Facebook
TwitterParking citations with latitude / longitude in Mercator map projection which is a variant of Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator and is the de facto standard for Web mapping applications. Additional information about Meractor projections - https://en.wikipedia.org/wiki/Mercator_projection The official EPSG identifier for Web Mercator is EPSG:3857. Additional information on projections can be read here: https://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Projection_basics_the_GIS_professional_needs_to_know For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/
Facebook
TwitterNew Parking Citations dataset here: https://data.lacity.org/Transportation/Parking-Citations/4f5p-udkv/about_data ---Archived as of September 2023--- Parking citations with latitude / longitude (XY) in US Feet coordinates according to the California State Plane Coordinate System - Zone 5 (https://www.conservation.ca.gov/cgs/rgm/state-plane-coordinate-system). For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterThe National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterThe National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterThe National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including April 1 snow water equivalent (SWE), and snow residence time), and stream flow.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterLocal relief is the amount of elevation change (in meters) within a local area. This layer shows local relief within a 6-km neighborhood. Local relief is a useful component for many environmental assessment models, including terrain analysis, because it gives insight into local variation of soil and vegetation characteristics. This local relief layer provides the amount of elevation change (in meters) within a 6-km neighborhood.Dataset SummaryThis layer provides relief values calculated from GMTED elevation data (250-meter resolution). To produce this layer, the GMTED elevation data was projected to World Equidistant Cylindrical. For each cell in that raster, a neighborhood analysis summarized the elevation range in a 6-km circle. Each cell was then assigned a local relief class based on the difference between the highest and lowest elevation values within a 6-km neighborhood. The cells in this layer are not clipped to the coastlines because local relief is measured to the extent of the neighborhood, which allows for analysis of relief along coasts.This layer is provided using the World Web Mercator (Auxiliary Sphere) coordinate system, and the underlying data was projected from World Equidistant Cylindrical to WGS_1984. The latter coordinate system most easily and correctly supports re-projection into any relevant coordinate system needed for analysis, with the least amount of data loss.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterLed by the Massachusetts Executive Office of Energy and Environmental Affairs (EEA), in partnership with Cornell University, U.S. Geological Survey and Tufts University, the Massachusetts Climate and Hydrologic Risk Project (Phase 1) has developed new climate change projections for the Commonwealth. These new temperature and precipitation projections are downscaled for Massachusetts at the HUC8 watershed scale using Global Climate Models (GCMs) and a Stochastic Weather Generator (SWG) developed by Cornell University.
Stochastic weather generators provide a computationally efficient and complementary alternative to direct use of GCMs for investigating water system performance under climate stress. These models are configured based on existing meteorological records (i.e., historical weather) and are then used to generate large ensembles of simulated daily weather records that are similar to but not bound by variability in past observations. Once fit to historical data, model parameters can be systematically altered to produce new traces of weather that exhibit a wide range of change in their distributional characteristics, including the intensity and frequency of average and extreme precipitation, heatwaves, and cold spells.
The Phase 1 SWG was developed, calibrated, and validated across all HUC8 watersheds that intersect with the state of Massachusetts. A set of climate change scenarios for those watersheds were generated that only reflect mechanisms of thermodynamic climate change deemed to be most credible. These thermodynamic climate changes are based on the range of temperature projections produced by a set of downscaled GCMs for the region. The temperature and precipitation projections presented in this dashboard reflect a warming scenario linked to the Representation Concentration Pathway (RCP) 8.5, a comparatively high greenhouse gas emissions scenario.
The statistics presented in this series of map layers are expressed as either a percent change or absolute change (see list of layers with units and definitions below). These changes are referenced to baseline values that are calculated based on the median value across the 50 model ensemble members associated with the 0°C temperature change scenario derived from observational data (1950-2013) from Livneh et al. (2015). The temperature projections derived from the downscaled GCMs for the region, which are used to drive the SGW, are averaged across 30 years and centered on a target decade (i.e., 2030, 2050, 2070). Projections for 2090 are averaged across 20 years.Definitions of climate projection metrics (with units of change):Total Precipitation (% change): The average total precipitation within a calendar year. Maximum Precipitation (% change): The maximum daily precipitation in the entire record. Precipitation Depth – 90th Percentile Storm (% change): The 90th percentile of non-zero precipitation. Precipitation Depth –99th Percentile Storm (% change): The 99th percentile of non-zero precipitation. Consecutive Wet Days (# days): The average number of days that exist within a run of 2 or more wet days. Consecutive Dry Days (# days): The average number of days that exist within a model run of 2 or more dry days. Days above 1 inch (# days): The number of days with precipitation greater than 1 inch. Days above 2 inches (# days): The number of days with precipitation greater than 2 inches.Days above 4 inches (# days): The number of days with precipitation greater than 4 inches.Maximum Temperature (°F): The maximum daily average temperature value in the entire recordAverage Temperature (°F): Daily average temperature.Days below 0 °F (# days): The number of days with temperature below 0 °F.Days below 32 °F (# days): The number of days with temperature below 32 °F.Maximum Duration of Coldwaves (# days): Longest duration of coldwaves in the record, where coldwaves are defined as ten or more consecutive days below 20 °F.Average Duration of Coldwaves (# days): Average duration of coldwaves in the record, where coldwaves are defined as ten or more consecutive days below 20 °F.Number of Coldwave Events (# events): Number of instances with ten or more consecutive days with temperature below 20 °F.Number of Coldstress Events (# events): Number of instances when a 3-day moving average of temperature is less than 32 °F. Days above 100 °F (# days): The number of days with temperature above 100 °F.Days above 95 °F (# days): The number of days with temperature above 95 °F.Days above 90 °F (# days): The number of days with temperature above 90 °F.Maximum Duration of Heatwaves (# days): Longest duration of heatwaves in the record, where heatwaves are defined as three or more consecutive days over 90 °F.Average Duration of Heatwaves (# days): Average duration of heatwaves in the record, where heatwaves are defined as three or more consecutive days over 90 °F.Number of Heatwave Events (# events): Number of instances with three or more consecutive days with temperature over 90 °F.Number of Heatstress Events (# events): Number of instances when a 3-day moving average of temperature is above 86 °F.Cooling Degree Days (# degree-day): Cooling degree days assume that when the outside temperature is below 65°F, we don't need cooling (air-conditioning) to be comfortable. Cooling degree-days are the difference between the daily temperature mean and 65°F. For example, if the temperature mean is 85°F, we subtract 65 from the mean and the result is 20 cooling degree-days for that day. (Definition adapted from National Weather Service).Heating Degree Days (# degree-day): Heating degree-days assume that when the outside temperature is above 65°F, we don't need heating to be comfortable. Heating degree days are the difference between the daily temperature mean and 65°F. For example, if the mean temperature mean is 25°F, we subtract the mean from 65 and the result is 40 heating degree-days for that day. (Definition adapted from National Weather Service).Growing Degree Days (# degree-day): A growing degree day (GDD) is an index used to express crop maturity. The index is computed by subtracting a base temperature of 50°F from the average of the maximum and minimum temperatures for the day. Minimum temperatures less than 50°F are set to 50, and maximum temperatures greater than 86°F are set to 86. These substitutions indicate that no appreciable growth is detected with temperatures lower than 50° or greater than 86°. (Adapted from National Weather Service).Please see additional information related to this project and dataset in the Climate Change Projection Dashboard on the Resilient MA Maps and Data Center webpage.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this country model layer when performing analysis within a single country. This layer displays predictions within each country of relative vulnerability to modification by humans by the year 2050. ESA CCI land cover maps from the years 2010 and 2018 were used to create these predictions. Variable mapped: Vulnerability of land cover to anthropogenic change by 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021Analysis: Optimized for analysis What you can do with this layer? This layer can be used in analysis, to estimate and compare vulnerability to land cover change globally due to expansion of human activity, by 2050. This layer is useful in ecological planning, helping to prioritize areas for conservation. Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See the Living Atlas Imagery Layers Optimized for Analysis Group for a complete list of imagery layers optimized for analysis. Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and global) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between proximate countries, use the country level. If mapping larger patterns or vastly separated countries, use the global or regional extent (depending on your area of interest). Land Cover 2050 - Global Land Cover 2050 - Regional Land Cover 2050 - Country Land Cover Vulnerability to Change 2050 Global Land Cover Vulnerability to Change 2050 Regional Land Cover Vulnerability to Change 2050 Country What these layers model (and what they don’t model) The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many. The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use. Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperature Qualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasContinentCountryRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil Texture
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has projections of VAR in decadal increments from 1950 to 2100 and for three Shared Socioeconomic Pathways (SSPs). The variables included are:Annual total precipitation (inches) Annual highest precipitation total for a single day (inches) Annual highest precipitation total over a 5-day period (inches) Annual highest precipitation total over a 10-day period (inches) Annual total precipitation for all days exceeding the 90th percentile (inches) Annual total precipitation for all days exceeding the 95th percentile (inches) Annual total precipitation for all days exceeding the 99th percentile (inches) This layer uses data from the LOCA2 downscaled climate models for the Contiguous United States. Further processing by the NOAA Technical Support Unit at CICS-NC and Esri are explained below.For each time and SSP, there are minimum, maximum, and mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available in Understanding CRIS Data. The combination of time and geography is available for a weighted ensemble of 16 climate projections. More details on the models included in the ensemble and the weighting methodologies can be found in CRIS Data Preparation. Other climate variables are available from the CRIS website’s Data Gallery page or can be accessed in the table below. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides projected values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesProjected climate threshold values (e.g. Days Over 90°F) were calculated for each year from 2005 to 2100. Additionally, values are available for the modeled history runs from 1951 - 2005. The modeled history and future projections have been merged into a single time series and averaged by decade.Climate ScenariosClimate models use future scenarios of greenhouse gas concentrations and human activities to project overall change. These different scenarios are called the Shared Socioeconomic Pathways (SSPs). Three different SSPs are available here: 2-4.5, 3-7.0, and 5-8.5 (STAR does not have SSP3-7.0). The number before the dash represents a societal behavior scenario. The number after the dash indicates the amount of radiative forcing (watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but SSP 2-4.5 currently aligns with the international targets of the COP-26 agreement. SSP3-7.0 may be the most likely scenario based on current emission trends. SSP5-8.5 acts as a cautionary tale, providing a worst-case scenario if reductions in greenhouse gasses are not undertaken. Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.
Facebook
TwitterParking citations with latitude / longitude in Mercator map projection which is a variant of Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator and is the de facto standard for Web mapping applications. Additional information about Meractor projections - https://en.wikipedia.org/wiki/Mercator_projection The official EPSG identifier for Web Mercator is EPSG:3857. Additional information on projections can be read here: https://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Projection_basics_the_GIS_professional_needs_to_know For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/