Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Single Digital View dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Metrics used to give an indication of data quality between our test’s groups. This includes whether documentation was used and what proportion of respondents rounded their answers. Unit and item non-response are also reported.
Facebook
TwitterThis report describes the quality assurance arrangements for the registered provider (RP) Tenant Satisfaction Measures statistics, providing more detail on the regulatory and operational context for data collections which feed these statistics and the safeguards that aim to maximise data quality.
The statistics we publish are based on data collected directly from local authority registered provider (LARPs) and from private registered providers (PRPs) through the Tenant Satisfaction Measures (TSM) return. We use the data collected through these returns extensively as a source of administrative data. The United Kingdom Statistics Authority (UKSA) encourages public bodies to use administrative data for statistical purposes and, as such, we publish these data.
These data are first being published in 2024, following the first collection and publication of the TSM.
In February 2018, the UKSA published the Code of Practice for Statistics. This sets standards for organisations producing and publishing statistics, ensuring quality, trustworthiness and value.
These statistics are drawn from our TSM data collection and are being published for the first time in 2024 as official statistics in development.
Official statistics in development are official statistics that are undergoing development. Over the next year we will review these statistics and consider areas for improvement to guidance, validations, data processing and analysis. We will also seek user feedback with a view to improving these statistics to meet user needs and to explore issues of data quality and consistency.
Until September 2023, ‘official statistics in development’ were called ‘experimental statistics’. Further information can be found on the https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment">Office for Statistics Regulation website.
We are keen to increase the understanding of the data, including the accuracy and reliability, and the value to users. Please https://forms.office.com/e/cetNnYkHfL">complete the form or email feedback, including suggestions for improvements or queries as to the source data or processing to enquiries@rsh.gov.uk.
We intend to publish these statistics in Autumn each year, with the data pre-announced in the release calendar.
All data and additional information (including a list of individuals (if any) with 24 hour pre-release access) are published on our statistics pages.
The data used in the production of these statistics are classed as administrative data. In 2015 the UKSA published a regulatory standard for the quality assurance of administrative data. As part of our compliance to the Code of Practice, and in the context of other statistics published by the UK Government and its agencies, we have determined that the statistics drawn from the TSMs are likely to be categorised as low-quality risk – medium public interest (with a requirement for basic/enhanced assurance).
The publication of these statistics can be considered as medium publi
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Technical Limits dataset. The quality assessment was carried out on the 16th of September 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Long Term Development Statement dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Cloud Data Quality Monitoring and Testing market is poised for robust expansion, projected to reach an estimated market size of USD 15,000 million in 2025, with a remarkable Compound Annual Growth Rate (CAGR) of 18% expected from 2025 to 2033. This significant growth is fueled by the escalating volume of data generated by organizations and the increasing adoption of cloud-based solutions for data management. Businesses are recognizing that reliable data is paramount for informed decision-making, regulatory compliance, and driving competitive advantage. As more critical business processes migrate to the cloud, the imperative to ensure the accuracy, completeness, consistency, and validity of this data becomes a top priority. Consequently, investments in sophisticated monitoring and testing tools are surging, enabling organizations to proactively identify and rectify data quality issues before they impact operations or strategic initiatives. Key drivers propelling this market forward include the growing demand for real-time data analytics, the complexities introduced by multi-cloud and hybrid cloud environments, and the increasing stringency of data privacy regulations. Cloud Data Quality Monitoring and Testing solutions offer enterprises the agility and scalability required to manage vast datasets effectively. The market is segmented by deployment into On-Premises and Cloud-Based solutions, with a clear shift towards cloud-native approaches due to their inherent flexibility and cost-effectiveness. Furthermore, the adoption of these solutions is observed across both Large Enterprises and Small and Medium-sized Enterprises (SMEs), indicating a broad market appeal. Emerging trends such as AI-powered data quality anomaly detection and automated data profiling are further enhancing the capabilities of these platforms, promising to streamline data governance and boost overall data trustworthiness. However, challenges such as the initial cost of implementation and a potential shortage of skilled data quality professionals may temper the growth trajectory in certain segments. Here's a comprehensive report description for Cloud Data Quality Monitoring and Testing, incorporating your specified elements:
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Cloud Data Quality Monitoring and Testing market is experiencing robust growth, driven by the increasing reliance on cloud-based data storage and processing, the burgeoning volume of big data, and the stringent regulatory compliance requirements across various industries. The market's expansion is fueled by the need for real-time data quality assurance, proactive identification of data anomalies, and improved data governance. Businesses are increasingly adopting cloud-based solutions to enhance operational efficiency, reduce infrastructure costs, and improve scalability. This shift is particularly evident in large enterprises, which are investing heavily in advanced data quality management tools to support their complex data landscapes. The growth of SMEs adopting cloud-based solutions also contributes significantly to market expansion. While on-premises solutions still hold a market share, the cloud-based segment is demonstrating a significantly higher growth rate, projected to dominate the market within the forecast period (2025-2033). Despite the positive market outlook, certain challenges hinder growth. These include concerns regarding data security and privacy in cloud environments, the complexity of integrating data quality tools with existing IT infrastructure, and the lack of skilled professionals proficient in cloud data quality management. However, advancements in AI and machine learning are mitigating these challenges, enabling automated data quality checks and anomaly detection, thus streamlining the process and reducing the reliance on manual intervention. The market is segmented geographically, with North America and Europe currently holding significant market shares due to early adoption of cloud technologies and robust regulatory frameworks. However, the Asia Pacific region is projected to experience substantial growth in the coming years due to increasing digitalization and expanding cloud infrastructure investments. This competitive landscape with established players and emerging innovative companies is further shaping the market's evolution and expansion.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Network Development Plan dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitter
According to our latest research, the global Real-Time Data Quality Monitoring AI market size reached USD 1.82 billion in 2024, reflecting robust demand across multiple industries. The market is expected to grow at a CAGR of 19.4% during the forecast period, reaching a projected value of USD 8.78 billion by 2033. This impressive growth trajectory is primarily driven by the increasing need for accurate, actionable data in real time to support digital transformation, compliance, and competitive advantage across sectors. The proliferation of data-intensive applications and the growing complexity of data ecosystems are further fueling the adoption of AI-powered data quality monitoring solutions worldwide.
One of the primary growth factors for the Real-Time Data Quality Monitoring AI market is the exponential increase in data volume and velocity generated by digital business processes, IoT devices, and cloud-based applications. Organizations are increasingly recognizing that poor data quality can have significant negative impacts on business outcomes, ranging from flawed analytics to regulatory penalties. As a result, there is a heightened focus on leveraging AI-driven tools that can continuously monitor, cleanse, and validate data streams in real time. This shift is particularly evident in industries such as BFSI, healthcare, and retail, where real-time decision-making is critical and the cost of errors can be substantial. The integration of machine learning algorithms and natural language processing in data quality monitoring solutions is enabling more sophisticated anomaly detection, pattern recognition, and predictive analytics, thereby enhancing overall data governance frameworks.
Another significant driver is the increasing regulatory scrutiny and compliance requirements surrounding data integrity and privacy. Regulations such as GDPR, HIPAA, and CCPA are compelling organizations to implement robust data quality management systems that can provide audit trails, ensure data lineage, and support automated compliance reporting. Real-Time Data Quality Monitoring AI tools are uniquely positioned to address these challenges by providing continuous oversight and immediate alerts on data quality issues, thereby reducing the risk of non-compliance and associated penalties. Furthermore, the rise of cloud computing and hybrid IT environments is making it imperative for enterprises to maintain consistent data quality across disparate systems and geographies, further boosting the demand for scalable and intelligent monitoring solutions.
The growing adoption of advanced analytics, artificial intelligence, and machine learning across industries is also contributing to market expansion. As organizations seek to leverage predictive insights and automate business processes, the need for high-quality, real-time data becomes paramount. AI-powered data quality monitoring solutions not only enhance the accuracy of analytics but also enable proactive data management by identifying potential issues before they impact downstream applications. This is particularly relevant in sectors such as manufacturing and telecommunications, where operational efficiency and customer experience are closely tied to data reliability. The increasing investment in digital transformation initiatives and the emergence of Industry 4.0 are expected to further accelerate the adoption of real-time data quality monitoring AI solutions in the coming years.
From a regional perspective, North America continues to dominate the Real-Time Data Quality Monitoring AI market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of leading technology providers, early adoption of AI and analytics, and stringent regulatory frameworks are key factors driving market growth in these regions. Asia Pacific is anticipated to witness the highest CAGR during the forecast period, fueled by rapid digitalization, expanding IT infrastructure, and increasing investments in AI technologies across countries such as China, India, and Japan. Meanwhile, Latin America and the Middle East & Africa are emerging as promising markets, supported by growing awareness of data quality issues and the gradual adoption of advanced data management solutions.
Facebook
TwitterThis dataset was created by shamiul islam shifat
Facebook
TwitterThis dataset provides the detailed data quality assessment scores for the Voltage dataset. The quality assessment was carried out on the 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please not that the quality assessment may be based on an earlier version of the dataset. To access our full suite of aggregated quality assessments and learn more about our approach to how we assess data quality, visit Data Quality - SP Energy NetworksWe welcome feedback and questions from our stakeholders regarding our approach to data quality. Our Open Data team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the dataset schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the datasets with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the Data Quality as a Service (DQaaS) market size reached USD 2.4 billion globally in 2024. The market is experiencing robust expansion, with a recorded compound annual growth rate (CAGR) of 17.8% from 2025 to 2033. By the end of 2033, the DQaaS market is forecasted to attain a value of USD 8.2 billion. This remarkable growth trajectory is primarily driven by the escalating need for real-time data accuracy, regulatory compliance, and the proliferation of cloud-based data management solutions across industries.
The growth of the Data Quality as a Service market is fundamentally propelled by the increasing adoption of cloud computing and digital transformation initiatives across enterprises of all sizes. Organizations are generating and consuming vast volumes of data, making it imperative to ensure data integrity, consistency, and reliability. The surge in big data analytics, artificial intelligence, and machine learning applications further amplifies the necessity for high-quality data. As businesses strive to make data-driven decisions, the demand for DQaaS solutions that can seamlessly integrate with existing IT infrastructure and provide scalable, on-demand data quality management is surging. The convenience of subscription-based models and the ability to access advanced data quality tools without significant upfront investment are also catalyzing market growth.
Another significant driver for the DQaaS market is the stringent regulatory landscape governing data privacy and security, particularly in sectors such as banking, financial services, insurance (BFSI), healthcare, and government. Regulations like the General Data Protection Regulation (GDPR), Health Insurance Portability and Accountability Act (HIPAA), and other regional data protection laws necessitate that organizations maintain accurate and compliant data records. DQaaS providers offer specialized services that help enterprises automate compliance processes, minimize data errors, and mitigate the risks associated with poor data quality. As regulatory scrutiny intensifies globally, organizations are increasingly leveraging DQaaS to ensure continuous compliance and avoid hefty penalties.
Technological advancements and the integration of artificial intelligence and machine learning into DQaaS platforms are revolutionizing how data quality is managed. Modern DQaaS solutions now offer sophisticated features such as real-time data profiling, automated anomaly detection, predictive data cleansing, and intelligent data matching. These innovations enable organizations to proactively monitor and enhance data quality, leading to improved operational efficiency and competitive advantage. Moreover, the rise of multi-cloud and hybrid IT environments is fostering the adoption of DQaaS, as these solutions provide unified data quality management across diverse data sources and platforms. The continuous evolution of DQaaS technologies is expected to further accelerate market growth over the forecast period.
From a regional perspective, North America continues to dominate the Data Quality as a Service market, accounting for the largest revenue share in 2024. This leadership is attributed to the early adoption of cloud technologies, a robust digital infrastructure, and the presence of key market players in the United States and Canada. Europe follows closely, driven by stringent data protection regulations and a strong focus on data governance. The Asia Pacific region is witnessing the fastest growth, fueled by rapid digitalization, increasing cloud adoption among enterprises, and expanding e-commerce and financial sectors. As organizations across the globe recognize the strategic importance of high-quality data, the demand for DQaaS is expected to surge in both developed and emerging markets.
The Component segment of the Data Quality as a Service market is bifurcated into software and services, each playing a pivotal role in the overall ecosystem. The software component comprises platforms and tools that offer functionalities such as data cleansing, profiling, matching, and monitoring. These solutions are designed to automate and streamline data quality processes, ensuring that data remains accurate, consistent, and reliable across the enterprise. The services component, on the other hand, includes consulting, imp
Facebook
Twitter
According to our latest research, the global streaming data quality for financial services market size reached USD 1.98 billion in 2024, reflecting the sector’s rapid digital transformation and the increasing reliance on real-time analytics. The market is expected to grow at a compound annual growth rate (CAGR) of 17.4% from 2025 to 2033, reaching approximately USD 8.17 billion by 2033. This robust expansion is driven by the surging demand for high-integrity, real-time data streams to power mission-critical applications across fraud detection, regulatory compliance, and advanced analytics in financial institutions.
The primary growth factor for the streaming data quality for financial services market is the exponential rise in digital transactions and the proliferation of data sources within the financial ecosystem. As banks, insurance companies, investment firms, and fintech companies increasingly embrace digital channels, they are generating massive volumes of structured, unstructured, and semi-structured data. Ensuring the quality and integrity of this streaming data is paramount, as erroneous or corrupted information can lead to significant financial losses, regulatory penalties, and reputational damage. Financial organizations are, therefore, investing heavily in advanced data quality solutions that can validate, cleanse, and enrich data in real time, supporting both operational efficiency and risk mitigation.
Another significant driver is the evolving regulatory landscape that mandates stringent data governance and transparency standards. Regulatory bodies across the globe are imposing more rigorous requirements on data accuracy, lineage, and auditability, especially in areas such as anti-money laundering (AML), Know Your Customer (KYC), and Basel III/IV compliance. Streaming data quality solutions enable financial institutions to continuously monitor data flows, detect anomalies, and generate auditable trails, thereby simplifying compliance and reducing the risk of non-compliance penalties. The shift towards real-time regulatory reporting and the growing need for continuous risk assessment further underscore the criticality of robust streaming data quality frameworks.
Technological advancements are also fueling market growth, with artificial intelligence (AI), machine learning (ML), and cloud-native architectures transforming the way financial services organizations manage data quality. Modern data quality platforms leverage AI/ML algorithms to automate anomaly detection, pattern recognition, and remediation tasks, ensuring high levels of accuracy and scalability. The adoption of cloud-based deployment models further enhances agility, enabling institutions to scale their data quality operations dynamically and integrate seamlessly with other digital infrastructure. This convergence of technology and business imperatives is catalyzing a new era of data-driven decision-making in the financial sector.
Regionally, North America continues to dominate the streaming data quality for financial services market, accounting for the largest share in 2024. This leadership is attributed to the presence of major global financial institutions, early technology adoption, and a mature regulatory environment. However, Asia Pacific is emerging as the fastest-growing region, propelled by rapid digitalization, expanding fintech ecosystems, and increasing regulatory scrutiny. Europe also represents a significant market, driven by GDPR and other data-centric regulations, while Latin America and the Middle East & Africa are witnessing steady growth as financial inclusion initiatives and digital banking gain momentum.
The component segment of the streaming data quality for financial services market is bifurcated into software and services, each playing a critical role in enabling robust data quality management. Software solutions form the backbone of the market, encompassing a range of platforms and tools designed t
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Blockchain data query: Data Quality Checks: Markets Data market_pair uniqueness test
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.
Get a FREE sample now!
Data quality tools market in APAC overview
The need to improve customer engagement is the primary factor driving the growth of data quality tools market in APAC. The reputation of a company gets hampered if there is a delay in product delivery or response to payment-related queries. To avoid such issues organizations are integrating their data with software such as CRM for effective communication with customers. To capitalize on market opportunities, organizations are adopting data quality strategies to perform accurate customer profiling and improve customer satisfaction.
Also, by using data quality tools, companies can ensure that targeted communications reach the right customers which will enable companies to take real-time action as per the requirements of the customer. Organizations use data quality tool to validate e-mails at the point of capture and clean their database of junk e-mail addresses. Thus, the need to improve customer engagement is driving the data quality tools market growth in APAC at a CAGR of close to 23% during the forecast period.
Top data quality tools companies in APAC covered in this report
The data quality tools market in APAC is highly concentrated. To help clients improve their revenue shares in the market, this research report provides an analysis of the market’s competitive landscape and offers information on the products offered by various leading companies. Additionally, this data quality tools market in APAC analysis report suggests strategies companies can follow and recommends key areas they should focus on, to make the most of upcoming growth opportunities.
The report offers a detailed analysis of several leading companies, including:
IBM
Informatica
Oracle
SAS Institute
Talend
Data quality tools market in APAC segmentation based on end-user
Banking, financial services, and insurance (BFSI)
Telecommunication
Retail
Healthcare
Others
BFSI was the largest end-user segment of the data quality tools market in APAC in 2018. The market share of this segment will continue to dominate the market throughout the next five years.
Data quality tools market in APAC segmentation based on region
China
Japan
Australia
Rest of Asia
China accounted for the largest data quality tools market share in APAC in 2018. This region will witness an increase in its market share and remain the market leader for the next five years.
Key highlights of the data quality tools market in APAC for the forecast years 2019-2023:
CAGR of the market during the forecast period 2019-2023
Detailed information on factors that will accelerate the growth of the data quality tools market in APAC during the next five years
Precise estimation of the data quality tools market size in APAC and its contribution to the parent market
Accurate predictions on upcoming trends and changes in consumer behavior
The growth of the data quality tools market in APAC across China, Japan, Australia, and Rest of Asia
A thorough analysis of the market’s competitive landscape and detailed information on several vendors
Comprehensive details on factors that will challenge the growth of data quality tools companies in APAC
We can help! Our analysts can customize this market research report to meet your requirements. Get in touch
Facebook
TwitterNine data types with the lowest percentages were removed from table. The top data type for each research use is bolded, and percentage values above 10% are highlighted yellow (10–29%), orange (30–49%), and red (>50%).
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Historic Faults dataset. The quality assessment was carried out on the 23rd of September 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy NetworksWe welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterNOAA Ship Nancy Foster Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) program. IMPORTANT: ALWAYS USE THE QUALITY FLAG DATA! Each data variable's metadata includes a qcindex attribute which indicates a character number in the flag data. ALWAYS check the flag data for each row of data to see which data is good (flag='Z') and which data isn't. For example, to extract just data where time (qcindex=1), latitude (qcindex=2), longitude (qcindex=3), and airTemperature (qcindex=12) are 'good' data, include this constraint in your ERDDAP query: flag=~"ZZZ........Z." in your query. "=~" indicates this is a regular expression constraint. The 'Z's are literal characters. In this dataset, 'Z' indicates 'good' data. The '.'s say to match any character. The '' says to match the previous character 0 or more times. See the tutorial for regular expressions at https://www.vogella.com/tutorials/JavaRegularExpressions/article.html
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Data Quality Software Market size was valued at USD 4.7 Billion in 2024 and is projected to reach USD 8.3 Billion by 2031, growing at a CAGR of 7.4 % during the forecast period 2024-2031.
Global Data Quality Software Market Drivers
Rising Data Volume and Complexity: The proliferation of data is one of the leading drivers of the data quality software market. With businesses generating massive amounts of data daily—from customer interactions, financial transactions, social media, IoT devices, and more—the challenge of managing, analyzing, and ensuring the accuracy and consistency of this data becomes more complex. Companies are relying on advanced data quality tools to clean, validate, and standardize data before it is analyzed or used for decision-making. As data volumes continue to increase, data quality software becomes essential to ensure that businesses are working with accurate and up-to-date information. Inaccurate or inconsistent data can lead to faulty analysis, misguided business strategies, and ultimately, lost opportunities.
Data-Driven Decision-Making: Organizations are increasingly leveraging data-driven strategies to gain competitive advantages. As businesses shift towards a more data-centric approach, having reliable data is crucial for informed decision-making. Poor data quality can result in flawed insights, leading to suboptimal decisions. This has heightened the demand for tools that can continuously monitor, cleanse, and improve data quality. Data quality software solutions allow companies to maintain the integrity of their data, ensuring that key performance indicators (KPIs), forecasts, and business strategies are based on accurate information. This demand is particularly strong in industries like finance, healthcare, and retail, where decisions based on erroneous data can have serious consequences.
Facebook
Twitterhttps://data.nat.gov.tw/licensehttps://data.nat.gov.tw/license
Data Quality Education Training Test Data Set Description
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Single Digital View dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.