70 datasets found
  1. USA Protected Areas - GAP Status Code (Mature Support)

    • hub-lincolninstitute.hub.arcgis.com
    • resilience.climate.gov
    • +2more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Protected Areas - GAP Status Code (Mature Support) [Dataset]. https://hub-lincolninstitute.hub.arcgis.com/datasets/esri::usa-protected-areas-gap-status-code-mature-support-1
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. Provides a general overview of protection status including management designations. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.The USGS Protected Areas Database of the United States (PAD-US) classifies lands into four GAP Status classes:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionIn the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: USGS Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, or 3GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  2. a

    Durham Region Climate Change Projections - RCP 4.5 2040 Scenario

    • jazzyhubs-ontarioregion.opendata.arcgis.com
    • opendata.pickering.ca
    • +5more
    Updated Feb 3, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regional Municipality of Durham (2021). Durham Region Climate Change Projections - RCP 4.5 2040 Scenario [Dataset]. https://jazzyhubs-ontarioregion.opendata.arcgis.com/items/f8dc3e18909c44f1bc173514d55162ab
    Explore at:
    Dataset updated
    Feb 3, 2021
    Dataset authored and provided by
    Regional Municipality of Durham
    License

    https://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdfhttps://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdf

    Description

    This dataset represents future climate change projections for Durham Region developed as part of the Guide to Conducting a Climate Change Analysis: Lessons Learned in Durham Region (2020). The dataset includes summary information for 52 climate parameters under the RCP8.5 (business-as-usual or high emissions) and RCP4.5 (moderate) emissions scenario for the short (2011-2040), medium (2041-2070) and long-term (2071-2100) future using an ensemble of climate models. For more information, visit https://www.durham.ca/en/living-here/climateenergyandresilience.aspx?_mid_=32210. A copy of the Guide can be made available upon request.

  3. Explore Future Climate Projections

    • hub.arcgis.com
    Updated Nov 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2018). Explore Future Climate Projections [Dataset]. https://hub.arcgis.com/documents/048b817d0c9246f8a57d7860999a92d0
    Explore at:
    Dataset updated
    Nov 16, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Although climate change has become a major political topic, most people have never explored climate data or models of possible future climates. The data is often stored in scientific file formats that require specialized software and can seem unintelligible to those unfamiliar with climate terms and concepts. In this lesson, you'll map historical and projected climate data in ArcGIS Pro. You'll learn about climate at both local and global levels, as well as how climate might change in the future. Overall, you'll gain understanding of major climate concepts and familiarity with real climate data.

    In this lesson you will build skills in the these areas:

    • Creating layers and tables from NetCDF files
    • Mapping projected climate scenarios
    • Using Raster Functions

    Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.

  4. d

    Data from: Projections of shoreline change for California due to 21st...

    • catalog.data.gov
    • gimi9.com
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Projections of shoreline change for California due to 21st century sea-level rise [Dataset]. https://catalog.data.gov/dataset/projections-of-shoreline-change-for-california-due-to-21st-century-sea-level-rise
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    This dataset contains projections of shoreline change and uncertainty bands across California for future scenarios of sea-level rise (SLR). Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SDS) observations across the state. Scenarios include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 and 500 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2000. This model shows change in shoreline positions along pre-determined cross-shore transects, considering sea level, wave conditions, along-shore/cross-shore sediment transport, long-term trends due to sediment supply, and estimated variability due to unresolved processes (as described in Vitousek and others, 2021). Variability associated with complex coastal processes (for example, beach cusps/undulations and shore-attached sandbars) are included via a noise parameter in a model, which is tuned using observations of shoreline change at each transect and run in an ensemble of 200 simulations; this approach allows for a representation of statistical variability in a model that is assimilated with sequences of noisy observations. The model synthesizes and improves upon numerous, well-established shoreline models in the scientific literature; processes and methods are described in this metadata (see lineage and process steps), but also described in more detail in Vitousek and others 2017, 2021, and 2023. Output includes different cases covering important model behaviors (cases are described in process steps of this metadata). KMZ data are readily viewable in Google Earth. For best display of results, it is recommended to turn off any 3D features or terrain. For technical users and researchers, shapefile and KMZ data can be ingested into geographic information system (GIS) software such as Global Mapper or QGIS.

  5. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • pacificgeoportal.com
    • geoportal-pacificcore.hub.arcgis.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  6. Bioclimate Projections: (15) Precipitation Seasonality

    • hub.arcgis.com
    • climat.esri.ca
    • +3more
    Updated May 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (15) Precipitation Seasonality [Dataset]. https://hub.arcgis.com/datasets/33558b5fef8642338f33918d498f41cf
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer represents CMIP6 future projections of the variation in monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the monthly total precipitation to the mean monthly total precipitation (also known as the coefficient of variation) and is expressed as a percentage. The larger the percentage, the greater the variability of precipitation. In some regions the CV values exceed 100%. These regions, such as deserts, may have such little rainfall that any variation creates an extreme percentage. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  7. c

    Land Cover 1992-2020

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  8. g

    ARCHIVED: Parking Citations

    • gimi9.com
    • data.lacity.org
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ARCHIVED: Parking Citations [Dataset]. https://www.gimi9.com/dataset/data-gov_parking-citations-0e4fd/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    ---Archived as of September 2023--- Parking citations with latitude / longitude (XY) in US Feet coordinates according to the California State Plane Coordinate System - Zone 5 (https://www.conservation.ca.gov/cgs/rgm/state-plane-coordinate-system). For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/

  9. Land Cover 2050 - Global

    • morocco.africageoportal.com
    • cacgeoportal.com
    • +13more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://morocco.africageoportal.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean, Proliv Longa, Arctic Ocean, Proliv Longa, Bering Sea, South Pacific Ocean
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  10. p

    Pacific Region Land Cover 1992-2020

    • pacificgeoportal.com
    • hub.arcgis.com
    • +1more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2023). Pacific Region Land Cover 1992-2020 [Dataset]. https://www.pacificgeoportal.com/maps/e47019138ce648aab65d425af876dc55
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    Area covered
    Description

    This layer is a subset of Global Landcover 1992- 2020 Layer. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  11. Land Cover 2050 - Country

    • hub.arcgis.com
    • angola.africageoportal.com
    • +13more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Country [Dataset]. https://hub.arcgis.com/datasets/afeaa714dd8b4553bc92898002abf145
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  12. Global Earthquake Archive

    • cacgeoportal.com
    • pacificgeoportal.com
    • +5more
    Updated Dec 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Global Earthquake Archive [Dataset]. https://www.cacgeoportal.com/datasets/79461a1ec0974301bde274177c7108bd_0/explore
    Explore at:
    Dataset updated
    Dec 16, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Ross Sea, Pacific Ocean, North Pacific Ocean, Proliv Longa, Arctic Ocean, Proliv Longa, Bering Sea, South Pacific Ocean
    Description

    The US Geological Survey maintains official records of earthquake activity from around the globe. This layer displays all earthquakes since 1900 with a magnitude 4.0 or greater, and updates once a day. For more recent activity, please see the Recent Earthquakes layer that updates every 5 minutes.

    Data source: original data is accessed here and updated using the OverwriteFS tool in ArcGIS Online. The full documentation for all of the fields can be found on the USGS ComCat site. For more information, please see the USGS PAGER program.RevisionsJune 13, 2022: Updated service with Z Coordinates set to 0 due to limitation on the negative Z value range for online services. This change allows users to support analytics and export for local client consumption. Depth can be leveraged by using the elevation field. Anticipating online enhancements, we set the custom projection to support the change in the Z value range. Refined the schema to improve efficiency. Layer has been Time-Enabled to allow for Time Series display, but disabled by default. Data download has now been enabled.May 5, 2023: Updated service with four duplicated fields to match the Recent Earthquake Service's data schema. Depth, Event Time, Event Type, TZ are the duplicated fields.

    This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to USGS source for official guidance.

  13. a

    Winter Precipitation Change - Projections (12km)

    • climate-themetoffice.hub.arcgis.com
    • climatedataportal.metoffice.gov.uk
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Winter Precipitation Change - Projections (12km) [Dataset]. https://climate-themetoffice.hub.arcgis.com/datasets/c6ddd044fb794315a50709caa463202c
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset authored and provided by
    Met Office
    Area covered
    Description

    [update 28/03/24 - This description previously stated that the the field “2001-2020 (recent past) change” was a percentage change. This field is actually the difference, in units of mm/day. The table below has been updated to reflect this.][Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell but for the fixed periods which are expressed in mm, the average difference between the 'lower' values before and after this update is 0.04mm. For the fixed periods and global warming levels which are expressed as percentage changes, the average difference between the 'lower' values before and after this update is 3.2%.]What does the data show?

    This dataset shows the change in winter precipitation rate for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, winter is defined as December-January-February. Note, as the values in this dataset are averaged over a season they do not represent possible extreme conditions.

    The dataset uses projections of daily precipitation from UKCP18 which are averaged over the winter period to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a percentage change (%) relative to the 1981-2000 value. This enables users to compare winter precipitation trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.

          Period
          Description
    
    
          1981-2000 baseline
          Average value for the period (mm/day)
    
    
          2001-2020 (recent past)
          Average value for the period (mm/day)
    
    
          2001-2020 (recent past) change
          Change (mm/day) relative to 1981-2000
    
    
          1.5°C global warming level change
          Percentage change (%) relative to 1981-2000
    
    
          2°C global warming level change
          Percentage change (%) relative to 1981-2000
    
    
          2.5°C global warming level change
          Percentage change (%) relative to 1981-2000
    
    
          3°C global warming level change
          Percentage change (%) relative to 1981-2000
    
    
          4°C global warming level change
          Percentage change (%) relative to 1981-2000
    

    What is a global warming level?

    The Winter Precipitation Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming.

    The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Winter Precipitation Change, an average is taken across the 21 year period.

    We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.

    What are the naming conventions and how do I explore the data?

    These data contain a field for each warming level and the 1981-2000 baseline. They are named 'pr winter change', the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'pr winter change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'pr winter change 2.0 median' is named 'pr_winter_change_20_median'.

    To understand how to explore the data, refer to the New Users ESRI Storymap.

    Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘pr winter change 2.0°C median’ values.

    What do the 'median', 'upper', and 'lower' values mean?

    Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.

    For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Precipitation Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.

     The ‘lower’ fields are the second lowest ranked ensemble member. 
     The ‘higher’ fields are the second highest ranked ensemble member. 
     The ‘median’ field is the central value of the ensemble.
    

    This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.

    ‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past.

    Useful links

     For further information on the UK Climate Projections (UKCP).
     Further information on understanding climate data within the Met Office Climate Data Portal.
    
  14. a

    Durham Region Climate Change Projections - Baseline Scenario

    • alex-info-hub-ontarioregion.hub.arcgis.com
    • opendata.pickering.ca
    • +6more
    Updated Feb 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regional Municipality of Durham (2021). Durham Region Climate Change Projections - Baseline Scenario [Dataset]. https://alex-info-hub-ontarioregion.hub.arcgis.com/items/d17cb02de58541bfa5192277d6e5d28e
    Explore at:
    Dataset updated
    Feb 3, 2021
    Dataset authored and provided by
    Regional Municipality of Durham
    License

    https://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdfhttps://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdf

    Description

    This dataset represents future climate change projections for Durham Region developed as part of the Guide to Conducting a Climate Change Analysis: Lessons Learned in Durham Region (2020). The dataset includes summary information for 52 climate parameters under the RCP8.5 (business-as-usual or high emissions) and RCP4.5 (moderate) emissions scenario for the short (2011-2040), medium (2041-2070) and long-term (2071-2100) future using an ensemble of climate models. For more information, visit https://www.durham.ca/en/living-here/climateenergyandresilience.aspx?_mid_=32210. A copy of the Guide can be made available upon request.

  15. d

    National Flood Hazard - FIRM Panels

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisville/Jefferson County Information Consortium (2023). National Flood Hazard - FIRM Panels [Dataset]. https://catalog.data.gov/dataset/national-flood-hazard-firm-panels-17159
    Explore at:
    Dataset updated
    Apr 13, 2023
    Dataset provided by
    Louisville/Jefferson County Information Consortium
    Description

    The S_FIRM_Pan table contains information about the FIRM panel area. A spatial file with location information also corresponds with this data table. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. FIRM panels must not overlap or have gaps within a study. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information.Flood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.

  16. GLDAS Change in Storage 2000 - Present

    • hub.arcgis.com
    • cacgeoportal.com
    • +5more
    Updated May 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). GLDAS Change in Storage 2000 - Present [Dataset]. https://hub.arcgis.com/datasets/bbee4194beee4dccb067b426e2ed1640
    Explore at:
    Dataset updated
    May 2, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Calculating the total volume of water stored in a landscape can be challenging. In addition to lakes and reservoirs, water can be stored in soil, snowpack, or even inside plants and animals, and tracking the all these different mediums is not generally possible. However, calculating the change in storage is easy - just subtract the water output from the water input. Using the GLDAS layers we can do this calculation for every month from January 2000 to the present day. The precipitation layer tells us the input to each cell and runoff plus evapotranspiration is the output. When the input is higher than the output during a given month, it means water was stored. When output is higher than input, storage is being depleted. Generally the change in storage should be close to the change in soil moisture content plus the change in snowpack, but it will not match up exactly because of the other storage mediums discussed above.Dataset SummaryThe GLDAS Change in Storage layer is a time-enabled image service that shows net monthly change in storage from 2000 to the present, measured in millimeters of water. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!Phenomenon Mapped: Change in Water StorageUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.By applying the "Calculate Anomaly" raster function, it is possible to view these data in terms of deviation from the mean, instead of total change in storage. Mean change in storage for a given month is calculated over the entire period of record - 2000 to present.Time: This is a time-enabled layer. By default, it will show the first month from the map's time extent. Or, if time animation is disabled, a time range can be set using the layer's multidimensional settings. If you wish to calculate the average, sum, or min/max change in storage over the time extent, change the mosaic operator used to resolve overlapping pixels. In ArcGIS Online, you do this in the "Image Display Order" tab. In ArcGIS Pro, use the "Data" ribbon. In ArcMap, it is in the 'Mosaic' tab of the layer properties window. The minimum time extent is one month, and the maximum is 8 years. Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.

  17. d

    ACE Climate Resilience (Ranks 4 & 5)

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). ACE Climate Resilience (Ranks 4 & 5) [Dataset]. https://catalog.data.gov/dataset/ace-climate-resilience-ranks-4-5-e3b7b
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commission
    Description

    The full dataset comes from CA Department of Fish and Wildlife’s Areas of Conservation Emphasis (ACE) project. ACE Terrestrial Climate Change Resilience incorporates statewide information about lands that have a higher probability of serving as refugia for species adapting to climate change. Based on projections from climate models, this dataset indicates the relative likelihood that an area will experience shifts in temperature, precipitation, or other important climate variables that would negatively impact the current array of plants (and by extension animals) that can thrive under those future conditions. Ranks 4 and 5 are used as an exclusion in the SB 100 Terrestrial Climate Resilience Study Screen. This allows areas of lower climate resilience rank to be considered for exploration of renewable resource technical potential, while keeping areas of higher resilience rank for conservation planning.This layer is featured in the CEC 2023 Land-Use Screens for Electric System Planning data viewer. For more information about this layer and its use in electric system planning, please refer to the Land Use Screens Staff Report in the CEC Energy Planning Library.

  18. u

    GLDAS Precipitation 2000 - Present

    • colorado-river-portal.usgs.gov
    • climate.esri.ca
    • +5more
    Updated Jun 30, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). GLDAS Precipitation 2000 - Present [Dataset]. https://colorado-river-portal.usgs.gov/datasets/d9f5a81ae364451ca62ffab775527ab4
    Explore at:
    Dataset updated
    Jun 30, 2015
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!Phenomenon Mapped: PrecipitationUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.By applying the "Calculate Anomaly" processing template, it is also possible to view these data in terms of deviation from the mean. Mean precipitation for a given month is calculated over the entire period of record - 2000 to present. Time: This is a time-enabled layer. By default, it will show the first month from the map's time extent. Or, if time animation is disabled, a time range can be set using the layer's multidimensional settings. If you wish to calculate the average, sum, or min/max over the time extent, change the mosaic operator used to resolve overlapping pixels. In ArcGIS Online, you do this in the "Image Display Order" tab. In ArcGIS Pro, use the "Data" ribbon. In ArcMap, it is in the 'Mosaic' tab of the layer properties window. If you do this, make sure to also select a specific variable. The minimum time extent is one month, and the maximum is 8 years. Variables: This layer has three variables: total precipitation, rainfall and snowfall. By default total is shown, but you can select a different variable using the multidimensional filter, or by applying the relevant raster function. Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tool.

  19. a

    Durham Region Climate Change Projections - RCP 4.5 2070 Scenario

    • hub.arcgis.com
    • opendata.pickering.ca
    • +5more
    Updated Feb 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regional Municipality of Durham (2021). Durham Region Climate Change Projections - RCP 4.5 2070 Scenario [Dataset]. https://hub.arcgis.com/maps/DurhamRegion::durham-region-climate-change-projections-rcp-4-5-2070-scenario
    Explore at:
    Dataset updated
    Feb 3, 2021
    Dataset authored and provided by
    Regional Municipality of Durham
    License

    https://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdfhttps://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdf

    Area covered
    Description

    This dataset represents future climate change projections for Durham Region developed as part of the Guide to Conducting a Climate Change Analysis: Lessons Learned in Durham Region (2020). The dataset includes summary information for 52 climate parameters under the RCP8.5 (business-as-usual or high emissions) and RCP4.5 (moderate) emissions scenario for the short (2011-2040), medium (2041-2070) and long-term (2071-2100) future using an ensemble of climate models. For more information, visit https://www.durham.ca/en/living-here/climateenergyandresilience.aspx?_mid_=32210. A copy of the Guide can be made available upon request.

  20. a

    Historical and future precipitation trends (Map Service)

    • hub.arcgis.com
    • datasets.ai
    • +7more
    Updated Feb 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Historical and future precipitation trends (Map Service) [Dataset]. https://hub.arcgis.com/documents/6f289e36fb6a41e986159c4be262f3f6
    Explore at:
    Dataset updated
    Feb 21, 2019
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2022). USA Protected Areas - GAP Status Code (Mature Support) [Dataset]. https://hub-lincolninstitute.hub.arcgis.com/datasets/esri::usa-protected-areas-gap-status-code-mature-support-1
Organization logo

USA Protected Areas - GAP Status Code (Mature Support)

Explore at:
Dataset updated
Aug 16, 2022
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. Provides a general overview of protection status including management designations. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.The USGS Protected Areas Database of the United States (PAD-US) classifies lands into four GAP Status classes:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionIn the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: USGS Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, or 3GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

Search
Clear search
Close search
Google apps
Main menu