Facebook
TwitterParking citations with latitude / longitude in Mercator map projection which is a variant of Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator and is the de facto standard for Web mapping applications. Additional information about Meractor projections - https://en.wikipedia.org/wiki/Mercator_projection The official EPSG identifier for Web Mercator is EPSG:3857. Additional information on projections can be read here: https://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Projection_basics_the_GIS_professional_needs_to_know For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/
Facebook
TwitterWorld Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3m resolution for select metropolitan areas around the world, 0.5m resolution across the United States and parts of Western Europe, and 1m resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3m to 0.03m resolution (down to ~1:280 in select communities). For more information on this map, including the terms of use, visit us online at https://goto.arcgisonline.com/maps/World_Imagery
Facebook
TwitterThe pathway representation consists of segments and intersection elements. A segment is a linear graphic element that represents a continuous physical travel path terminated by path end (dead end) or physical intersection with other travel paths. Segments have one street name, one address range and one set of segment characteristics. A segment may have none or multiple alias street names. Segment types included are Freeways, Highways, Streets, Alleys (named only), Railroads, Walkways, and Bike lanes. SNDSEG_PV is a linear feature class representing the SND Segment Feature, with attributes for Street name, Address Range, Alias Street name and segment Characteristics objects. Part of the Address Range and all of Street name objects are logically shared with the Discrete Address Point-Master Address File layer. Appropriate uses include: Cartography - Used to depict the City's transportation network location and connections, typically on smaller scaled maps or images where a single line representation is appropriate. Used to depict specific classifications of roadway use, also typically at smaller scales. Used to label transportation network feature names typically on larger scaled maps. Used to label address ranges with associated transportation network features typically on larger scaled maps. Geocode reference - Used as a source for derived reference data for address validation and theoretical address location Address Range data repository - This data store is the City's address range repository defining address ranges in association with transportation network features. Polygon boundary reference - Used to define various area boundaries is other feature classes where coincident with the transportation network. Does not contain polygon features. Address based extracts - Used to create flat-file extracts typically indexed by address with reference to business data typically associated with transportation network features. Thematic linear location reference - By providing unique, stable identifiers for each linear feature, thematic data is associated to specific transportation network features via these identifiers. Thematic intersection location reference - By providing unique, stable identifiers for each intersection feature, thematic data is associated to specific transportation network features via these identifiers. Network route tracing - Used as source for derived reference data used to determine point to point travel paths or determine optimal stop allocation along a travel path. Topological connections with segments - Used to provide a specific definition of location for each transportation network feature. Also provides a specific definition of connection between each transportation network feature. (defines where the streets are and the relationship between them ie. 4th Ave is west of 5th Ave and 4th Ave does intersect with Cherry St) Event location reference - Used as source for derived reference data used to locate event and linear referencing.Data source is TRANSPO.SNDSEG_PV. Updated weekly.
Facebook
TwitterNew Parking Citations dataset here: https://data.lacity.org/Transportation/Parking-Citations/4f5p-udkv/about_data ---Archived as of September 2023--- Parking citations with latitude / longitude (XY) in US Feet coordinates according to the California State Plane Coordinate System - Zone 5 (https://www.conservation.ca.gov/cgs/rgm/state-plane-coordinate-system). For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/
Facebook
TwitterThis abstract contains links to public ArcGIS maps that include locations of carbonate springs and some of their characteristics. Information for accessing and navigating through the maps are included in a PowerPoint presentation IN THE FILE UPLOAD SECTION BELOW. Three separate data sets are included in the maps:
Several base maps are included in the links. The US carbonate map describes and categorizes carbonates (e.g., depth from surface, overlying geology/ice, climate). The carbonate springs map categorizes springs as being urban, specifically within 1000 ft of a road, or rural. The basis for this categorization was that the heat island effect defines urban as within a 1000 ft of a road. There are other methods for defining urban versus rural to consider. Map links and details of the information they contain are listed below.
Map set 1: The WQP map provides three mapping options separated by the parameters available at each spring site. These maps summarize discrete water quality samples, but not data logger availability. Information at each spring provides links for where users can explore further data.
Option 1: WQP data with urban and rural springs labeled, with highlight of springs with or without NWIS data https://www.arcgis.com/home/item.html?id=2ce914ec01f14c20b58146f5d9702d8a
Options 2: WQP data by major ions and a few other solutes https://www.arcgis.com/home/item.html?id=5a114d2ce24c473ca07ef9625cd834b8
Option 3:WQP data by various carbon species https://www.arcgis.com/home/item.html?id=ae406f1bdcd14f78881905c5e0915b96
Map 2: The worldwide carbonate map in the WoKaS data set (citation below) includes a description of carbonate purity and distribution of urban and rural springs, for which discharge data are available: https://www.arcgis.com/apps/mapviewer/index.html?webmap=5ab43fdb2b784acf8bef85b61d0ebcbe.
Reference: Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B. and Auler, A., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Scientific Data, 7(1), pp.1-9.
Map 3: Karst and spring data from selected states: This map includes sites that members of the RCN have suggested to our group.
https://uageos.maps.arcgis.com/apps/mapviewer/index.html?webmap=28ed22a14bb749e2b22ece82bf8a8177
This data set is incomplete (as of October 13, 2022 it includes Florida and Missouri). We are looking for more information. You can share data links to additional data by typing them into the hydroshare page created for our group. Then new sites will periodically be added to the map: https://www.hydroshare.org/resource/0cf10e9808fa4c5b9e6a7852323e6b11/
Acknowledgements: These maps were created by Michael Jones, University of Arkansas and Shishir Sarker, University of Kentucky with help from Laura Toran and Francesco Navarro, Temple University.
TIPS FOR NAVIGATING THE MAPS ARE IN THE POWERPOINT DOCUMENT IN THE FILE UPLOAD SECTION BELOW.
Facebook
TwitterThe Human Geography Dark Map (World Edition) web map provides a detailed world basemap with a dark monochromatic style and content adjusted to support human geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Dark Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Dark Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Dark Base, a simple basemap consisting of land areas in a very dark gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in A Dark Version of the Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
TwitterThis National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
TwitterThe map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri. The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound
Facebook
TwitterThe Human Geography Dark Map (US Edition) provides a detailed world basemap with a dark monochromatic style and content adjusted to support human geography information.This basemap is available in the United States Vector Basemaps gallery and consists of 3 vector tile layers:Human Geography Dark Label (US Edition), a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Dark Detail (US Edition), a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Dark Base, a simple basemap consisting of land areas in a very dark gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
TwitterThe NAIP Imagery Hybrid (US Edition) web map features recent high-resolution National Agriculture Imagery Program (NAIP) imagery for the United States and is optimized for display quality and performance. The map also includes a reference layer. This NAIP imagery is from the USDA Farm Services Agency. The NAIP imagery in this map has been visually enhanced and published as a raster tile layer for optimal display performance.NAIP imagery collection occurs on an annual basis during the agricultural growing season in the continental United States. Approximately half of the US is collected each year and each state is typically collected every other year. The NAIP program aims to make the imagery available to governmental agencies and to the public within a year of collection.This basemap is available in the United States Vector Basemaps gallery and uses NAIP Imagery and World Imagery (Firefly) raster tile layers. It also uses the Hybrid Reference (US Edition) and Dark Gray Base (US Edition) vector tile layers.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
TwitterUSNG is standard that established a nationally consistent grid reference system. It provides a seamless plane coordinate system across jurisdictional boundaries and map scales; it enables precise position referencing with GPS, web map portals, and hardcopy maps. USNG enables a practical system of geo-addresses and a universal map index. This data resides in the GCS 1983 coordinate system and is most suitable for viewing over North America. This layer shows 1,000-meter grid squares.
Facebook
TwitterThe Light Gray Canvas (US Edition) web map provides a detailed vector basemap for the world symbolized with a light gray, neutral background style with minimal colors, labels, and features that is designed to draw attention to your thematic content. The map includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. This basemap is available in the United States Vector Basemaps gallery and uses the Light Gray Reference (US Edition) and Light Gray Base (US Edition) vector tile layers.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
TwitterUSNG is standard that established a nationally consistent grid reference system. It provides a seamless plane coordinate system across jurisdictional boundaries and map scales; it enables precise position referencing with GPS, web map portals, and hardcopy maps. USNG enables a practical system of geo-addresses and a universal map index. This data resides in the GCS 1983 coordinate system and is most suitable for viewing over North America. This layer shows 6-degree by 8-degree grid squares.
Facebook
TwitterThis web map includes the GEOGloWS ECMWF Streamflow System (6 Day Forecast) and a customized vector base map.The individual base layers (Reference and Base) were created from similar Esri Vector Basemaps (World Terrain Reference Local Language and Dark Gray Canvas) using the Vector Style Editor.Each layer was customized specifically for Global Water Sustainability (GeoGloWS) and European Centre for Medium-range Weather Forecasting (ECMWF) Streamflow System (6 Day Forecast) layer that can be found here.
Facebook
TwitterWorld Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Facebook
TwitterMature Support Notice: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer provides labels for selected cities, towns, and neighborhoods around the world in support of the World Dark Gray Base map. Together they draw attention to your thematic content by providing a neutral background with minimal colors, labels, and features. Only key information is represented to provide geographic context, allowing your data to come to the foreground.See the Esri Canvas Maps Part I: Author Beautiful Web Maps With Our New Artisan Basemap Sandwich blog post for more information on how to use this map.This map was compiled by Esri using HERE data, Garmin basemap layers, OpenStreetMap data, GIS community data, and Esri basemap data. The map includes worldwide coverage from 1:591M scale to 1:577k scale. More detailed coverage is included in North America, Europe, Africa, South America and Central America, the Middle East, Pacific Island nations, India, Australia, and New Zealand down to the 1:9k scale. Data for Africa and Pacific Island nations from ~1:288k to ~1:9k was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.
Facebook
TwitterSixty-seven maps from Indian Land Cessions in the United States, compiled by Charles C. Royce and published as the second part of the two-part Eighteenth Annual Report of the Bureau of American Ethnology to the Secretary of the Smithsonian Institution, 1896-1897 have been scanned, georeferenced in JPEG2000 format, and digitized to create this feature class of cession maps. The mapped cessions and reservations included in the 67 maps correspond to entries in the Schedule of Indian Land Cessions, indicating the number and location of each cession by or reservation for the Indian tribes from the organization of the Federal Government to and including 1894, together with descriptions of the tracts so ceded or reserved, the date of the treaty, law or executive order governing the same, the name of the tribe or tribes affected thereby, and historical data and references bearing thereon, as set forth in the subtitle of the Schedule. Go to this URL for full metadata: https://data.fs.usda.gov/geodata/edw/edw_resources/meta/S_USA.TRIBALCEDEDLANDS.xml Each Royce map was georeferenced against one or more of the following USGS 1:2,000,000 National Atlas Feature Classes contained in \NatlAtlas_USGS.gdb: cities_2mm, hydro_ln_2mm, hydro_pl_2mm, plss_2mm, states_2mm. Cessions were digitized as a file geodatabase (GDB) polygon feature class, projected as NAD83 USA_Contiguous_Lambert_Conformal_Conic, which is the same projection used to georeference the maps. The feature class was later reprojected to WGS 1984 Web Mercator (auxiliary sphere) to optimize it for the Tribal Connections Map Viewer. Polygon boundaries were digitized as to not deviate from the drawn polygon edge to the extent that space could be seen between the digitized polygon and the mapped polygon at a viewable scale. Topology was maintained between coincident edges of adjacent polygons. The cession map number assigned by Royce was entered into the feature class as a field attribute. The Map Cession ID serves as the link referencing relationship classes and joining additional attribute information to 752 polygon features, to include the following: 1. Data transcribed from Royce's Schedule of Indian Land Cessions: a. Date(s), in the case of treaties, the date the treaty was signed, not the date of the proclamation; b. Tribe(s), the tribal name(s) used in the treaty and/or the Schedule; and c. Map Name(s), the name of the map(s) on which a cession number appears; 2. URLs for the corresponding entry in the Schedule of Indian Land Cessions (Internet Archive) for each unique combination of a Date and reference to a Map Cession ID (historical references in the Schedule are included); 3. URLs for the corresponding treaty text, including the treaties catalogued by Charles J. Kappler in Indian Affairs: Laws and Treaties (HathiTrust Digital Library), executive order or other federal statute (Library of Congress and University of Georgia) identified in each entry with a reference to a Map Cession ID or IDs; 4. URLs for the image of the Royce map(s) (Library of Congress) on which a given cession number appears; 5. The name(s) of the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text, as well as the name of the present-day Indian tribe or tribes; and 6. The present-day states and counties included wholly or partially within a Map Cession boundary. During the 2017-2018 revision of the attribute data, it was noted that 7 of the Cession Map IDs are missing spatial representation in the Feature Class. The missing data is associated with the following Cession Map IDs: 47 (Illinois 1), 65 (Tennessee and Bordering States), 128 (Georgia), 129 (Georgia), 130 (Georgia), 543 (Indian Territory 3), and 690 (Iowa 2), which will be updated in the future. This dataset revises and expands the dataset published in 2015 by the U.S. Forest Service and made available through the Tribal Connections viewer, the Forest Service Geodata Clearinghouse, and Data.gov. The 2018 dataset is a result of collaboration between the Department of Agriculture, U.S. Forest Service, Office of Tribal Relations (OTR); the Department of the Interior, National Park Service, National NAGPRA Program; the U.S. Environmental Protection Agency, Office of International and Tribal Affairs, American Indian Environmental Office; and Dr. Claudio Saunt of the University of Georgia. The Forest Service and Dr. Saunt independently digitized and georeferenced the Royce cession maps and developed online map viewers to display Native American land cessions and reservations. Dr. Saunt subsequently undertook additional research to link Schedule entries, treaty texts, federal statutes and executive orders to cession and reservation polygons, which he agreed to share with the U.S. Forest Service. OTR revised the data, linking the Schedule entries, treaty texts, federal statues and executive orders to all 1,172 entries in the attribute table. The 2018 dataset has incorporated data made available by the National NAGPRA Program, specifically the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text and the name of the present-day Indian tribe or tribes, as well as the present-day states and counties included wholly or partially within a Map Cession boundary. This data replaces in its entirety the National NAGPRA data included in the dataset published in 2015. The 2015 dataset incorporated data presented in state tables compiled from the Schedule of Indian Land Cessions by the National NAGPRA Program. In recent years the National NAGPRA Program has been working to ensure the accuracy of this data, including the reevaluation of the present-day Indian tribes and the provision of references for their determinations. Changes made by the OTR have not been reviewed or approved by the National NAGPRA Program. The Forest Service will continue to collaborate with other federal agencies and work to improve the accuracy of the data included in this dataset. Errors identified since the dataset was published in 2015 have been corrected, and we request that you notify us of any additional errors we may have missed or that have been introduced. Please contact Rebecca Hill, Policy Analyst, U.S. Forest Service, Office of Tribal Relations, at rebeccahill@fs.usda.gov with any questions or concerns with regard to the data included in this dataset.
Facebook
Twitter*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThe Charted Territory Map (World Edition) web map provides a customized world basemap uniquely symbolized. It takes its inspiration from a printed atlas plate and pull-down scholastic classroom maps. The map emphasizes the geographic and political features in the design. The use of country level polygons are preassigned with eight different colors. It also includes the global graticule features as well as landform labels of physical features and hillshade. This basemap, included in the ArcGIS Living Atlas of the World, uses the Charted Territory vector tile layer and World Hillshade. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.
Facebook
TwitterWorld Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Vantor imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Vantor products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Vantor Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Vantor HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map. UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Facebook
TwitterParking citations with latitude / longitude in Mercator map projection which is a variant of Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator and is the de facto standard for Web mapping applications. Additional information about Meractor projections - https://en.wikipedia.org/wiki/Mercator_projection The official EPSG identifier for Web Mercator is EPSG:3857. Additional information on projections can be read here: https://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Projection_basics_the_GIS_professional_needs_to_know For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/