23 datasets found
  1. TopoBathy

    • hub.arcgis.com
    • oceans-esrioceans.hub.arcgis.com
    • +1more
    Updated Apr 11, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). TopoBathy [Dataset]. https://hub.arcgis.com/datasets/c753e5bfadb54d46b69c3e68922483bc
    Explore at:
    Dataset updated
    Apr 11, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This World Elevation TopoBathy service combines topography (land elevation) and bathymetry (water depths) from various authoritative sources from across the globe. Heights are orthometric (sea level = 0), and bathymetric values are negative downward from sea level. The source data of land elevation in this service is same as in the Terrain layer. When possible, the water areas are represented by the best available bathymetry. Height/Depth units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select additional functions, applied on the server, that return rendered data. For visualizations such as hillshade or elevation tinted hillshade, consider using the appropriate server-side function defined on this service. Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns. NOTE: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the max extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percentage Hillshade Multi-Directional Hillshade Elevation Tinted HillshadeSlope MapMosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 is included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request. This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks. Disclaimer: Bathymetry data sources are not to be used for navigation/safety at sea.

  2. Terrain - Slope Degrees

    • opendata.rcmrd.org
    • cacgeoportal.com
    • +1more
    Updated Apr 11, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Terrain - Slope Degrees [Dataset]. https://opendata.rcmrd.org/datasets/af25a795273440deb449b336543602be
    Explore at:
    Dataset updated
    Apr 11, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer provides slope values in degrees calculated dynamically from the elevation data (within the current extents) using the server-side slope function applied on the Terrain layer. The values are integer and represent the angle of the downward sloping terrain (0 to 90 degrees). Note: slope is a function of the pixel size of the request, so at smaller scales the slope values are smaller as pixel sizes increase. Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.WARNING: Slope is computed in the projection specified by the client software. The server resamples the elevation data to the requested projection and pixel size and then computes slope. Slope should be requested in a projection that maintains correct scale in x and y directions for the area of interest. Using geographic coordinates will give incorrect results. For the WGS84 Mercator and WGS Web Mercator (auxiliary sphere) projections used by many web applications, a correction factor has been included to correct for latitude-dependent scale changes.What can you do with this layer?Use for Visualization: No. This image service provides numeric values indicating terrain characteristics. Due to the limited range of values, this service is not generally appropriate for visual interpretation, unless the client application applies an additional color map. For use in visualization, use the Terrain: Slope Map. Use for Analysis: Yes. This layer provides numeric values indicating the average slope angle within a raster cell, calculated based on the defined cell size. Cell size has an effect on the slope values. There is a limit of 5000 rows x 5000 columns. For Slope values in Percent, use Terrain - Slope Percent layer.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.

    This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  3. Land Cover Classification (Landsat 8)

    • uneca.africageoportal.com
    Updated Sep 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Land Cover Classification (Landsat 8) [Dataset]. https://uneca.africageoportal.com/content/e732ee81a9c14c238a14df554a8e3225
    Explore at:
    Dataset updated
    Sep 20, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 30 meters.)OutputClassified raster with the same classes as in the National Land Cover Database (NLCD) 2016.Note: The classified raster contains 20 classes based on a modified Anderson Level II classification system as used by the National Land Cover Database.Applicable geographiesThis model is expected to work well in the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 77 percent. The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassCollection 2 Level 2 ImageryCollection 1 Level 1 ImageryPrecisionRecallF1 ScorePrecisionRecallF1 ScoreOpen Water0.960.970.960.950.970.96Perennial Snow/Ice0.860.690.770.490.940.64Developed, Open Space0.510.380.440.430.380.4Developed, Low Intensity0.520.460.490.470.480.47Developed, Medium Intensity0.540.50.520.490.540.51Developed, High Intensity0.670.540.60.550.680.61Barren Land0.760.590.660.60.770.68Deciduous Forest0.740.810.780.780.760.77Evergreen Forest0.770.820.790.80.820.81Mixed Forest0.560.470.510.50.530.51Shrub/Scrub0.820.820.820.840.810.83Herbaceous0.780.740.760.790.770.78Hay/Pasture0.70.740.720.670.750.71Cultivated Crops0.870.910.890.910.90.9Woody Wetlands0.70.680.690.670.680.68Emergent Herbaceous Wetlands0.720.540.620.540.610.57Training dataThis model has been trained on the National Land Cover Database (NLCD) 2016 with the same Landsat 8 scenes that were used to produce the database. Scene IDs for the imagery were available in the metadata of the dataset.Sample resultsHere are a few results from the model.

  4. Data from study: Sixty-seven years of land-use change in southern Costa Rica...

    • zenodo.org
    • explore.openaire.eu
    zip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakan A. Zahawi; Guillermo Duran; Urs Korman; Rakan A. Zahawi; Guillermo Duran; Urs Korman (2020). Data from study: Sixty-seven years of land-use change in southern Costa Rica [Dataset]. http://doi.org/10.5281/zenodo.31893
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rakan A. Zahawi; Guillermo Duran; Urs Korman; Rakan A. Zahawi; Guillermo Duran; Urs Korman
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Costa Rica
    Description

    This is the GIS data and imagery used for analyses in the article
    Sixty-seven years of land-use change in southern Costa Rica by Zahawi
    et al. currently in revision at PLOS One.

    This study required the orthorectification of historic aerial photographs, as well as forest cover mapping and landscape analysis of 320 km2 around the Las Cruces Biological Station in San Vito de Coto Brus, Costa Rica. The imagery and GIS data generated were used to account for forest cover change over five different time periods from 1947 to 2014.

    The datasets supplied include GIS files for:

    • Extent of the study area (shapefile).
    • Forest cover mapped for each time period (geotiff).
    • Imagery of the mosaics generated with the orthorectified historic aerial photographs (geotiff).
    • Age in studied time periods of the current forest patches (shapefile).
    • Connectivity lines inside the studied area (shapefiles).

    All files are in Costa Rica Transverse Mercator 2005 (CRTM05) projected coordinate reference system. For transformation between coordinate systems please refer to http://epsg.io/5367

    Aerial photographs for the years 1947, 1960, 1980 and 1997 were acquired from the Organization for Tropical Studies GIS Lab and the Instituto Geográfico Nacional of Costa Rica. The orthorectification process was done first on the 1997 set of images and used the current 1:50,000 and 1:25,000 Costa Rican cartography to identify geographical reference points. The set of 1997 orthophotos was used as a reference set to orthorectify remaining years with the exception of 1947 images. The orthorectification process and all other geospatial analyses were done on the CRTM05 spatial reference system and the resulting orthophotos had a 2m cell size. The largest Root Mean Square error (RMSE) of the orthorectification of these three time slices of aerial photographs was 15 m.

    Given the lack of information on flight parameters, and the expansive forest coverage in 1947 photographs, images were georeferenced and built into a mosaic using river basins and the few forest clearings that had a similar shape in the 1960 flyover. The 1947 set of images did not cover the whole study area, having empty areas without photographs that represented ˜12.1% of the analysis extent. Nonetheless, these areas were classified as forested given that forest was present in these same areas in the 1960 imagery.

    Forest mapping was done by visual interpretation of orthophotos and Google imagery. The areas were considered forested if tree crowns were easily identified when viewing the images at a scale of 1:10,000. In areas where it was difficult to discern the type of land cover, a scale of 1:5,000 was used. This was done to eliminate agroforestry systems such as shaded coffee areas (with trees planted in rows) or very early stages of forest regeneration from the forest land-cover class. The analysis was done only in areas that were cloud free in the five time slices. This resulted in the elimination of 134 ha (~0.4%) from of the original area outlined above. Polygons were drawn over the different areas using QGIS and were transformed into raster files of 10 m cell size.

  5. d

    Seafloor Slope, 40m - Swains, American Samoaorg.pacioos

    • datadiscoverystudio.org
    xml
    Updated Dec 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Seafloor Slope, 40m - Swains, American Samoaorg.pacioos [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/818e290aff3f4dc980980b4c5caad2f6/html
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Dec 21, 2017
    Area covered
    Description

    Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of change (in degrees) in elevation between neighboring cells derived with the ArcGIS Spatial Analyst extension. This data set is for Swains Island, American Samoa.Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of change (in degrees) in elevation between neighboring cells derived with the ArcGIS Spatial Analyst extension. This data set is for Swains Island, American Samoa.Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of change (in degrees) in elevation between neighboring cells derived with the ArcGIS Spatial Analyst extension. This data set is for Swains Island, American Samoa.Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of change (in degrees) in elevation between neighboring cells derived with the ArcGIS Spatial Analyst extension. This data set is for Swains Island, American Samoa.

  6. USA NLCD Tree Canopy Cover

    • colorado-river-portal.usgs.gov
    • community-climatesolutions.hub.arcgis.com
    • +2more
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA NLCD Tree Canopy Cover [Dataset]. https://colorado-river-portal.usgs.gov/datasets/f2d114f071904e1fa11b4bb215dc08f3
    Explore at:
    Dataset updated
    Jun 22, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The tree canopy layer displays the proportion of the land surface covered by trees for the years 2011 to 2021 from the National Land Cover Database. Source: https://www.mrlc.govPhenomenon Mapped: Proportion of the landscape covered by trees.Time Extent: 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021Units: Percent (of each pixel that is covered by tree canopy)Cell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate Systems: North America Albers Equal Area ConicMosaic Projection: WGS 1984 Web Mercator Auxiliary SphereExtent: CONUS, Southeastern Alaska, Hawaii, Puerto Rico and the US Virgin IslandsSource: Multi-Resolution Land Characteristics ConsortiumPublication Date: April 1, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year changing appearance every year in the lower 48 states from 2011 to 2021. (In Alaska, Hawaii, Puerto Rico and the US Virgin Islands, the animation will only show a change between 2011 and 2016.) To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Alaska, Hawaii, Puerto Rico, and the US Virgin IslandsAt this time Alaska, Hawaii, Puerto Rico, and the US Virgin Islands do not have tree canopy cover for every year in the series like MRLC produced for the Lower 48 states. Furthermore, only a portion of coastal Southeastern Alaska from Kodiak to the Panhandle is available, but not the entire state. Alaska, Hawaii, Puerto Rico, and the US Virgin Islands have data in the series only from 2011 and 2016. Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  7. d

    Allegheny County Hydrology Lines

    • catalog.data.gov
    • data.wprdc.org
    • +4more
    Updated May 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2023). Allegheny County Hydrology Lines [Dataset]. https://catalog.data.gov/dataset/allegheny-county-hydrology-lines-53001
    Explore at:
    Dataset updated
    May 14, 2023
    Dataset provided by
    Allegheny County
    Area covered
    Allegheny County
    Description

    The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams, lakes, ponds, reservoirs and mooring cells. Rivers, Lakes, Ponds, Reservoirs, Hidden Lakes, Reservoirs or Ponds: If greater than 25 feet and less than 30 feet wide, is captured as a double line stream. If greater than 30 feet wide it is captured as a river. Lakes are large standing bodies of water greater than 5 acres in size. Ponds are large standing bodies of water greater than 1 acre and less than 5 acres in size. Polygons are created from Stream edges and River Edges. The Ohio River, Monongahela River and Allegheny River are coded as Major Rivers. All other River and Stream polygons are coded as River. If a stream is less than 25 feet wide it is placed as a single line and coded as a Stream. Both sides of the stream are digitized and coded as a Stream for Streams whose width is greater than 25 feet. River edges are digitized and coded as River. A Drainage Canal is a manmade or channelized hydrographic feature. Drainage Canals are differentiated from streams in that drainage canals have had the sides and/or bottom stabilized to prevent erosion for the predominant length of the feature. Streams may have had some stabilization done, but are primarily in a natural state. Lakes are large standing bodies of water greater than five acres in size. Ponds are large standing bodies of water greater than one acre in size and less than five acres in size. Reservoirs are manmade embankments of water. Included in this definition are both covered and uncovered water tanks. Reservoirs that are greater than one acre in size are digitized. Hidden Streams, Hidden Rivers and Hidden Drainage Canal or Culverts are those areas of drainage where the water flows through a manmade facility such as a culvert. Hydrology Annotation is not being updated but will be preserved. If a drainage feature has been removed, as apparent on the aerial photography, the associated drainage name annotation will be removed. A Mooring Cell is a structure to which tows can tie off while awaiting lockage. They are normally constructed of concrete and steel and are anchored to the river bottom by means of gravity or sheet piling. Mooring Cells do not currently exist in the Allegheny County dataset but will be added. Locks are devices that are used to control flow or access to a hydrologic feature. The edges of the Lock are captured. Dams are devices that are used to hold or delay the natural flow of water. The edges of the Dam are shown. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below. Category: Environment Organization: Allegheny County Department: Geographic Information Systems Group; Department of Administrative Services Temporal Coverage: 2006 Data Notes: Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot Development Notes: Original Lakes and Drainage datasets combined to create this layer. Data was updated as a result of a flyover in the spring of 2004. A database field has been defined for all map features named "Update Year". This database field will define which dataset provided each map feature. Map features from the current map will be set to "2004". The earlier dataset map features the earlier dataset map features used to supplement the area near the county boundary will be set to "1993". All new or modified map data will have the value for "Update Year" set to "2004". Other: none Related Document(s): Data Dictionary (https://docs.google.com/spreadsheets/d/16BWrRkoPtq2ANRkrbG7CrfQk2dUsWRiaS2Ee1mTn7l0/edit?usp=sharing) Frequency - Data Change: As needed Frequency - Publishing: As needed Data Steward Name: Eli Thomas Data Steward Email: gishelp@alleghenycounty.us

  8. Land Cover Vulnerability to Change 2050 - Global

    • climate.esri.ca
    • morocco.africageoportal.com
    • +8more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover Vulnerability to Change 2050 - Global [Dataset]. https://climate.esri.ca/datasets/esri::land-cover-vulnerability-to-change-2050-global/about
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays predictions globally of relative vulnerability to modification by humans by the year 2050. ESA CCI land cover maps from the years 2010 and 2018 were used to create this prediction.Variable mapped: Vulnerability of land cover to anthropogenic change by 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer can be used in analysis, to estimate and compare vulnerability to land cover change globally due to expansion of human activity, by 2050. This layer is useful in ecological planning, helping to prioritize areas for conservation. Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and global) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between proximate countries, use the country level. If mapping larger patterns or vastly separated countries, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasContinentCountryRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil Texture

  9. Land Cover 2050 - Global

    • hub.arcgis.com
    • africageoportal.com
    • +10more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://hub.arcgis.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  10. Land Cover Classification (Sentinel-2)

    • agriculture.africageoportal.com
    • uneca.africageoportal.com
    • +6more
    Updated Feb 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover Classification (Sentinel-2) [Dataset]. https://agriculture.africageoportal.com/content/afd124844ba84da69c2c533d4af10a58
    Explore at:
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics, giving superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 10 meters.)Note: This model is trained to work on Sentinel-2 Imagery datasets which are in WGS 1984 Web Mercator (auxiliary sphere) coordinate system (WKID 3857).OutputClassified raster with the same classes as in Corine Land Cover (CLC) 2018.Applicable geographiesThis model is expected to work well in Europe and the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 82.41% with Level-1C imagery and 84.0% with Level-2A imagery, for CLC class level 2 classification (15 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassLevel-2A ImageryLevel-1C ImageryPrecisionRecallF1 ScorePrecisionRecallF1 ScoreUrban fabric0.810.830.820.820.840.83Industrial, commercial and transport units0.740.650.690.730.660.7Mine, dump and construction sites0.630.520.570.690.550.61Artificial, non-agricultural vegetated areas0.700.460.550.670.470.55Arable land0.860.900.880.860.890.87Permanent crops0.760.730.740.750.710.73Pastures0.750.710.730.740.710.73Heterogeneous agricultural areas0.610.560.580.620.510.56Forests0.880.930.900.880.920.9Scrub and/or herbaceous vegetation associations0.740.690.720.730.670.7Open spaces with little or no vegetation0.870.840.850.850.820.84Inland wetlands0.810.780.800.820.770.79Maritime wetlands0.740.760.750.870.890.88Inland waters0.940.920.930.940.910.92Marine waters0.980.990.980.970.980.98This model has an overall accuracy of 90.79% with Level-2A imagery for CLC class level 1 classification (5 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassPrecisionRecallF1 ScoreArtificial surfaces0.850.810.83Agricultural areas0.900.910.91Forest and semi natural areas0.910.920.92Wetlands0.770.700.73Water bodies0.960.970.96Training dataThis model has been trained on the Corine Land Cover (CLC) 2018 with the same Sentinel 2 scenes that were used to produce the database. Scene IDs for the imagery were available in the metadata of the dataset.Sample resultsHere are a few results from the model. To view more, see this story.

  11. Land Cover 2050 - Country

    • pacificgeoportal.com
    • africageoportal.com
    • +11more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Country [Dataset]. https://www.pacificgeoportal.com/datasets/afeaa714dd8b4553bc92898002abf145
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  12. a

    Land Cover Vulnerability Change 2050 - Country

    • chi-phi-nmcdc.opendata.arcgis.com
    • uneca.africageoportal.com
    • +5more
    Updated May 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Land Cover Vulnerability Change 2050 - Country [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/land-cover-vulnerability-change-2050-country/about
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    Use this country model layer when performing analysis within a single country. This layer displays predictions within each country of relative vulnerability to modification by humans by the year 2050. ESA CCI land cover maps from the years 2010 and 2018 were used to create these predictions.Variable mapped: Vulnerability of land cover to anthropogenic change by 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer can be used in analysis, to estimate and compare vulnerability to land cover change globally due to expansion of human activity, by 2050. This layer is useful in ecological planning, helping to prioritize areas for conservation. Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and global) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between proximate countries, use the country level. If mapping larger patterns or vastly separated countries, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasContinentCountryRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil Texture

  13. T

    Colorado River Basin ensemble median projected April 1st snow water...

    • opendata.utah.gov
    • rise-usbr.opendata.arcgis.com
    • +3more
    application/rdfxml +5
    Updated Jan 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Colorado River Basin ensemble median projected April 1st snow water equivalent change (inches) 1990s 2070s [Dataset]. https://opendata.utah.gov/dataset/Colorado-River-Basin-ensemble-median-projected-Apr/w6xs-4kyd
    Explore at:
    csv, tsv, json, application/rdfxml, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jan 7, 2020
    Area covered
    Colorado River
    Description
    Colorado River Basin ensemble median projected April 1st snow water equivalent change (inches) 1990s 2070s

    Hydroclimate projections are being made available to provide immediate access for the convenience of interested persons.
    Spatial extent: Colorado River Basin
    Spatial resolution: 1/8° or ~ 12 km grid resolution
    Attribute Description:
    1. GRID_CODE: ensemble median projected April 1st snow water equivalent change (inches) 1990s 2070s
    2. POINT_X: longitude value of 1/8° grid cell center
    3. POINT_Y: latitude value of 1/8° grid cell center

  14. Land Cover 2050 - Regional

    • hub.arcgis.com
    • morocco.africageoportal.com
    • +8more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Regional [Dataset]. https://hub.arcgis.com/datasets/ec4d1d1fe03a4e62997a7a9397cf644d
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this regional model layer when performing analysis within a single continent. This layer displays a single global land cover map that is modeled by region for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  15. Land Cover Classification (Landsat 8)

    • hub.arcgis.com
    • morocco.africageoportal.com
    • +6more
    Updated Sep 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Land Cover Classification (Landsat 8) [Dataset]. https://hub.arcgis.com/content/e732ee81a9c14c238a14df554a8e3225
    Explore at:
    Dataset updated
    Sep 20, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 30 meters.)OutputClassified raster with the same classes as in the National Land Cover Database (NLCD) 2016.Note: The classified raster contains 20 classes based on a modified Anderson Level II classification system as used by the National Land Cover Database.Applicable geographiesThis model is expected to work well in the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 77 percent. The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassCollection 2 Level 2 ImageryCollection 1 Level 1 ImageryPrecisionRecallF1 ScorePrecisionRecallF1 ScoreOpen Water0.960.970.960.950.970.96Perennial Snow/Ice0.860.690.770.490.940.64Developed, Open Space0.510.380.440.430.380.4Developed, Low Intensity0.520.460.490.470.480.47Developed, Medium Intensity0.540.50.520.490.540.51Developed, High Intensity0.670.540.60.550.680.61Barren Land0.760.590.660.60.770.68Deciduous Forest0.740.810.780.780.760.77Evergreen Forest0.770.820.790.80.820.81Mixed Forest0.560.470.510.50.530.51Shrub/Scrub0.820.820.820.840.810.83Herbaceous0.780.740.760.790.770.78Hay/Pasture0.70.740.720.670.750.71Cultivated Crops0.870.910.890.910.90.9Woody Wetlands0.70.680.690.670.680.68Emergent Herbaceous Wetlands0.720.540.620.540.610.57Training dataThis model has been trained on the National Land Cover Database (NLCD) 2016 with the same Landsat 8 scenes that were used to produce the database. Scene IDs for the imagery were available in the metadata of the dataset.Sample resultsHere are a few results from the model.

  16. a

    Allegheny County Hydrology Areas

    • openac-alcogis.opendata.arcgis.com
    • data.wprdc.org
    • +4more
    Updated Sep 28, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Allegheny, PA (2015). Allegheny County Hydrology Areas [Dataset]. https://openac-alcogis.opendata.arcgis.com/datasets/9ff3941e47f74c609057cb60f4992852
    Explore at:
    Dataset updated
    Sep 28, 2015
    Dataset authored and provided by
    County of Allegheny, PA
    Area covered
    Description

    The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams, lakes, ponds, reservoirs and mooring cells. Lakes are large standing bodies of water greater than 5 acres in size. Ponds are large standing bodies of water greater than 1 acre and less than 5 acres in size. Polygons are created from Stream edges and River Edges. The Ohio River, Monongahela River and Allegheny River are coded as Major River polygons. All other River and Stream polygons are coded as River. A Drainage Canal is a manmade or channelized hydrographic feature. Drainage Canals are differentiated from streams in that drainage canals have had the sides and/or bottom stabilized to prevent erosion for the predominant length of the feature. Streams may have had some stabilization done, but are primarily in a natural state. Lakes are large standing bodies of water greater than five acres in size. Ponds are large standing bodies of water greater than one acre in size and less than five acres in size. Reservoirs are manmade embankments of water. Included in this definition are both covered and uncovered water tanks. Reservoirs that are greater than one acre in size are digitized. Hidden Streams, Hidden Rivers and Hidden Drainage Canal or Culverts are those areas of drainage where the water flows through a manmade facility such as a culvert. Hydrology Annotation is not being updated but will be preserved. If a drainage feature has been removed, as apparent on the aerial photography, the associated drainage name annotation will be removed. A Mooring Cell is a structure to which tows can tie off while awaiting lockage. They are normally constructed of concrete and steel and are anchored to the river bottom by means of gravity or sheet piling. Mooring Cells do not currently exist in the Allegheny County dataset but will be added. Locks are devices that are used to control flow or access to a hydrologic feature. The edges of the Lock are captured. Dams are devices that are used to hold or delay the natural flow of water. The edges of the Dam are shown.

    If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (https://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (https://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below.

    Category: Environment

    Organization: Allegheny County

    Department: Geographic Information Systems Group; Department of Information Technology

    Temporal Coverage: 2006

    Data Notes:

    Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot

    Development Notes: Original Lakes and Drainage datasets combined to create this layer. Data was updated as a result of a flyover in the spring of 2004. A database field has been defined for all map features named "Update Year". This database field will define which dataset provided each map feature. Map features from the current map will be set to "2004". The earlier dataset map features the earlier dataset map features used to supplement the area near the county boundary will be set to "1993". All new or modified map data will have the value for "Update Year" set to "2004".

    Other: none

    Related Document(s): Data Dictionary (https://docs.google.com/spreadsheets/d/16BWrRkoPtq2ANRkrbG7CrfQk2dUsWRiaS2Ee1mTn7l0/edit?usp=sharing)

    Frequency - Data Change: As needed

    Frequency - Publishing: As needed

    Data Steward Name: Eli Thomas

    Data Steward Email: gishelp@alleghenycounty.us

  17. Global Land Cover Change 2018 to 2050

    • hub.arcgis.com
    • climat.esri.ca
    • +2more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Global Land Cover Change 2018 to 2050 [Dataset]. https://hub.arcgis.com/datasets/91288ee7299b4f328147f9ad8bac617f
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer shows the change in land cover between the 2018 European Space Agency Climate Change Initiative land cover layer (ESA CCI) and projected 2050 land cover from Clark Labs. The focus is on the difference between areas of human modified lands (cropland, urban, artificial surface) between the two periods.Dataset Summary

    Phenomenon mapped: Projected land cover change from 2018 to 2050Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaGlobal Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark Labs and European Space Agency Climate Change InitiativePublication date: April 2021

  18. a

    Global Marine Species Patterns (55km)

    • hub.arcgis.com
    • climate.esri.ca
    • +2more
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MOL_LivingAtlasPublisher (2021). Global Marine Species Patterns (55km) [Dataset]. https://hub.arcgis.com/datasets/bf2862f403b94411ac2428dc9c9bce03
    Explore at:
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    MOL_LivingAtlasPublisher
    Area covered
    Description

    This feature layer shows global patterns of richness and rarity for marine mammals and fishes. Values are summarized within an equal-area grid, with a grid cell area of ~3,025 km2 (approximately 55 km x 55 km in the tropics). This cell size represents the finest resolution at which currently available range map data can be used to accurately infer species presence without further habitat modeling (Hurlbert & Jetz, 2007).Species rarity in this case refers to “average range-size rarity”, also called “range size rarity.” It is the average of the inverse global range sizes of species predicted to occur in a grid cell. Here rarity is expressed as a percentile (1-100%) from low to high.Species richness is the number of species ranges estimated to overlap in each cell. Counts of species by taxa occurring in each grid cell are expressed as a percentile (1-100%) from low to high.Layer attributes include average rarity of marine fish (Species rarity: fish) and mammal (Species rarity: mammals) species, marine fish (Species richness: fish) and mammal (Species richness: mammals) species richness, and average rarity (Species richness: all taxa) and richness (Species richness: all taxa) for both taxonomic groups. All values are expressed as percentiles (1-100%) from low to high.

  19. Terrain Ruggedness Index (TRI)

    • hub.arcgis.com
    • cacgeoportal.com
    • +2more
    Updated Sep 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Terrain Ruggedness Index (TRI) [Dataset]. https://hub.arcgis.com/content/28360713391948af9303c0aeabb45afd
    Explore at:
    Dataset updated
    Sep 27, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    The Terrain Ruggedness Index (TRI) is used to express the amount of elevation difference between adjacent cells of a DEM. This raster function template is used to generate a visual representation of the TRI with your elevation data. The results are interpreted as follows:0-80m is considered to represent a level terrain surface81-116m represents a nearly level surface117-161m represents a slightly rugged surface162-239m represents an intermediately rugged surface240-497m represents a moderately rugged surface498-958m represents a highly rugged surface959-4367m represents an extremely rugged surfaceWhen to use this raster function templateThe main value of this measurement is that it gives a relatively accurate view of the vertical change taking place in the terrain model from cell to cell. The TRI provides data on the relative change in height of the hillslope (rise), such as the side of a canyon.How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual TRI representation of your imagery. This index supports elevation data.References:Raster functionsApplicable geographiesThe index is a standard index which is designed to work globally.

  20. Terrain - Slope Percent

    • hub.arcgis.com
    • cacgeoportal.com
    Updated Oct 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Terrain - Slope Percent [Dataset]. https://hub.arcgis.com/datasets/304e82c39ca14273b41c26f07e692e93
    Explore at:
    Dataset updated
    Oct 4, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer provides slope percent rise values calculated dynamically from the elevation data (within the current extents) using the server-side slope function applied on the Terrain layer. Percent of slope is determined by dividing the amount of elevation change by the amount of horizontal distance covered (sometimes referred to as "the rise divided by the run"), and then multiplying the result by 100. The values range from 0 to essentially infinity. When the slope angle equals 45 degrees, the rise is equal to the run. Expressed as a percentage, the slope of this angle is 100 percent. As the slope approaches vertical (90 degrees), the percentage slope approaches infinity.Units: Percent (%)Update Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.

    WARNING: Slope is computed in the projection specified by the client software. The server resamples the elevation data to the requested projection and pixel size and then computes slope. Slope should be requested in a projection that maintains correct scale in x and y directions for the area of interest. Using geographic coordinates will give incorrect results. For the WGS84 Mercator and WGS Web Mercator (auxiliary sphere) projections used by many web applications, a correction factor has been included to correct for latitude-dependent scale changes.What can you do with this layer?Use for Visualization: No. This image service provides numeric values indicating terrain characteristics. Due to the limited range of values, this service is not generally appropriate for visual interpretation, unless the client application applies an additional color map. Use for Analysis: Yes. This layer provides numeric values indicating slope percent, calculated based on the defined cell size. Cell size has an effect on the slope values. There is a limit of 5000 rows x 5000 columns. For Slope values in degrees, use Terrain - Slope Degrees layer. For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2014). TopoBathy [Dataset]. https://hub.arcgis.com/datasets/c753e5bfadb54d46b69c3e68922483bc
Organization logo

TopoBathy

Explore at:
Dataset updated
Apr 11, 2014
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This World Elevation TopoBathy service combines topography (land elevation) and bathymetry (water depths) from various authoritative sources from across the globe. Heights are orthometric (sea level = 0), and bathymetric values are negative downward from sea level. The source data of land elevation in this service is same as in the Terrain layer. When possible, the water areas are represented by the best available bathymetry. Height/Depth units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select additional functions, applied on the server, that return rendered data. For visualizations such as hillshade or elevation tinted hillshade, consider using the appropriate server-side function defined on this service. Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns. NOTE: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the max extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.

Slope Degrees Slope Percentage Hillshade Multi-Directional Hillshade Elevation Tinted HillshadeSlope MapMosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 is included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request. This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks. Disclaimer: Bathymetry data sources are not to be used for navigation/safety at sea.

Search
Clear search
Close search
Google apps
Main menu