquisition rates may play a role in observed FSRs. Part 6, Cougar Fix Success Rate by Hour (csv): Cougar GPS collar fix success varied by hour-of-day suggesting circadian rhythms with bouts of rest during daylight hours may change the orientation of the GPS receiver affecting the ability to acquire fixes. Raw data of overall fix success rates (FSR) and FSR by hour were used to predict relative reductions in FSR. Data only includes direct GPS download datasets. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose approximately an additional 10% of data. Part 7, Openness Python Script version 2.0: This python script was used to calculate positive openness using a 30 meter digital elevation model for a large geographic area in Arizona, California, Nevada and Utah. A scientific research project used the script to explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use.

  18. Customer Satisfaction Scores and Behavior Data

    • kaggle.com
    zip
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salahuddin Ahmed (2025). Customer Satisfaction Scores and Behavior Data [Dataset]. https://www.kaggle.com/datasets/salahuddinahmedshuvo/customer-satisfaction-scores-and-behavior-data/discussion
    Explore at:
    zip(2456 bytes)Available download formats
    Dataset updated
    Apr 6, 2025
    Authors
    Salahuddin Ahmed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains customer satisfaction scores collected from a survey, alongside key demographic and behavioral data. It includes variables such as customer age, gender, location, purchase history, support contact status, loyalty level, and satisfaction factors. The dataset is designed to help analyze customer satisfaction, identify trends, and develop insights that can drive business decisions.

    File Information: File Name: customer_satisfaction_data.csv (or your specific file name)

    File Type: CSV (or the actual file format you are using)

    Number of Rows: 120

    Number of Columns: 10

    Column Names:

    Customer_ID – Unique identifier for each customer (e.g., 81-237-4704)

    Group – The group to which the customer belongs (A or B)

    Satisfaction_Score – Customer's satisfaction score on a scale of 1-10

    Age – Age of the customer

    Gender – Gender of the customer (Male, Female)

    Location – Customer's location (e.g., Phoenix.AZ, Los Angeles.CA)

    Purchase_History – Whether the customer has made a purchase (Yes or No)

    Support_Contacted – Whether the customer has contacted support (Yes or No)

    Loyalty_Level – Customer's loyalty level (Low, Medium, High)

    Satisfaction_Factor – Primary factor contributing to customer satisfaction (e.g., Price, Product Quality)

    Statistical Analyses:

    Descriptive Statistics:

    Calculate mean, median, mode, standard deviation, and range for key numerical variables (e.g., Satisfaction Score, Age).

    Summarize categorical variables (e.g., Gender, Loyalty Level, Purchase History) with frequency distributions and percentages.

    Two-Sample t-Test (Independent t-test):

    Compare the mean satisfaction scores between two independent groups (e.g., Group A vs. Group B) to determine if there is a significant difference in their average satisfaction scores.

    Paired t-Test:

    If there are two related measurements (e.g., satisfaction scores before and after a certain event), you can compare the means using a paired t-test.

    One-Way ANOVA (Analysis of Variance):

    Test if there are significant differences in mean satisfaction scores across more than two groups (e.g., comparing the mean satisfaction score across different Loyalty Levels).

    Chi-Square Test for Independence:

    Examine the relationship between two categorical variables (e.g., Gender vs. Purchase History or Loyalty Level vs. Support Contacted) to determine if there’s a significant association.

    Mann-Whitney U Test:

    For non-normally distributed data, use this test to compare satisfaction scores between two independent groups (e.g., Group A vs. Group B) to see if their distributions differ significantly.

    Kruskal-Wallis Test:

    Similar to ANOVA, but used for non-normally distributed data. This test can compare the median satisfaction scores across multiple groups (e.g., comparing satisfaction scores across Loyalty Levels or Satisfaction Factors).

    Spearman’s Rank Correlation:

    Test for a monotonic relationship between two ordinal or continuous variables (e.g., Age vs. Satisfaction Score or Satisfaction Score vs. Loyalty Level).

    Regression Analysis:

    Linear Regression: Model the relationship between a continuous dependent variable (e.g., Satisfaction Score) and independent variables (e.g., Age, Gender, Loyalty Level).

    Logistic Regression: If analyzing binary outcomes (e.g., Purchase History or Support Contacted), you could model the probability of an outcome based on predictors.

    Factor Analysis:

    To identify underlying patterns or groups in customer behavior or satisfaction factors, you can apply Factor Analysis to reduce the dimensionality of the dataset and group similar variables.

    Cluster Analysis:

    Use K-Means Clustering or Hierarchical Clustering to group customers based on similarity in their satisfaction scores and other features (e.g., Loyalty Level, Purchase History).

    Confidence Intervals:

    Calculate confidence intervals for the mean of satisfaction scores or any other metric to estimate the range in which the true population mean might lie.

  19. a

    Annual Average Temperature Change - Projections (12km)

    • hub.arcgis.com
    • climatedataportal.metoffice.gov.uk
    • +1more
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Annual Average Temperature Change - Projections (12km) [Dataset]. https://hub.arcgis.com/datasets/cf8f426fffde4956af27a38857cd55b9
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Met Office
    Area covered
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.13°C.]What does the data show? This dataset shows the change in annual temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Note, as the values in this dataset are averaged over a year they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare annual average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.

    PeriodDescription 1981-2000 baselineAverage temperature (°C) for the period 2001-2020 (recent past)Average temperature (°C) for the period 2001-2020 (recent past) changeTemperature change (°C) relative to 1981-2000 1.5°C global warming level changeTemperature change (°C) relative to 1981-2000 2°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-2000 3°C global warming level changeTemperature change (°C) relative to 1981-2000 4°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Annual Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for the 1981-2000 baseline, 2001-2020 period and each warming level. They are named 'tas annual change' (change in air 'temperature at surface'), the warming level or historic time period, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas annual change 2.0 median' is the median value for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas annual change 2.0 median' is named 'tas_annual_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas annual change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  20. r

    Data from: Analysis of the Scalar and Vector Random Coupling Models For a...

    • researchdata.se
    • demo.researchdata.se
    • +2more
    Updated Dec 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ekaterina Deriushkina (2023). Analysis of the Scalar and Vector Random Coupling Models For a Four Coupled-Core Fiber [Dataset]. http://doi.org/10.5281/zenodo.7895952
    Explore at:
    Dataset updated
    Dec 9, 2023
    Dataset provided by
    Chalmers University of Technology
    Authors
    Ekaterina Deriushkina
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The files with simulation results for ECOC 20223 submission "Analysis of the Scalar and Vector Random Coupling Models For a Four Coupled-Core Fiber". "4CCF_eigenvectorsPol" file is the Mathematica code which enables to calculate supermodes (eigenvectors of M(w)) and their propagation constants of 4-coupled-core fiber (4CCF). These results are uploaded to the python notebook "4CCF_modelingECOC" in order to plot them to get Fig. 2 in the paper. "TransferMatrix" is the python file with functions used for modeling, simulation and plotting. It is also uploaded in the python notebook "4CCF_modelingECOC", where all the calculations for figures in the paper are presented.

    ! UPD 25.09.2023: There is an error in the formula of birefringence calculation. It is in the function "CouplingCoefficients" in "TransferMatrix" file. There the variable "birefringence" has to be calculated according to the formula (19) [A. Ankiewicz, A. Snyder, and X.-H. Zheng, "Coupling between parallel optical fiber cores–critical examination", Journal of Lightwave Technology, vol. 4, no. 9,pp. 1317–1323, 1986]: (4*U**2*W*spec.k0(W)*spec.kn(2, W_)/(spec.k1(W)*V**4))*((spec.iv(1, W)/spec.k1(W))-(spec.iv(2, W)/spec.k0(W))) The correct formula gives almost the same result (the difference is 10^-5), but one has to use a correct formula anyway. ! UPD 9.12.2023: I have noticed that in the published version of the code I forgot to change the wavelength range for impulse response calculation. So instead of seeing the nice shape as in the paper you will see resolution limited shape. To solve that just change the range of wavelengths, you can add "wl = [1545e-9, 1548e-9]" in the first cell after "Total power impulse response". P.s. In case of any questions or suggestions you are welcome to write me an email ekader@chalmers.se

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
DeepMind (2019). Mathematics Dataset [Dataset]. https://github.com/Wikidepia/mathematics_dataset_id
Organization logo

Mathematics Dataset

Related Article
Explore at:
Dataset updated
Apr 3, 2019
Dataset provided by
DeepMindhttp://deepmind.com/
Description

This dataset consists of mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models.

## Example questions

 Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
 Answer: 4
 
 Question: Calculate -841880142.544 + 411127.
 Answer: -841469015.544
 
 Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).
 Answer: 54*a - 30

It contains 2 million (question, answer) pairs per module, with questions limited to 160 characters in length, and answers to 30 characters in length. Note the training data for each question type is split into "train-easy", "train-medium", and "train-hard". This allows training models via a curriculum. The data can also be mixed together uniformly from these training datasets to obtain the results reported in the paper. Categories:

  • algebra (linear equations, polynomial roots, sequences)
  • arithmetic (pairwise operations and mixed expressions, surds)
  • calculus (differentiation)
  • comparison (closest numbers, pairwise comparisons, sorting)
  • measurement (conversion, working with time)
  • numbers (base conversion, remainders, common divisors and multiples, primality, place value, rounding numbers)
  • polynomials (addition, simplification, composition, evaluating, expansion)
  • probability (sampling without replacement)
Search
Clear search
Close search
Google apps
Main menu