18 datasets found
  1. f

    Median, interquartile range (IQR) and significance level of the difference...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Gilgien; Philip Crivelli; Jörg Spörri; Josef Kröll; Erich Müller (2023). Median, interquartile range (IQR) and significance level of the difference between discipline medians and distributions for all parameters, and percentage of DH for GS and SG. [Dataset]. http://doi.org/10.1371/journal.pone.0118119.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Matthias Gilgien; Philip Crivelli; Jörg Spörri; Josef Kröll; Erich Müller
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DH represents 100% for the relative measure. Differences between medians and distributions were significant between all disciplines if indicated with * and were significantly different between GS and SG when marked with 1, significantly different between GS and DH if marked with 2 and significantly different between SG and DH if marked with 3. If no parameter was significantly different the column is empty. Columns marked with—indicate that the measure was not calculated.Median, interquartile range (IQR) and significance level of the difference between discipline medians and distributions for all parameters, and percentage of DH for GS and SG.

  2. Simulation Data Set

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Simulation Data Set [Dataset]. https://catalog.data.gov/dataset/simulation-data-set
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  3. Gender, Age, and Emotion Detection from Voice

    • kaggle.com
    Updated May 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohit Zaman (2021). Gender, Age, and Emotion Detection from Voice [Dataset]. https://www.kaggle.com/datasets/rohitzaman/gender-age-and-emotion-detection-from-voice/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 29, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rohit Zaman
    Description

    Context

    Our target was to predict gender, age and emotion from audio. We found audio labeled datasets on Mozilla and RAVDESS. So by using R programming language 20 statistical features were extracted and then after adding the labels these datasets were formed. Audio files were collected from "Mozilla Common Voice" and “Ryerson AudioVisual Database of Emotional Speech and Song (RAVDESS)”.

    Content

    Datasets contains 20 feature columns and 1 column for denoting the label. The 20 statistical features were extracted through the Frequency Spectrum Analysis using R programming Language. They are: 1) meanfreq - The mean frequency (in kHz) is a pitch measure, that assesses the center of the distribution of power across frequencies. 2) sd - The standard deviation of frequency is a statistical measure that describes a dataset’s dispersion relative to its mean and is calculated as the variance’s square root. 3) median - The median frequency (in kHz) is the middle number in the sorted, ascending, or descending list of numbers. 4) Q25 - The first quartile (in kHz), referred to as Q1, is the median of the lower half of the data set. This means that about 25 percent of the data set numbers are below Q1, and about 75 percent are above Q1. 5) Q75 - The third quartile (in kHz), referred to as Q3, is the central point between the median and the highest distributions. 6) IQR - The interquartile range (in kHz) is a measure of statistical dispersion, equal to the difference between 75th and 25th percentiles or between upper and lower quartiles. 7) skew - The skewness is the degree of distortion from the normal distribution. It measures the lack of symmetry in the data distribution. 8) kurt - The kurtosis is a statistical measure that determines how much the tails of distribution vary from the tails of a normal distribution. It is actually the measure of outliers present in the data distribution. 9) sp.ent - The spectral entropy is a measure of signal irregularity that sums up the normalized signal’s spectral power. 10) sfm - The spectral flatness or tonality coefficient, also known as Wiener entropy, is a measure used for digital signal processing to characterize an audio spectrum. Spectral flatness is usually measured in decibels, which, instead of being noise-like, offers a way to calculate how tone-like a sound is. 11) mode - The mode frequency is the most frequently observed value in a data set. 12) centroid - The spectral centroid is a metric used to describe a spectrum in digital signal processing. It means where the spectrum’s center of mass is centered. 13) meanfun - The meanfun is the average of the fundamental frequency measured across the acoustic signal. 14) minfun - The minfun is the minimum fundamental frequency measured across the acoustic signal 15) maxfun - The maxfun is the maximum fundamental frequency measured across the acoustic signal. 16) meandom - The meandom is the average of dominant frequency measured across the acoustic signal. 17) mindom - The mindom is the minimum of dominant frequency measured across the acoustic signal. 18) maxdom - The maxdom is the maximum of dominant frequency measured across the acoustic signal 19) dfrange - The dfrange is the range of dominant frequency measured across the acoustic signal. 20) modindx - the modindx is the modulation index, which calculates the degree of frequency modulation expressed numerically as the ratio of the frequency deviation to the frequency of the modulating signal for a pure tone modulation.

    Acknowledgements

    Gender and Age Audio Data Souce: Link: https://commonvoice.mozilla.org/en Emotion Audio Data Souce: Link : https://smartlaboratory.org/ravdess/

  4. Perturbed Synthetic SWOT Datasets for Testing and Development of a Kalman...

    • zenodo.org
    zip
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Siqi Ke; Siqi Ke; Mohammad J. Tourian; Mohammad J. Tourian; Renato Prata de Moraes Frasson; Renato Prata de Moraes Frasson (2025). Perturbed Synthetic SWOT Datasets for Testing and Development of a Kalman Filter Approach to Estimate Daily Discharge [Dataset]. http://doi.org/10.5281/zenodo.15482735
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Siqi Ke; Siqi Ke; Mohammad J. Tourian; Mohammad J. Tourian; Renato Prata de Moraes Frasson; Renato Prata de Moraes Frasson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1. Introduction

    Datasets are used to evaluate the performance of a Kalman filter approach to estimate daily discharge. This is a perturbed version of synthetic SWOT datasets consisting of 15 river sections, which are commonly agreed datasets for evaluating the performance of SWOT discharge algorithms (Frasson et al., 2020, 2021). The benchmarking manuscript entitled “A Kalman Filter Approach for Estimating Daily Discharge Using Space-based Discharge Estimates” is currently under review at Water Resources Research. Once the manuscript is accepted, its DOI will be included here.

    2. File description

    The datasets are generally divided into two categories: river information (River_Info) and time series data (Timeseries_Data). River information provides fundamental and general river characteristics, whereas time series data offers daily reach-averaged data for each reach. In time series data, the data mainly contains three components: true data, perturbed measurements, and true and perturbed flow law parameters (A0, an, and b). For each reach, there are 10000 realizations of perturbed measurements per time step and there are 100 realizations of time-invariant perturbed flow law parameters through a Monte Carlo simulation (Frasson et al., 2023). Moreover, to support our proposed Kalman filter approach to estimate daily discharge, the datasets provide the median of the perturbed discharge, river width, water surface slope, and change in the cross-sectional area, as well as the uncertainty of the perturbed discharge and change in the cross-sectional area based on the interquartile range (Fox, 2015).

    To support reproducibility and facilitate example usage, we now include a MATLAB code package (KalmanFilter_Code.zip) that demonstrates how to run the Kalman filter approach using the Missouri Downstream case as an example.

    Datasets are contained in a .mat file per river. The detailed groups and variables are in the following:

    River_Info

    Name: River name, data type: char

    QWBM: Mean annual discharge from the water balance model WBMsed (Cohen et al., 2014)

    rch_bnd: Reach boundaries measured in meters from the upstream end of the model

    gdrch: Good reaches in the study. They were used to exclude small reaches defined around low-head dams and other obstacles where Manning’s equation should not be applied.

    Timeseries_Data

    t: Time measured in days since the first day or “0-January-0000” for cases when specific dates were available. Dimension: 1, time step.

    A: Reach-averaged cross-sectional area of flow in m2. Dimension: Reach, time step.

    Q_true: True reach-averaged discharge (m3/s). Dimension: Reach, time step.

    Q_ptb: Perturbed discharge (m3/s), including 10000 realizations for each measurement. Dimension: Good reach, time step, 10000.

    med_Q_ptb: Median perturbed discharge (m3/s) across the 10000 realizations. Dimension: Good reach, time step.

    sigma_Q_ptb: Uncertainty of the perturbed discharge (m3/s), calculated based on the interquartile range. Dimension: Good reach, time step.

    W_true: True reach-averaged river width (m). Dimension: Reach, time step.

    W_ptb: Perturbed river width (m), including 10000 realizations for each measurement. Dimension: Good reach, time step, 10000.

    med_W_ptb: Median perturbed river width (m) across the 10000 realizations. Dimension: Good reach, time step.

    H_true: True reach-averaged water surface elevation (m). Dimension: Reach, time step.

    H_ptb: Perturbed water surface elevation (m), including 10000 realizations for each measurement. Dimension: Good reach, time step, 10000.

    S_true: True reach-averaged water surface slope (m/m). Dimension: Reach, time step.

    S_ptb: Perturbed water surface slope (m/m), including 10000 realizations for each measurement. Dimension: Good reach, time step, 10000.

    med_S_ptb: Median perturbed water surface slope (m/m) across the 10000 realizations. Dimension: Good reach, time step.

    dA_true: True reach-averaged change in the cross-sectional area (m2). Dimension: Good reach, time step.

    dA_ptb: Perturbed change in the cross-sectional area (m2), including 10000 realizations for each measurement. Dimension: Good reach, time step, 10000.

    med_dA_ptb: Median perturbed change in the cross-sectional area (m2) across the 10000 realizations. Dimension: Good reach, time step.

    sigma_dA_ptb: Uncertainty of the perturbed change in the cross-sectional area (m2), calculated based on the interquartile range. Dimension: Good reach, time step.

    A0_true: True baseline cross-sectional area (m2). Dimension: Good reach, 1.

    A0: Perturbed baseline cross-sectional area (m2), including 100 realizations for each parameter. Dimension: Good reach, 100.

    na_true: True friction coefficient. Dimension: Good reach, 1.

    na: Perturbed friction coefficient, including 100 realizations for each parameter. Dimension: Good reach, 100.

    b_true: True exponent coefficient. Dimension: Good reach, 1.

    b: Perturbed exponent coefficient, including 100 realizations for each parameter. Dimension: Good reach, 100.

  5. f

    Descriptive statistics of the 2 datasets with mean, standard deviation (SD),...

    • plos.figshare.com
    xls
    Updated Jun 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Achim Langenbucher; Nóra Szentmáry; Alan Cayless; Jascha Wendelstein; Peter Hoffmann (2023). Descriptive statistics of the 2 datasets with mean, standard deviation (SD), median, the lower (quantile 2.5%) and upper (quantile 97.5%) boundary of the 95% confidence interval, and the interquartile range IQR (quartile 75%—quartile 25%). [Dataset]. http://doi.org/10.1371/journal.pone.0282213.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 18, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Achim Langenbucher; Nóra Szentmáry; Alan Cayless; Jascha Wendelstein; Peter Hoffmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AL refers to the axial length, CCT to the central corneal thickness, ACD to the external phakic anterior chamber depth measured from the corneal front apex to the front apex of the crystalline lens, LT to the central thickness of the crystalline lens, R1 and R2 to the corneal radii of curvature for the flat and steep meridians, Rmean to the average of R1 and R2, PIOL to the refractive power of the intraocular lens implant, and SEQ to the spherical equivalent power achieved 5 to 12 weeks after cataract surgery.

  6. g

    Sea-level rise and high tide flooding inundation probability and depth...

    • gimi9.com
    • data.usgs.gov
    • +2more
    Updated Jan 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Sea-level rise and high tide flooding inundation probability and depth statistics at De Soto National Memorial, Florida [Dataset]. https://gimi9.com/dataset/data-gov_sea-level-rise-and-high-tide-flooding-inundation-probability-and-depth-statistics-at-de-so/
    Explore at:
    Dataset updated
    Jan 24, 2024
    Description

    This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s De Soto National Memorial. These datasets were developed using 1-m digital elevation model (DEM) from the 3D Elevation program. This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding thresholds defined by the National oceanic and Atmospheric Administration (NOAA). We estimated the probability of an area being inundated under a given scenario using Monte Carlo simulations with 1,000 iterations. For an individual iteration, each pixel of the DEM was randomly propagated based on the lidar data uncertainty, while the sea-level rise and high tide flooding water level estimates were also propagated based on uncertainty in the estimate (Sweet and others, 2022) and tidal datum transformation, respectively. Moreover, the probability of a pixel being inundated was calculated by summing the binary simulation outputs and dividing by 1,000. Following, probability was binned into the following classes: 1) Unlikely, probability ≤0.33; 2) Likely as not, probability >0.33 and ≤0.66; and 3) Likely, probability >0.66. Finally, depth statistics were only recorded when depth was equal to or greater than 0. We calculated the median depth, 25th percentile, 75th percentile, and interquartile range using all the pixels that met this criterion. When utilizing the depth statistics, it is important to also consider the probability of this pixel being flooded. In other words, the depth layers may show some depth returns, but the pixel may have rarely been inundated for the 1,000 iterations.

  7. c

    Sea-level rise and high tide flooding inundation probability and depth...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Sea-level rise and high tide flooding inundation probability and depth statistics at Big Cypress National Preserve, Florida [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/sea-level-rise-and-high-tide-flooding-inundation-probability-and-depth-statistics-at-big-c
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s Big Cypress National Preserve. For information on the digital elevation model (DEM) source used to develop these datasets refer to the corresponding spatial metadata file (Danielson and others, 2023). This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding thresholds defined by the National Oceanic and Atmospheric Administration (NOAA). We estimated the probability of an area being inundated under a given scenario using Monte Carlo simulations with 1,000 iterations. For an individual iteration, each pixel of the DEM was randomly propagated based on the lidar data uncertainty, while the sea-level rise and high tide flooding water level estimates were also propagated based on uncertainty in the sea-level rise estimate (Sweet and others, 2022) and tidal datum transformation, respectively. Moreover, the probability of a pixel being inundated was calculated by summing the binary simulation outputs and dividing by 1,000. Following, probability was binned into the following classes: 1) Unlikely, probability ≤0.33; 2) Likely as not, probability >0.33 and ≤0.66; and 3) Likely, probability >0.66. Finally, depth statistics were only recorded when depth was equal to or greater than 0. We calculated the median depth, 25th percentile, 75th percentile, and interquartile range using all the pixels that met this criterion. When utilizing the depth statistics, it is important to also consider the probability of this pixel being flooded. In other words, the depth layers may show some depth returns, but the pixel may have rarely been inundated for the 1,000 iterations.

  8. d

    Data from: Testing adaptive hypotheses on the evolution of larval life...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Oct 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christine Ewers-Saucedo; Paula Pappalardo (2019). Testing adaptive hypotheses on the evolution of larval life history in acorn and stalked barnacles [Dataset]. http://doi.org/10.5061/dryad.s8800t9
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 15, 2019
    Dataset provided by
    Dryad
    Authors
    Christine Ewers-Saucedo; Paula Pappalardo
    Time period covered
    2019
    Area covered
    global
    Description

    Larval life history traits and geographic distribution for each thoracican barnacle species used in the study

    The table "finalmergeddata.csv" contains life history and enironmental data as well as the calculated variance (IQR = interquartile range, se = standard error) summarized per species. The table "lifehistory.xls" contains the species-specific larval life history data we extracted from the literature. The first tab, "Taxonomy + larval mode" has one row per species. The taxonomy is taken from WoRMS (www.marinespecies.org). The following two tabs contain information on other larval traits and the known geographic distribution of the barnacle species. In these tabs, each species can occur several times, as we chose to give each reference a separate row. The references are detailed in the datatable_references file. The meaning of all columns is explained in the last tab "METADATA". Detailed references for the data sources are available in the last tab "Data sourc...

  9. d

    Sea-level rise and high tide flooding inundation probability and depth...

    • catalog.data.gov
    • data.usgs.gov
    Updated Sep 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Sea-level rise and high tide flooding inundation probability and depth statistics at Biscayne National Park, Florida [Dataset]. https://catalog.data.gov/dataset/sea-level-rise-and-high-tide-flooding-inundation-probability-and-depth-statistics-at-bisca
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s Biscayne National Park. For information on the digital elevation model (DEM) source used to develop these datasets refer to the corresponding spatial metadata file (Danielson and others, 2023). This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2040 and 2080 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major hight tide flooding thresholds. We estimated the probability of an area being inundated under a given scenario using Monte Carlo simulations with 1,000 iterations. For an individual iteration, each pixel of the DEM was randomly propagated based on the lidar data uncertainty, while the sea-level rise and high tide flooding water level estimates were also propagated based on uncertainty in the estimate (Sweet and others, 2022) and tidal datum transformation. Moreover, the probability of a pixel being inundated was calculated by summing the binary simulation outputs and dividing by 1,000. Following, probability was binned into the following classes: 1) Unlikely, probability ≤0.33; 2) Likely as not, probability >0.33 and ≤0.66; and 3) Likely, probability >0.66. Finally, depth statistics were only recorded when depth was equal to or greater than 0. We calculated the median depth, 25th percentile, 75th percentile, and interquartile range using all the pixels that met this criterion. When utilizing the depth statistics, it is important to also consider the probability of this pixel being flooded. In other words, the depth layers may show some depth returns, but the pixel may have rarely been inundated for the 1,000 iterations.

  10. f

    Median (Interquartile range) absolute percent biasa and mean squared error...

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Benedetti; Robert Platt; Juli Atherton (2023). Median (Interquartile range) absolute percent biasa and mean squared error σ2u as estimated via QUAD or PQL, overall and by data generation parameters. [Dataset]. http://doi.org/10.1371/journal.pone.0084601.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Andrea Benedetti; Robert Platt; Juli Atherton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    a : Median absolute percent bias of σ2u was calculated for each simulation scenario, then summarized across scenarios.b : This is the number of simulation scenarios used to calculate the information.

  11. d

    Data from: Taxonomic and numerical sufficiency in depth- and...

    • datadryad.org
    • search.dataone.org
    zip
    Updated Nov 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Zuschin; Rafal Nawrot; Mathias Harzhauser; Oleg Mandic; Adam Tomašových (2016). Taxonomic and numerical sufficiency in depth- and salinity-controlled marine paleocommunities [Dataset]. http://doi.org/10.5061/dryad.r7s92
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 1, 2016
    Dataset provided by
    Dryad
    Authors
    Martin Zuschin; Rafal Nawrot; Mathias Harzhauser; Oleg Mandic; Adam Tomašových
    Time period covered
    2016
    Description

    Supplementary figure 1Rank abundance distributions for habitats at three taxonomic levelsSuppl_fig_1.pdfSupplementary figure 2Evenness and species richness of the four habitats at three taxonomic levels.Suppl_fig_2.pdfSupplementary figure 3Distribution of p-values from Mantel test for Spearman correlation between dissimilarity matrices representing different taxonomic and numerical levels. A-C, Correlation between taxonomic levels at different numerical resolutions. D-F, Correlation between proportional abundance data and higher levels of numerical transformation. Filled points represent median p-values across 1000 subsampling iterations, empty points are outliers that lie beyond 1.5 times the interquartile range from the upper quartile.Suppl_fig_3.pdfSupplementary figure 4NMDS ordination of a double-standardized subsample of the total dataset comparing individual habitats along the depth- and salinity gradient for species and families using proportional abundances and presence/absence ...

  12. d

    Sea-level rise and high tide flooding inundation probability and depth...

    • catalog.data.gov
    Updated Sep 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Sea-level rise and high tide flooding inundation probability and depth statistics at Dry Tortugas National Park, Florida [Dataset]. https://catalog.data.gov/dataset/sea-level-rise-and-high-tide-flooding-inundation-probability-and-depth-statistics-at-dry-t
    Explore at:
    Dataset updated
    Sep 15, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Dry Tortugas
    Description

    This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s Dry Tortugas National Park. These datasets were developed using digital elevation model (DEM) from National Oceanic and Atmospheric Administration (NOAA). This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding thresholds defined by NOAA. We estimated the probability of an area being inundated under a given scenario using Monte Carlo simulations with 1,000 iterations. For an individual iteration, each pixel of the DEM was randomly propagated based on the lidar data uncertainty, while the sea-level rise and high tide flooding water level estimates were also propagated based on uncertainty in the sea-level rise estimate (Sweet and others, 2022) and tidal datum transformation, respectively. Moreover, the probability of a pixel being inundated was calculated by summing the binary simulation outputs and dividing by 1,000. Following, probability was binned into the following classes: 1) Unlikely, probability ≤0.33; 2) Likely as not, probability >0.33 and ≤0.66; and 3) Likely, probability >0.66. Finally, depth statistics were only recorded when depth was equal to or greater than 0. We calculated the median depth, 25th percentile, 75th percentile, and interquartile range using all the pixels that met this criterion. When utilizing the depth statistics, it is important to also consider the probability of this pixel being flooded. In other words, the depth layers may show some depth returns, but the pixel may have rarely been inundated for the 1,000 iterations.

  13. f

    Performance of bias, precision and accuracy between measured GFR and...

    • figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xun Liu; Xiaoliang Gan; Jinxia Chen; Linsheng Lv; Ming Li; Tanqi Lou (2023). Performance of bias, precision and accuracy between measured GFR and estimated GFR in the validation data set. [Dataset]. http://doi.org/10.1371/journal.pone.0109743.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Xun Liu; Xiaoliang Gan; Jinxia Chen; Linsheng Lv; Ming Li; Tanqi Lou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abbreviations: GFR, glomerular filtration rate; MDRD, Modification of Diet in Renal Disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; CI, confidence interval; IQR, interquartile range.Performance of bias, precision and accuracy between measured GFR and estimated GFR in the validation data set.

  14. f

    Data from: S1 Dataset -

    • plos.figshare.com
    bin
    Updated Aug 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Winnie Kibone; Felix Bongomin; Jerom Okot; Angel Lisa Nansubuga; Lincoln Abraham Tentena; Edbert Bagasha Nuwamanya; Titus Winyi; Whitney Balirwa; Sarah Kiguli; Joseph Baruch Baluku; Anthony Makhoba; Mark Kaddumukasa (2023). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0289546.s001
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 7, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Winnie Kibone; Felix Bongomin; Jerom Okot; Angel Lisa Nansubuga; Lincoln Abraham Tentena; Edbert Bagasha Nuwamanya; Titus Winyi; Whitney Balirwa; Sarah Kiguli; Joseph Baruch Baluku; Anthony Makhoba; Mark Kaddumukasa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundRheumatic and musculoskeletal disorders (RMDs) are associated with cardiovascular diseases (CVDs), with hypertension being the most common. We aimed to determine the prevalence of high blood pressure (HBP), awareness, treatment, and blood pressure control among patients with RMDs seen in a Rheumatology clinic in Uganda.MethodsWe conducted a cross-sectional study at the Rheumatology Clinic of Mulago National Referral Hospital (MNRH), Kampala, Uganda. Socio-demographic, clinical characteristics and anthropometric data were collected. Multivariable logistic regression was performed using STATA 16 to determine factors associated with HBP in patients with RMDs.ResultsA total of 100 participants were enrolled. Of these, majority were female (84%, n = 84) with mean age of 52.1 (standard deviation: 13.8) years and median body mass index of 28 kg/m2 (interquartile range (IQR): 24.8 kg/m2–32.9 kg/m2). The prevalence of HBP was 61% (n = 61, 95% CI: 51.5–70.5), with the majority (77%, n = 47, 95% CI: 66.5–87.6) being aware they had HTN. The prevalence of HTN was 47% (n = 47, 37.2–56.8), and none had it under control. Factors independently associated with HBP were age 46-55years (adjusted prevalence ratio (aPR): 2.5, 95% confidence interval (CI): 1.06–5.95), 56–65 years (aPR: 2.6, 95% CI: 1.09–6.15), >65 years (aPR: 2.5, 95% CI: 1.02–6.00), obesity (aPR: 3.7, 95% CI: 1.79–7.52), overweight (aPR: 2.7, 95% CI: 1.29–5.77).ConclusionThere was a high burden of HBP among people with RMDs in Uganda with poor blood pressure control, associated with high BMI and increasing age. There is a need for further assessment of the RMD specific drivers of HBP and meticulous follow up of patients with RMDs.

  15. Descriptive statistics from the Framingham Heart Study population used in...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sunil Suchindran; David Rivedal; John R. Guyton; Tom Milledge; Xiaoyi Gao; Ashlee Benjamin; Jennifer Rowell; Geoffrey S. Ginsburg; Jeanette J. McCarthy (2023). Descriptive statistics from the Framingham Heart Study population used in the current study. [Dataset]. http://doi.org/10.1371/journal.pgen.1000928.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Sunil Suchindran; David Rivedal; John R. Guyton; Tom Milledge; Xiaoyi Gao; Ashlee Benjamin; Jennifer Rowell; Geoffrey S. Ginsburg; Jeanette J. McCarthy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Framingham
    Description

    Data presented are calculated ignoring familial clustering.*median and interquartile range.

  16. f

    DDSP EMG dataset.xlsx

    • figshare.com
    • commons.datacite.org
    xlsx
    Updated Jul 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    marta Cercone (2019). DDSP EMG dataset.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.8864411.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 14, 2019
    Dataset provided by
    figshare
    Authors
    marta Cercone
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study was performed in accordance with the PHS Policy on Humane Care and Use of Laboratory Animals, federal and state regulations, and was approved by the Institutional Animal Care and Use Committees (IACUC) of Cornell University and the Ethics and Welfare Committee at the Royal Veterinary College.Study design: adult horses were recruited if in good health and following evaluation of the upper airways through endoscopic exam, at rest and during exercise, either overground or on a high-speed treadmill using a wireless videoendoscope. Horses were categorized as “DDSP” affected horses if they presented with exercise-induced intermittent dorsal displacement of the soft palate consistently during multiple (n=3) exercise tests, or “control” horses if they did not experience dorsal displacement of the soft palate during exercise and had no signs compatible with DDSP like palatal instability during exercise, soft palate or sub-epiglottic ulcerations. Horses were instrumented with intramuscular electrodes, in one or both thyro-hyoid muscles for EMG recording, hard wired to a wireless transmitter for remote recording implanted in the cervical area. EMG recordings were then made during an incremental exercise test based on the percentage of maximum heart rate (HRmax). Incremental Exercise Test After surgical instrumentation, each horse performed a 4-step incremental test while recording TH electromyographic activity, heart rate, upper airway videoendoscopy, pharyngeal airway pressures, and gait frequency measurements. Horses were evaluated at exercise intensities corresponding to 50, 80, 90 and 100% of their maximum heart rate with each speed maintained for 1 minute. aryngeal function during the incremental test was recorded using a wireless videoendoscope (Optomed, Les Ulis, France), which was placed into the nasopharynx via the right ventral nasal meatus. Nasopharyngeal pressure was measured using a Teflon catheter (1.3 mm ID, Neoflon) inserted through the left ventral nasal meatus to the level of the left guttural pouch ostium. The catheter was attached to differential pressure transducers (Celesco LCVR, Celesco Transducers Products, Canoga Park, CA, USA) referenced to atmospheric pressure and calibrated from -70 to 70 mmHg. Occurrence of episodes of dorsal displacement of the soft palate was recorded and number of swallows during each exercise trials were counted for each speed interval. EMG recordingEMG data was recorded through a wireless transmitter device implanted subcutaneously. Two different transmitters were used: 1) TR70BB (Telemetry Research Ltd, Auckland, New Zealand) with 12bit A/D conversion resolution, AC coupled amplifier, -3dB point at 1.5Hz, 2KHz sampling frequency (n=5 horses); or 2) ELI (Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria) [23], with 12bit A/D conversion resolution, AC coupled amplifier, amplifier gain 1450, 1KHz sampling frequency (n=4 horses). The EMG signal was transmitted through a receiver (TR70BB) or Bluetooth (ELI) to a data acquisition system (PowerLab 16/30 - ML880/P, ADInstruments, Bella Vista, Australia). The EMG signal was amplified with octal bio-amplifier (Octal Bioamp, ML138, ADInstruments, Bella Vista, Australia) with a bandwidth frequency ranging from 20-1000 Hz (input impedance = 200 MV, common mode rejection ratio = 85 dB, gain = 1000), and transmitted to a personal computer. All EMG and pharyngeal pressure signals were collected at 2000 Hz rate with LabChart 6 software (ADInstruments, Bella Vista, Australia) that allows for real-time monitoring and storage for post-processing and analysis.EMG signal processingElectromyographic signals from the TH muscles were processed using two methods; 1) a classical approach to myoelectrical activity and median frequency and 2) wavelet decomposition. For both methods, the beginning and end of recording segments including twenty consecutive breaths, at the end of each speed interval, were marked with comments in the acquisition software (LabChart). The relationship of EMG activity with phase of the respiratory cycle was determined by comparing pharyngeal pressure waveforms with the raw EMG and time-averaged EMG traces.For the classical approach, in a graphical user interface-based software (LabChart), a sixth-order Butterworth filter was applied (common mode rejection ratio, 90 dB; band pass, 20 to 1,000 Hz), the EMG signal was then amplified, full-wave rectified, and smoothed using a triangular Bartlett window (time constant: 150ms). The digitized area under the time-averaged full-wave rectified EMG signal was calculated to define the raw mean electrical activity (MEA) in mV.s. Median Power Frequency (MF) of the EMG power spectrum was calculated after a Fast Fourier Transformation (1024 points, Hann cosine window processing). For the wavelet decomposition, the whole dataset including comments and comment locations was exported as .mat files for processing in MATLAB R2018a with the Signal Processing Toolbox (The MathWorks Inc, Natick, MA, USA). A custom written automated script based on Hodson-Tole & Wakeling [24] was used to first cut the .mat file into the selected 20 breath segments and subsequently process each segment. A bank of 16 wavelets with time and frequency resolution optimized for EMG was used. The center frequencies of the bank ranged from 6.9 Hz to 804.2 Hz [25]. The intensity was summed (mV2) to a total, and the intensity contribution of each wavelet was calculated across all 20 breaths for each horse, with separate results for each trial date and exercise level (80, 90, 100% of HRmax as well as the period preceding episodes of DDSP). To determine the relevant bandwidths for the analysis, a Fast Fourier transform frequency analysis was performed on the horses unaffected by DDSP from 0 to 1000 Hz in increments of 50Hz and the contribution of each interval was calculated in percent of total spectrum as median and interquartile range. According to the Shannon-Nyquist sampling theorem, the relevant signal is below ½ the sample rate and because we had instrumentation sampling either 1000Hz and 2000Hz we choose to perform the frequency analysis up to 1000Hz. The 0-50Hz interval, mostly stride frequency and background noise, was excluded from further analysis. Of the remaining frequency spectrum, we included all intervals from 50-100Hz to 450-500Hz and excluded the remainder because they contributed with less than 5% to the total amplitude.Data analysisAt the end of each exercise speed interval, twenty consecutive breaths were selected and analyzed as described above. To standardize MEA, MF and mV2 within and between horses and trials, and to control for different electrodes size (i.e. different impedance and area of sampling), data were afterward normalized to 80% of HRmax value (HRmax80), referred to as normalized MEA (nMEA), normalized MF (nMF) and normalized mV2 (nmV2). During the initial processing, it became clear that the TH muscle is inconsistently activated at 50% of HRmax and that speed level was therefore excluded from further analysis. The endoscopy video was reviewed and episodes of palatal displacement were marked with comments. For both the classical approach and wavelet analysis, an EMG segment preceding and concurrent to the DDSP episode was analyzed. If multiple episodes were recorded during the same trial, only the period preceding the first palatal displacement was analyzed. In horses that had both TH muscles implanted, the average between the two sides was used for the analysis. Averaged data from multiple trials were considered for each horse. Descriptive data are expressed as means with standard deviation (SD). Normal distribution of data was assessed using the Kolmogorov-Smirnov test and quantile-quantile (Q-Q) plot. To determine the frequency clusters in the EMG signal, a hierarchical agglomerative dendrogram was applied using the packages Matplotlib, pandas, numpy and scipy in python (version 3.6.6) executed through Spyder (version 3.2.2) and Anaconda Navigator. Based on the frequency analysis, wavelets included in the cluster analysis were 92.4 Hz, 128.5 Hz, 170.4 Hz, 218.1 Hz, 271.5 Hz, 330.6 Hz, 395.4 Hz and 465.9 Hz. The number of frequency clusters was set to two based on maximum acceleration in a scree plot and maximum vertical distance in the dendrogram. For continuous outcome measures (number of swallows, MEA, MF, and mV2) a mixed effect model was fitted to the data to determine the relationship between the outcome variable and relevant fixed effects (breed, sex, age, weight, speed, group) using horse as a random effect. Tukey’s post hoc tests and linear contrasts used as appropriate. Statistical analysis was performed using JMP Pro13 (SAS Institute, Cary, NC, USA). Significance set at P < 0.05 throughout.

  17. Formula prediction error PE (difference of the SEQ measured after cataract...

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Achim Langenbucher; Nóra Szentmáry; Alan Cayless; Jascha Wendelstein; Peter Hoffmann (2023). Formula prediction error PE (difference of the SEQ measured after cataract surgery minus the formula predicted SEQ) for the Hoffer Q (pACD), the Holladay 1 (SF), Haigis (a0/a1/a2), and Castrop formula (C / H / R). [Dataset]. http://doi.org/10.1371/journal.pone.0282213.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Achim Langenbucher; Nóra Szentmáry; Alan Cayless; Jascha Wendelstein; Peter Hoffmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Castrop-Rauxel
    Description

    SD refers to the standard deviation, 2.5% quantile and 97.5% quantile to the lower and upper boundary of the 95% confidence interval, and IQR to the interquartile range as the difference between the 75% and the 25% quantile. Formula constant optimisation was performed to minimise the sum of squared prediction errors PE. Situation A) refers to the ‘classical’ formulae with standard nK/nC values, with situation B) the formula constants and nK/nC in the main part of the formula were varied for optimisation, with situation C) the formula constants and nK/nC in the main part of the formula were varied to minimise for PE and the PE trend error over corneal radius, and with situation D) a standard optimisation was performed using the nK/nC value from situation B) derived from the other dataset in terms of a cross-validation.

  18. Baseline and clinical characteristics of the Parkinson’s disease patients (n...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seyed-Mohammad Fereshtehnejad; Mahdiyeh Shafieesabet; Farzaneh Farhadi; Hasti Hadizadeh; Arash Rahmani; Nader Naderi; Dena Khaefpanah; Gholam Ali Shahidi; Ahmad Delbari; Johan Lökk (2023). Baseline and clinical characteristics of the Parkinson’s disease patients (n = 157). [Dataset]. http://doi.org/10.1371/journal.pone.0137081.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Seyed-Mohammad Fereshtehnejad; Mahdiyeh Shafieesabet; Farzaneh Farhadi; Hasti Hadizadeh; Arash Rahmani; Nader Naderi; Dena Khaefpanah; Gholam Ali Shahidi; Ahmad Delbari; Johan Lökk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SD: standard deviation; IQR: interquartile range; PIGD: postural-instability-gait-difficulty; FOSS: freezing-speech-swallowing1 Score A is the sum of UPDRS-Part III items concerning facial expression, tremor, rigidity, and Bradykinesia which are considered relatively L-dopa responsive2 Score B is the sum of UPDRS-Part III items concerning speech and axial impairment (arising from chair, posture, postural stability, gait) which are considered relatively L-dopa non-responsive.Baseline and clinical characteristics of the Parkinson’s disease patients (n = 157).

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Matthias Gilgien; Philip Crivelli; Jörg Spörri; Josef Kröll; Erich Müller (2023). Median, interquartile range (IQR) and significance level of the difference between discipline medians and distributions for all parameters, and percentage of DH for GS and SG. [Dataset]. http://doi.org/10.1371/journal.pone.0118119.t001

Median, interquartile range (IQR) and significance level of the difference between discipline medians and distributions for all parameters, and percentage of DH for GS and SG.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
PLOS ONE
Authors
Matthias Gilgien; Philip Crivelli; Jörg Spörri; Josef Kröll; Erich Müller
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

DH represents 100% for the relative measure. Differences between medians and distributions were significant between all disciplines if indicated with * and were significantly different between GS and SG when marked with 1, significantly different between GS and DH if marked with 2 and significantly different between SG and DH if marked with 3. If no parameter was significantly different the column is empty. Columns marked with—indicate that the measure was not calculated.Median, interquartile range (IQR) and significance level of the difference between discipline medians and distributions for all parameters, and percentage of DH for GS and SG.

Search
Clear search
Close search
Google apps
Main menu