11 datasets found
  1. i

    Household Expenditure and Income Survey 2008, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Jan 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2022). Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7661
    Explore at:
    Dataset updated
    Jan 12, 2022
    Dataset authored and provided by
    Department of Statistics
    Time period covered
    2008 - 2009
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Household/families
    • Individuals

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.

    To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.

    It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

    Cleaning operations

    Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results

    Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format

  2. Good Growth Plan 2014-2019 - Philippines

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syngenta (2023). Good Growth Plan 2014-2019 - Philippines [Dataset]. https://microdata.worldbank.org/index.php/catalog/5648
    Explore at:
    Dataset updated
    Jan 30, 2023
    Dataset authored and provided by
    Syngenta
    Time period covered
    2014 - 2019
    Area covered
    Philippines
    Description

    Abstract

    Syngenta is committed to increasing crop productivity and to using limited resources such as land, water and inputs more efficiently. Since 2014, Syngenta has been measuring trends in agricultural input efficiency on a global network of real farms. The Good Growth Plan dataset shows aggregated productivity and resource efficiency indicators by harvest year. The data has been collected from more than 4,000 farms and covers more than 20 different crops in 46 countries. The data (except USA data and for Barley in UK, Germany, Poland, Czech Republic, France and Spain) was collected, consolidated and reported by Kynetec (previously Market Probe), an independent market research agency. It can be used as benchmarks for crop yield and input efficiency.

    Geographic coverage

    National coverage

    Analysis unit

    Agricultural holdings

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A. Sample design Farms are grouped in clusters, which represent a crop grown in an area with homogenous agro- ecological conditions and include comparable types of farms. The sample includes reference and benchmark farms. The reference farms were selected by Syngenta and the benchmark farms were randomly selected by Kynetec within the same cluster.

    B. Sample size Sample sizes for each cluster are determined with the aim to measure statistically significant increases in crop efficiency over time. This is done by Kynetec based on target productivity increases and assumptions regarding the variability of farm metrics in each cluster. The smaller the expected increase, the larger the sample size needed to measure significant differences over time. Variability within clusters is assumed based on public research and expert opinion. In addition, growers are also grouped in clusters as a means of keeping variances under control, as well as distinguishing between growers in terms of crop size, region and technological level. A minimum sample size of 20 interviews per cluster is needed. The minimum number of reference farms is 5 of 20. The optimal number of reference farms is 10 of 20 (balanced sample).

    C. Selection procedure The respondents were picked randomly using a “quota based random sampling” procedure. Growers were first randomly selected and then checked if they complied with the quotas for crops, region, farm size etc. To avoid clustering high number of interviews at one sampling point, interviewers were instructed to do a maximum of 5 interviews in one village.

    BF Screened from Philippines were selected based on the following criterion: (a) smallholder rice growers Location: Luzon - Mindoro (Southern Luzon) mid-tier (sub-optimal CP/SE use): mid-tier growers use generic CP, cheaper CP, non hybrid (conventional) seeds
    Smallholder farms with average to high levels of mechanization
    Should be Integrated Pest Management advocates
    less accessible to technology: poor farmers, don't have the money to buy quality seeds, fertilizers,... Don't use machinery yet
    simple knowledge on agronomy and pests
    influenced by fellow farmers and retailers
    not strong financial status: don't have extra money on bank account and so need longer credit to pay (as a consequence: interest increases) may need longer credit

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Data collection tool for 2019 covered the following information:

    (A) PRE- HARVEST INFORMATION

    PART I: Screening PART II: Contact Information PART III: Farm Characteristics a. Biodiversity conservation b. Soil conservation c. Soil erosion d. Description of growing area e. Training on crop cultivation and safety measures PART IV: Farming Practices - Before Harvest a. Planting and fruit development - Field crops b. Planting and fruit development - Tree crops c. Planting and fruit development - Sugarcane d. Planting and fruit development - Cauliflower e. Seed treatment

    (B) HARVEST INFORMATION

    PART V: Farming Practices - After Harvest a. Fertilizer usage b. Crop protection products c. Harvest timing & quality per crop - Field crops d. Harvest timing & quality per crop - Tree crops e. Harvest timing & quality per crop - Sugarcane f. Harvest timing & quality per crop - Banana g. After harvest PART VI - Other inputs - After Harvest a. Input costs b. Abiotic stress c. Irrigation

    See all questionnaires in external materials tab.

    Cleaning operations

    Data processing:

    Kynetec uses SPSS (Statistical Package for the Social Sciences) for data entry, cleaning, analysis, and reporting. After collection, the farm data is entered into a local database, reviewed, and quality-checked by the local Kynetec agency. In the case of missing values or inconsistencies, farmers are re-contacted. In some cases, grower data is verified with local experts (e.g. retailers) to ensure data accuracy and validity. After country-level cleaning, the farm-level data is submitted to the global Kynetec headquarters for processing. In the case of missing values or inconsistences, the local Kynetec office was re-contacted to clarify and solve issues.

    Quality assurance Various consistency checks and internal controls are implemented throughout the entire data collection and reporting process in order to ensure unbiased, high quality data.

    • Screening: Each grower is screened and selected by Kynetec based on cluster-specific criteria to ensure a comparable group of growers within each cluster. This helps keeping variability low.

    • Evaluation of the questionnaire: The questionnaire aligns with the global objective of the project and is adapted to the local context (e.g. interviewers and growers should understand what is asked). Each year the questionnaire is evaluated based on several criteria, and updated where needed.

    • Briefing of interviewers: Each year, local interviewers - familiar with the local context of farming -are thoroughly briefed to fully comprehend the questionnaire to obtain unbiased, accurate answers from respondents.

    • Cross-validation of the answers: o Kynetec captures all growers' responses through a digital data-entry tool. Various logical and consistency checks are automated in this tool (e.g. total crop size in hectares cannot be larger than farm size) o Kynetec cross validates the answers of the growers in three different ways: 1. Within the grower (check if growers respond consistently during the interview) 2. Across years (check if growers respond consistently throughout the years) 3. Within cluster (compare a grower's responses with those of others in the group) o All the above mentioned inconsistencies are followed up by contacting the growers and asking them to verify their answers. The data is updated after verification. All updates are tracked.

    • Check and discuss evolutions and patterns: Global evolutions are calculated, discussed and reviewed on a monthly basis jointly by Kynetec and Syngenta.

    • Sensitivity analysis: sensitivity analysis is conducted to evaluate the global results in terms of outliers, retention rates and overall statistical robustness. The results of the sensitivity analysis are discussed jointly by Kynetec and Syngenta.

    • It is recommended that users interested in using the administrative level 1 variable in the location dataset use this variable with care and crosscheck it with the postal code variable.

    Data appraisal

    Due to the above mentioned checks, irregularities in fertilizer usage data were discovered which had to be corrected:

    For data collection wave 2014, respondents were asked to give a total estimate of the fertilizer NPK-rates that were applied in the fields. From 2015 onwards, the questionnaire was redesigned to be more precise and obtain data by individual fertilizer products. The new method of measuring fertilizer inputs leads to more accurate results, but also makes a year-on-year comparison difficult. After evaluating several solutions to this problems, 2014 fertilizer usage (NPK input) was re-estimated by calculating a weighted average of fertilizer usage in the following years.

  3. Good Growth Plan, 2014-2019 - Paraguay

    • microdata.fao.org
    Updated Feb 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syngenta (2021). Good Growth Plan, 2014-2019 - Paraguay [Dataset]. https://microdata.fao.org/index.php/catalog/1813
    Explore at:
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    Syngenta
    Time period covered
    2014 - 2019
    Area covered
    Paraguay
    Description

    Abstract

    Syngenta is committed to increasing crop productivity and to using limited resources such as land, water and inputs more efficiently. Since 2014, Syngenta has been measuring trends in agricultural input efficiency on a global network of real farms. The Good Growth Plan dataset shows aggregated productivity and resource efficiency indicators by harvest year. The data has been collected from more than 4,000 farms and covers more than 20 different crops in 46 countries. The data (except USA data and for Barley in UK, Germany, Poland, Czech Republic, France and Spain) was collected, consolidated and reported by Kynetec (previously Market Probe), an independent market research agency. It can be used as benchmarks for crop yield and input efficiency.

    Geographic coverage

    National Coverage

    Analysis unit

    Agricultural holdings

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A. Sample design Farms are grouped in clusters, which represent a crop grown in an area with homogenous agro- ecological conditions and include comparable types of farms. The sample includes reference and benchmark farms. The reference farms were selected by Syngenta and the benchmark farms were randomly selected by Kynetec within the same cluster.

    B. Sample size Sample sizes for each cluster are determined with the aim to measure statistically significant increases in crop efficiency over time. This is done by Kynetec based on target productivity increases and assumptions regarding the variability of farm metrics in each cluster. The smaller the expected increase, the larger the sample size needed to measure significant differences over time. Variability within clusters is assumed based on public research and expert opinion. In addition, growers are also grouped in clusters as a means of keeping variances under control, as well as distinguishing between growers in terms of crop size, region and technological level. A minimum sample size of 20 interviews per cluster is needed. The minimum number of reference farms is 5 of 20. The optimal number of reference farms is 10 of 20 (balanced sample).

    C. Selection procedure The respondents were picked randomly using a “quota based random sampling” procedure. Growers were first randomly selected and then checked if they complied with the quotas for crops, region, farm size etc. To avoid clustering high number of interviews at one sampling point, interviewers were instructed to do a maximum of 5 interviews in one village.

    BF Screened from Paraguay were selected based on the following criterion:

    (a) smallholder soybean growers Medium to high technology farms Regions: - Hohenau (Itapúa) - Edelira (Itapúa) - Pirapó (Itapúa) - La Paz (Itapúa) - Naranjal (Alto Paraná) - San Cristóbal (Alto Paraná)
    corn and soybean in rotation
    first grow corn and soybean secondly

    (b) smallholder maize growers
    Medium to high technology farms Regions: - Hohenau (Itapúa) - Edelira (Itapúa) - Pirapó (Itapúa) - La Paz (Itapúa) - Naranjal (Alto Paraná) - San Cristóbal (Alto Paraná)
    corn and soybean in rotation
    first grow corn and soybean secondly

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Data collection tool for 2019 covered the following information:

    (A) PRE- HARVEST INFORMATION

    PART I: Screening PART II: Contact Information PART III: Farm Characteristics a. Biodiversity conservation b. Soil conservation c. Soil erosion d. Description of growing area e. Training on crop cultivation and safety measures PART IV: Farming Practices - Before Harvest a. Planting and fruit development - Field crops b. Planting and fruit development - Tree crops c. Planting and fruit development - Sugarcane d. Planting and fruit development - Cauliflower e. Seed treatment

    (B) HARVEST INFORMATION

    PART V: Farming Practices - After Harvest a. Fertilizer usage b. Crop protection products c. Harvest timing & quality per crop - Field crops d. Harvest timing & quality per crop - Tree crops e. Harvest timing & quality per crop - Sugarcane f. Harvest timing & quality per crop - Banana g. After harvest PART VI - Other inputs - After Harvest a. Input costs b. Abiotic stress c. Irrigation

    See all questionnaires in external materials tab

    Cleaning operations

    Data processing:

    Kynetec uses SPSS (Statistical Package for the Social Sciences) for data entry, cleaning, analysis, and reporting. After collection, the farm data is entered into a local database, reviewed, and quality-checked by the local Kynetec agency. In the case of missing values or inconsistencies, farmers are re-contacted. In some cases, grower data is verified with local experts (e.g. retailers) to ensure data accuracy and validity. After country-level cleaning, the farm-level data is submitted to the global Kynetec headquarters for processing. In the case of missing values or inconsistences, the local Kynetec office was re-contacted to clarify and solve issues.

    B. Quality assurance Various consistency checks and internal controls are implemented throughout the entire data collection and reporting process in order to ensure unbiased, high quality data.

    • Screening: Each grower is screened and selected by Kynetec based on cluster-specific criteria to ensure a comparable group of growers within each cluster. This helps keeping variability low.

    • Evaluation of the questionnaire: The questionnaire aligns with the global objective of the project and is adapted to the local context (e.g. interviewers and growers should understand what is asked). Each year the questionnaire is evaluated based on several criteria, and updated where needed.

    • Briefing of interviewers: Each year, local interviewers - familiar with the local context of farming -are thoroughly briefed to fully comprehend the questionnaire to obtain unbiased, accurate answers from respondents.

    • Cross-validation of the answers:

    o Kynetec captures all growers' responses through a digital data-entry tool. Various logical and consistency checks are automated in this tool (e.g. total crop size in hectares cannot be larger than farm size) 
    o Kynetec cross validates the answers of the growers in three different ways: 
      1. Within the grower (check if growers respond consistently during the interview) 
      2. Across years (check if growers respond consistently throughout the years) 
      3. Within cluster (compare a grower's responses with those of others in the group) 
    

    o All the above mentioned inconsistencies are followed up by contacting the growers and asking them to verify their answers. The data is updated after verification. All updates are tracked.

    • Check and discuss evolutions and patterns: Global evolutions are calculated, discussed and reviewed on a monthly basis jointly by Kynetec and Syngenta.

    • Sensitivity analysis: sensitivity analysis is conducted to evaluate the global results in terms of outliers, retention rates and overall statistical robustness. The results of the sensitivity analysis are discussed jointly by Kynetec and Syngenta.

    • It is recommended that users interested in using the administrative level 1 variable in the location dataset use this variable with care and crosscheck it with the postal code variable.

    Data appraisal

    Due to the above mentioned checks, irregularities in fertilizer usage data were discovered which had to be corrected:

    For data collection wave 2014, respondents were asked to give a total estimate of the fertilizer NPK-rates that were applied in the fields. From 2015 onwards, the questionnaire was redesigned to be more precise and obtain data by individual fertilizer products. The new method of measuring fertilizer inputs leads to more accurate results, but also makes a year-on-year comparison difficult. After evaluating several solutions to this problems, 2014 fertilizer usage (NPK input) was re-estimated by calculating a weighted average of fertilizer usage in the following years.

  4. e

    Household Expenditure and Income Survey, HEIS 2008 - Jordan

    • erfdataportal.com
    Updated Oct 30, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2014). Household Expenditure and Income Survey, HEIS 2008 - Jordan [Dataset]. https://erfdataportal.com/index.php/catalog/53
    Explore at:
    Dataset updated
    Oct 30, 2014
    Dataset provided by
    Economic Research Forum
    Department of Statistics
    Time period covered
    2008 - 2009
    Area covered
    Jordan
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 25% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    In light of the rapid socio-economic development in this era, it is necessary to make data on household expenditure and income available, as well as the relationship between those statistics and various variables with direct or indirect impact. Therefore, most of the countries are nowadays keen to periodically carry-out Household Expenditure and Income surveys. Given the continuous changes in spending patterns, income levels and prices, as well as in population both internal and external migration, it was now mandatory to update data for household income and expenditure over time. The main objective of the survey is to obtain detailed data on HH income and expenditure, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, it was well considered that the sample should be representative on the sub-district level. Hence, the data collected through the survey would also enable to achieve the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index. 2- Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns. 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators. 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it. 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector. 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps.. 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.

    Geographic coverage

    This survey was carried-out for a sample of 12678 households distributed on urban and rural areas in all the Kingdom governorates.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 25% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size has been uniformly selected, and in the second stage, a systematic approach guaranteing a representative sample of all sub-districts (Qada) has been applied.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    List of survey questionnaires:

    (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

    Cleaning operations

    Raw Data

    The design and implementation of this survey procedures are: 1. Sample design and selection. 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals. 3. Design the tables template to be used for the dissemination of the survey results. 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks. 5. Selection and training of survey staff to collect data and run required data checkings. 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results. 7. Data collection. 8. Data checking and coding. 9. Data entry. 10. Data cleaning using data validation programs. 11. Data accuracy and consistency checks. 12. Data tabulation and preliminary results. 13. Preparation of the final report and dissemination of final results.

    Harmonized Data

    • The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Agency.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.
  5. Expenditure and Consumption Survey, PECS 2007 - Palestine

    • erfdataportal.com
    Updated Aug 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2022). Expenditure and Consumption Survey, PECS 2007 - Palestine [Dataset]. https://erfdataportal.com/index.php/catalog/61
    Explore at:
    Dataset updated
    Aug 14, 2022
    Dataset provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Economic Research Forum
    Time period covered
    2007 - 2008
    Area covered
    Palestine
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS

    The basic goal of the Household and Consumption Survey is to provide a necessary database for formulating national policies at various levels. This survey provides the contribution of the household sector to the Gross National Product (GNP). It determines the incidence of poverty, and provides weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Furthermore, this survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.

    Geographic coverage

    The survey data covers urban, rural and camp areas in West Bank and Gaza Strip.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered all the Palestinian households who are a usual residence in the Palestinian Territory.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS

    Sample and Frame:

    The sampling frame consists of all enumeration areas which enumerated in 1997 and the numeration area consists of buildings and housing units and has in average about 150 households in it. We use the enumeration areas as primary sampling units PSUs in the first stage of the sampling selection. The enumeration areas of the master sample were updated in 2003.

    Sample Design:

    The sample is stratified cluster systematic random sample with two stages: First stage: selection a systematic random sample of 120 enumeration areas. Second stage: selection a systematic random sample of 12-18 households from each enumeration area selected in the first stage.

    Sample strata:

    The population is divided by: 1-Region (North West Bank, Middle West Bank, South West Bank, Gaza Strip) 2-Type of Locality (urban, rural, refugee camps)

    Target cluster size:

    The target cluster size or "sample-take" is the average number of households to be selected per PSU. In this survey, the sample take is around 12 households.

    Sample Size:

    The calculated sample size is 1,714 households, the completed households were 1,231 (812 in the west bank and 419 in the Gaza strip).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The PECS questionnaire consists of two main sections:

    First section: Certain articles / provisions of the form filled at the beginning of the month, and the remainder filled out at the end of the month. The questionnaire includes the following provisions:

    Cover sheet: It contains detailed and particulars of the family, date of visit, particular of the field/office work team, number/sex of the family members.

    Statement of the family members: Contains social, economic and demographic particulars of the selected family.

    Statement of the long-lasting commodities and income generation activities: Includes a number of basic and indispensable items (i.e., Livestock, or agricultural lands).

    Housing Characteristics: Includes information and data pertaining to the housing conditions, including type of shelter, number of rooms, ownership, rent, water, electricity supply, connection to the sewer system, source of cooking and heating fuel, and remoteness/proximity of the house to education and health facilities.

    Monthly and Annual Income: Data pertaining to the income of the family is collected from different sources at the end of the registration / recording period.

    Assistance and poverty: includes questions about household conditions and assistances that got through the the past month.

    Second section: The second section of the questionnaire includes a list of 55 consumption and expenditure groups itemized and serially numbered according to its importance to the family. Each of these groups contains important commodities. The number of commodities items in each for all groups stood at 667 commodities and services items. Groups 1-21 include food, drink, and cigarettes. Group 22 includes homemade commodities. Groups 23-45 include all items except for food, drink and cigarettes. Groups 50-55 include all of the long-lasting commodities. Data on each of these groups was collected over different intervals of time so as to reflect expenditure over a period of one full year, except the cars group the data of which was collected for three previous years. These data was abotained from the recording book which is covered a period of month for each household.

    Cleaning operations

    Raw Data

    Data editing took place through a number of stages, including: 1. Office editing and coding 2. Data entry 3. Structure checking and completeness 4. Structural checking of SPSS data files

    Harmonized Data

    • The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Agency.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.

    Response rate

    The survey sample consists of about 1,714 households interviewed over a twelve months period between (January 2007-January 2008).1,231 households completed the interview, of which 812 were from the West Bank and 419 households in Gaza Strip; the response rate was 71.8% in the Palestinian Territory.

    Sampling error estimates

    The calculations of standard errors for the main survey estimates enable the user to identify the accuracy of estimates and the survey reliability. Total errors of the survey can be divided into two kinds: statistical errors, and non-statistical errors. Non-statistical errors are related to the procedures of statistical work at different stages, such as the failure to explain questions in the questionnaire, unwillingness or inability to provide correct responses, bad statistical coverage, etc. These errors depend on the nature of the work, training, supervision, and conducting of all the various related activities. The work team spared no effort at the different stages to minimize non-statistical errors; however, it is difficult to estimate numerically such errors due to absence of technical computation methods based on theoretical principles to tackle them. On the other hand, statistical errors can be measured. Frequently they are measured by the standard error, which is the positive square root of the variance. The variance of this survey has been computed by using the "programming package" CENVAR

    Data appraisal

    The impact of errors on the data quality was reduced to the minimal due to the high efficiency and outstanding selection, training, and performance of the fieldworkers. Procedures adopted during the fieldwork of the survey were considered a necessity to ensure the collection of accurate data, notably: 1) Develop schedules to conduct field visits to households during survey fieldwork. The objectives of the visits and the data that is collected on each visit were predetermined. 2) Fieldwork editing rules were applied during the data collection to ensure corrections were implemented before the end of fieldwork activities 3) Fieldworker were instructed to provide details in case of extreme expenditure or consumption of the household. 4) Postpone the questions on income to the last visit at the end of the month 5) Validation rules were embedded in the data processing systems along with procedures to verify data entry and data editing.

  6. i

    Agriculture Sample Census Survey 2002-2003 - Tanzania

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (2019). Agriculture Sample Census Survey 2002-2003 - Tanzania [Dataset]. https://dev.ihsn.org/nada/catalog/72768
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    Office of Chief Government Statistician-Zanzibar
    National Bureau of Statistics
    Time period covered
    2004
    Area covered
    Tanzania
    Description

    Abstract

    The 2003 Agriculture Sample Census was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmer organisations, etc. As a result the dataset is both more numerous in its sample and detailed in its scope compared to previous censuses and surveys. To date this is the most detailed Agricultural Census carried out in Africa.

    The census was carried out in order to: · Identify structural changes if any, in the size of farm household holdings, crop and livestock production, farm input and implement use. It also seeks to determine if there are any improvements in rural infrastructure and in the level of agriculture household living conditions; · Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stake holders. · Establish baseline data for the measurement of the impact of high level objectives of the Agriculture Sector Development Programme (ASDP), National Strategy for Growth and Reduction of Poverty (NSGRP) and other rural development programs and projects. · Obtain benchmark data that will be used to address specific issues such as: food security, rural poverty, gender, agro-processing, marketing, service delivery, etc.

    Geographic coverage

    Tanzania Mainland and Zanzibar

    Analysis unit

    • Households
    • Individuals

    Universe

    Large scale, small scale and community farms.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    The Mainland sample consisted of 3,221 villages. These villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household based surveys in the country. The National Master Sample was developed from the 2002 Population and Housing Census. The total Mainland sample was 48,315 agricultural households. In Zanzibar a total of 317 enumeration areas (EAs) were selected and 4,755 agriculture households were covered. Nationwide, all regions and districts were sampled with the exception of three urban districts (two from Mainland and one from Zanzibar).

    In both Mainland and Zanzibar, a stratified two stage sample was used. The number of villages/EAs selected for the first stage was based on a probability proportional to the number of villages in each district. In the second stage, 15 households were selected from a list of farming households in each selected Village/EA, using systematic random sampling, with the village chairpersons assisting to locate the selected households.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The census covered agriculture in detail as well as many other aspects of rural development and was conducted using three different questionnaires: • Small scale questionnaire • Community level questionnaire • Large scale farm questionnaire

    The small scale farm questionnaire was the main census instrument and it includes questions related to crop and livestock production and practices; population demographics; access to services, resources and infrastructure; and issues on poverty, gender and subsistence versus profit making production unit.

    The community level questionnaire was designed to collect village level data such as access and use of common resources, community tree plantation and seasonal farm gate prices.

    The large scale farm questionnaire was administered to large farms either privately or corporately managed.

    Questionnaire Design The questionnaires were designed following user meetings to ensure that the questions asked were in line with users data needs. Several features were incorporated into the design of the questionnaires to increase the accuracy of the data: • Where feasible all variables were extensively coded to reduce post enumeration coding error. • The definitions for each section were printed on the opposite page so that the enumerator could easily refer to the instructions whilst interviewing the farmer. • The responses to all questions were placed in boxes printed on the questionnaire, with one box per character. This feature made it possible to use scanning and Intelligent Character Recognition (ICR) technologies for data entry. • Skip patterns were used to reduce unnecessary and incorrect coding of sections which do not apply to the respondent. • Each section was clearly numbered, which facilitated the use of skip patterns and provided a reference for data type coding for the programming of CSPro, SPSS and the dissemination applications.

    Cleaning operations

    Data processing consisted of the following processes: · Data entry · Data structure formatting · Batch validation · Tabulation

    Data Entry Scanning and ICR data capture technology for the small holder questionnaire were used on the Mainland. This not only increased the speed of data entry, it also increased the accuracy due to the reduction of keystroke errors. Interactive validation routines were incorporated into the ICR software to track errors during the verification process. The scanning operation was so successful that it is highly recommended for adoption in future censuses/surveys. In Zanzibar all data was entered manually using CSPro.

    Prior to scanning, all questionnaires underwent a manual cleaning exercise. This involved checking that the questionnaire had a full set of pages, correct identification and good handwriting. A score was given to each questionnaire based on the legibility and the completeness of enumeration. This score will be used to assess the quality of enumeration and supervision in order to select the best field staff for future censuses/surveys.

    CSPro was used for data entry of all Large Scale Farm and community based questionnaires due to the relatively small number of questionnaires. It was also used to enter data from the 2,880 small holder questionnaires that were rejected by the ICR extraction application.

    Data Structure Formatting A program was developed in visual basic to automatically alter the structure of the output from the scanning/extraction process in order to harmonise it with the manually entered data. The program automatically checked and changed the number of digits for each variable, the record type code, the number of questionnaires in the village, the consistency of the Village ID Code and saved the data of one village in a file named after the village code.

    Batch Validation A batch validation program was developed in order to identify inconsistencies within a questionnaire. This is in addition to the interactive validation during the ICR extraction process. The procedures varied from simple range checking within each variable to the more complex checking between variables. It took six months to screen, edit and validate the data from the smallholder questionnaires. After the long process of data cleaning, tabulations were prepared based on a pre-designed tabulation plan.

    Tabulations Statistical Package for Social Sciences (SPSS) was used to produce the Census tabulations and Microsoft Excel was used to organize the tables and compute additional indicators. Excel was also used to produce charts while ArcView and Freehand were used for the maps.

    Analysis and Report Preparation The analysis in this report focuses on regional comparisons, time series and national production estimates. Microsoft Excel was used to produce charts; ArcView and Freehand were used for maps, whereas Microsoft Word was used to compile the report.

    Data Quality A great deal of emphasis was placed on data quality throughout the whole exercise from planning, questionnaire design, training, supervision, data entry, validation and cleaning/editing. As a result of this, it is believed that the census is highly accurate and representative of what was experienced at field level during the Census year. With very few exceptions, the variables in the questionnaire are within the norms for Tanzania and they follow expected time series trends when compared to historical data. Standard Errors and Coefficients of Variation for the main variables are presented in the Technical Report (Volume I).

    Sampling error estimates

    The Sampling Error found on page (21) up to page (22) in the Technical Report for Agriculture Sample Census Survey 2002-2003

  7. s

    Sierra Leone Agriculture Household Listing Survey 2023 - Sierra Leone

    • microdata.statistics.sl
    Updated Dec 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Agriculture and Food Security (2024). Sierra Leone Agriculture Household Listing Survey 2023 - Sierra Leone [Dataset]. https://microdata.statistics.sl/index.php/catalog/11
    Explore at:
    Dataset updated
    Dec 16, 2024
    Dataset provided by
    Ministry of Agriculture and Food Security
    Statistics Sierra Leone
    Time period covered
    2023
    Area covered
    Sierra Leone
    Description

    Abstract

    In recognition of the critical role the agricultural sector plays in national development, Sierra Leone joined the 50x2030 Initiative in early 2023. This partnership focuses on establishing a sustainable annual agricultural survey program. The program's primary aim is to generate high-quality, timely, and relevant agricultural data that directly addresses the country's needs. The implementation of the 50x2030 activities in Sierra Leone relies on a variety of statistical undertakings, one of which is the Sierra Leone Listing Survey (SLLIST) conducted in 2023. This survey plays a vital role in monitoring and achieving the goals of the 50x2030 initiative. It serves as a foundational element for subsequent surveys, establishing a comprehensive sampling frame that will be utilized in future data collection efforts. By meticulously gathering data on various aspects, SLLIST lays the groundwork for further analysis and ensures the accuracy of subsequent surveys.

    The other specific objectives for the design of the Listing Survey were to: - Accurately enumerate and document all dwelling units/structures and households within the selected enumeration areas (EAs) in preparation for agricultural holdings/households' selection - Record detailed description of every structure and identify the heads of agricultural holdings/households - Collect information in each of the 520 selected EAs, ensuring effective supervision and monitoring of the agricultural holdings/households to be selected for data collection.

    Geographic coverage

    National coverage, with the exception of the Western Urban district

    Analysis unit

    Households

    Universe

    All agricultural households in both urban and rural settings were considered for this study.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey employed a stratified random sampling technique to ensure a representative sample of agricultural households across all five regions and fifteen districts of Sierra Leone with the exception of the Western Urban district. From 514 Enumeration Areas, a total of 42990 agricultural households were interviewed.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was administered in each household, preferably to the head of household. It includes questions on household demographic characteristics and agricultural activities practiced. The questionnaire is provided as external resource.

    Cleaning operations

    The listing questionnaire was implemented on CSPRO as CAPI tool. During data collection, some validation controls were integrated into the app to minimize mistakes when typing households’ answers. After data collection, a processing program designed under SPSS software permitted to clean both cases and variables. Duplicated cases were deleted and then the sampling weights adjusted to take the two non-covered EAs into account. Missing, illegal, unlike and incoherent values were detected and then locally imputed objectively in respecting filters. Finally, the necessary tabulation variables were created and then tables were produced according to the tabulation plan designed earlier.

    STATISTICAL DISCLOSURE CONTROL (SDC): The dataset was anonymized using Statistical disclosure methods. To start the process, variables were classified into main categories as variables to delete, quasi identifiers, direct identifiers, linked variables. All direct identifiers and unnecessary variables were removed. Then, quasi-identifiers (and linked variables) were considered to formulate disclosure scenarios. Disclosure risk was measured using k-anonymity and probalistic risk.

    Quasi identifiers have been anonymized using top coding (which was especially applied to categorical varaibles ), shuffling (which was applied to enumeration area codes) and local suppression which was applied to both the quasi identifiers and the linked variables. In addition, information loss was mainly measured based on number of missing values introduced during anonymization and dependency coefficient between categorical variables. The software used was R.

    Response rate

    The response rate was 99.9%.

    Sampling error estimates

    To appreciate the data quality, some tables were supported by sampling errors estimates. Especially, coefficients of variations and standard errors were estimated for a set of indicators in open data publishing purposes.

  8. Olive Presses Survey 2019 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Dec 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2021). Olive Presses Survey 2019 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/705
    Explore at:
    Dataset updated
    Dec 27, 2021
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2019
    Area covered
    Gaza, West Bank
    Description

    Abstract

    Olive production is the backbone of the Palestinian agriculture. It contributes to the social and economic well-being of Palestinian households, especially in rural areas. Olive production and related activities are essential to the Palestinian people and economy; hence it must be taken into consideration in any developmental plans in Palestine.

    Since the very beginning of its statistical activities, PCBS has focused on the sub-sector of olive production and started to conduct an annual survey of olive presses as early as 1995. This issue of the survey is done - for the fifth time - in cooperation with MoA.

    This report presents data about the main indicators pertaining to the 2019 olive season. It is expected to provide data users and researchers with the necessary information for the development of economic policies that are vital at this critical stage for the Palestinian development.

    Geographic coverage

    National coverage

    Analysis unit

    Olive presses

    Universe

    all olive presses operating in Palestine in 2019

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    No Sample

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Daily forms:filled daily. Totals forms: Packed from daily forms. Final questionnaire: It is filled with the respondent at the end of the survey The questionnaire was designed on the basis of the previous year form, in addition to some Improvements and additions at the request of the Ministry of Agriculture

    Cleaning operations

    . The efficiency of the program was checked through pre-testing by entering a few questionnaires, including incorrect information, to monitor efficiency in capturing erroneous data. . Data files were sent to the project management to be checked for accuracy and consistency.Data were checked using Excel and SPSS programs . After that the notes were sent to field work to confirm them and modify errors

    Response rate

    100%

    Sampling error estimates

    The survey was implemented on the basis of a comprehensive census of all studied statistical units (olive presses) and therefore this survey is free of statistical (sampling) errors.

  9. Olive Presses Survey 2016 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Oct 10, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2017). Olive Presses Survey 2016 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/318
    Explore at:
    Dataset updated
    Oct 10, 2017
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2016
    Area covered
    West Bank, Palestine
    Description

    Abstract

    Olive production is the backbone of the Palestinian agriculture. It contributes to the social and economic well-being of Palestinian households, especially in rural areas. Olive production and related activities are essential to the Palestinian people and economy; hence it must be taken into consideration in any developmental plans in Palestine.

    Since the very beginning of its statistical activities, PCBS has focused on the sub-sector of olive production and started to conduct an annual survey of olive presses as early as 1995. This nineteenth issue of the survey is done - for the first time - in cooperation with MoA.

    This report presents data about the main indicators pertaining to the 2016 olive season. It is expected to provide data users and researchers with the necessary information for the development of economic policies that are vital at this critical stage for the Palestinian development.

    Geographic coverage

    National coverage

    Analysis unit

    Presses

    Universe

    all olive presses operating in Palestine in 2016

    Kind of data

    Complete enumeration [enu]

    Sampling procedure

    -

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    . The efficiency of the program was checked through pre-testing by entering a few questionnaires, including incorrect information, to monitor efficiency in capturing erroneous data. . Data files were sent to the project management to be checked for accuracy and consistency.Data were checked using Excel and SPSS programs . After that the notes were sent to field work to confirm them and modify errors

    Response rate

    100%

    Sampling error estimates

    The survey was implemented on the basis of a comprehensive census of all studied statistical units (olive presses) and therefore this survey is free of statistical (sampling) errors.

  10. Good Growth Plan 2014-2019 - China

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syngenta (2023). Good Growth Plan 2014-2019 - China [Dataset]. https://microdata.worldbank.org/index.php/catalog/5617
    Explore at:
    Dataset updated
    Jan 27, 2023
    Dataset authored and provided by
    Syngenta
    Time period covered
    2014 - 2019
    Area covered
    China
    Description

    Abstract

    Syngenta is committed to increasing crop productivity and to using limited resources such as land, water and inputs more efficiently. Since 2014, Syngenta has been measuring trends in agricultural input efficiency on a global network of real farms. The Good Growth Plan dataset shows aggregated productivity and resource efficiency indicators by harvest year. The data has been collected from more than 4,000 farms and covers more than 20 different crops in 46 countries. The data (except USA data and for Barley in UK, Germany, Poland, Czech Republic, France and Spain) was collected, consolidated and reported by Kynetec (previously Market Probe), an independent market research agency. It can be used as benchmarks for crop yield and input efficiency.

    Geographic coverage

    National coverage

    Analysis unit

    Agricultural holdings

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A. Sample design Farms are grouped in clusters, which represent a crop grown in an area with homogenous agro- ecological conditions and include comparable types of farms. The sample includes reference and benchmark farms. The reference farms were selected by Syngenta and the benchmark farms were randomly selected by Kynetec within the same cluster.

    B. Sample size Sample sizes for each cluster are determined with the aim to measure statistically significant increases in crop efficiency over time. This is done by Kynetec based on target productivity increases and assumptions regarding the variability of farm metrics in each cluster. The smaller the expected increase, the larger the sample size needed to measure significant differences over time. Variability within clusters is assumed based on public research and expert opinion. In addition, growers are also grouped in clusters as a means of keeping variances under control, as well as distinguishing between growers in terms of crop size, region and technological level. A minimum sample size of 20 interviews per cluster is needed. The minimum number of reference farms is 5 of 20. The optimal number of reference farms is 10 of 20 (balanced sample).

    C. Selection procedure The respondents were picked randomly using a “quota based random sampling” procedure. Growers were first randomly selected and then checked if they complied with the quotas for crops, region, farm size etc. To avoid clustering high number of interviews at one sampling point, interviewers were instructed to do a maximum of 5 interviews in one village.

    Screened China BF were from Licheng Town ( Liyang City, Jiangsu province) + Dinggou Town (Jiangdu District, Yangzhou city, Jiangsu province) + Shuikou Town (Tianchang city, Anhui Province) and were selected based on the following criterion: - Rice rotation with wheat growers (professional)
    - Professional farmer with rice being main income source
    - Mechanical planting
    - Co-op operation: Co-op operation means a local professional farmer who leases small fragmented pieces of lands from his neighbors (consolidation) to make it bigger and commercial farming scale
    - Receive tech supports from CP suppliers or dealers
    - Hire labor
    - Suggest mechanical, Co-op type of farmers as benchmark farms. Compare SYT vs generic products. Rice-wheat rotation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Data collection tool for 2019 covered the following information:

    (A) PRE- HARVEST INFORMATION

    PART I: Screening PART II: Contact Information PART III: Farm Characteristics a. Biodiversity conservation b. Soil conservation c. Soil erosion d. Description of growing area e. Training on crop cultivation and safety measures PART IV: Farming Practices - Before Harvest a. Planting and fruit development - Field crops b. Planting and fruit development - Tree crops c. Planting and fruit development - Sugarcane d. Planting and fruit development - Cauliflower e. Seed treatment

    (B) HARVEST INFORMATION

    PART V: Farming Practices - After Harvest a. Fertilizer usage b. Crop protection products c. Harvest timing & quality per crop - Field crops d. Harvest timing & quality per crop - Tree crops e. Harvest timing & quality per crop - Sugarcane f. Harvest timing & quality per crop - Banana g. After harvest PART VI - Other inputs - After Harvest a. Input costs b. Abiotic stress c. Irrigation

    See all questionnaires in external materials tab

    Cleaning operations

    Data processing:

    Kynetec uses SPSS (Statistical Package for the Social Sciences) for data entry, cleaning, analysis, and reporting. After collection, the farm data is entered into a local database, reviewed, and quality-checked by the local Kynetec agency. In the case of missing values or inconsistencies, farmers are re-contacted. In some cases, grower data is verified with local experts (e.g. retailers) to ensure data accuracy and validity. After country-level cleaning, the farm-level data is submitted to the global Kynetec headquarters for processing. In the case of missing values or inconsistences, the local Kynetec office was re-contacted to clarify and solve issues.

    Quality assurance Various consistency checks and internal controls are implemented throughout the entire data collection and reporting process in order to ensure unbiased, high quality data.

    • Screening: Each grower is screened and selected by Kynetec based on cluster-specific criteria to ensure a comparable group of growers within each cluster. This helps keeping variability low.

    • Evaluation of the questionnaire: The questionnaire aligns with the global objective of the project and is adapted to the local context (e.g. interviewers and growers should understand what is asked). Each year the questionnaire is evaluated based on several criteria, and updated where needed.

    • Briefing of interviewers: Each year, local interviewers - familiar with the local context of farming -are thoroughly briefed to fully comprehend the questionnaire to obtain unbiased, accurate answers from respondents.

    • Cross-validation of the answers: o Kynetec captures all growers' responses through a digital data-entry tool. Various logical and consistency checks are automated in this tool (e.g. total crop size in hectares cannot be larger than farm size) o Kynetec cross validates the answers of the growers in three different ways: 1. Within the grower (check if growers respond consistently during the interview) 2. Across years (check if growers respond consistently throughout the years) 3. Within cluster (compare a grower's responses with those of others in the group) o All the above mentioned inconsistencies are followed up by contacting the growers and asking them to verify their answers. The data is updated after verification. All updates are tracked.

    • Check and discuss evolutions and patterns: Global evolutions are calculated, discussed and reviewed on a monthly basis jointly by Kynetec and Syngenta.

    • Sensitivity analysis: sensitivity analysis is conducted to evaluate the global results in terms of outliers, retention rates and overall statistical robustness. The results of the sensitivity analysis are discussed jointly by Kynetec and Syngenta.

    • It is recommended that users interested in using the administrative level 1 variable in the location dataset use this variable with care and crosscheck it with the postal code variable.

    Data appraisal

    Due to the above mentioned checks, irregularities in fertilizer usage data were discovered which had to be corrected:

    For data collection wave 2014, respondents were asked to give a total estimate of the fertilizer NPK-rates that were applied in the fields. From 2015 onwards, the questionnaire was redesigned to be more precise and obtain data by individual fertilizer products. The new method of measuring fertilizer inputs leads to more accurate results, but also makes a year-on-year comparison difficult. After evaluating several solutions to this problems, 2014 fertilizer usage (NPK input) was re-estimated by calculating a weighted average of fertilizer usage in the following years.

  11. Good Growth Plan 2016-2019 - Zimbabwe

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Nov 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syngenta (2022). Good Growth Plan 2016-2019 - Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/5172
    Explore at:
    Dataset updated
    Nov 30, 2022
    Dataset authored and provided by
    Syngenta
    Time period covered
    2016 - 2019
    Area covered
    Zimbabwe
    Description

    Abstract

    Syngenta is committed to increasing crop productivity and to using limited resources such as land, water and inputs more efficiently. Since 2014, Syngenta has been measuring trends in agricultural input efficiency on a global network of real farms. The Good Growth Plan dataset shows aggregated productivity and resource efficiency indicators by harvest year. The data has been collected from more than 4,000 farms and covers more than 20 different crops in 46 countries. The data (except USA data and for Barley in UK, Germany, Poland, Czech Republic, France and Spain) was collected, consolidated and reported by Kynetec (previously Market Probe), an independent market research agency. It can be used as benchmarks for crop yield and input efficiency.

    Geographic coverage

    National coverage

    Analysis unit

    Agricultural holdings

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A. Sample design Farms are grouped in clusters, which represent a crop grown in an area with homogenous agro- ecological conditions and include comparable types of farms. The sample includes reference and benchmark farms. The reference farms were selected by Syngenta and the benchmark farms were randomly selected by Kynetec within the same cluster. B. Sample size Sample sizes for each cluster are determined with the aim to measure statistically significant increases in crop efficiency over time. This is done by Kynetec based on target productivity increases and assumptions regarding the variability of farm metrics in each cluster. The smaller the expected increase, the larger the sample size needed to measure significant differences over time. Variability within clusters is assumed based on public research and expert opinion. In addition, growers are also grouped in clusters as a means of keeping variances under control, as well as distinguishing between growers in terms of crop size, region and technological level. A minimum sample size of 20 interviews per cluster is needed. The minimum number of reference farms is 5 of 20. The optimal number of reference farms is 10 of 20 (balanced sample).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Data collection tool for 2019 covered the following information:

    (A) PRE- HARVEST INFORMATION PART I: Screening PART II: Contact Information PART III: Farm Characteristics a. Biodiversity conservation b. Soil conservation c. Soil erosion d. Description of growing area e. Training on crop cultivation and safety measures PART IV: Farming Practices - Before Harvest a. Planting and fruit development - Field crops b. Planting and fruit development - Tree crops c. Planting and fruit development - Sugarcane d. Planting and fruit development - Cauliflower e. Seed treatment

    (B) HARVEST INFORMATION PART V: Farming Practices - After Harvest a. Fertilizer usage b. Crop protection products c. Harvest timing & quality per crop - Field crops d. Harvest timing & quality per crop - Tree crops e. Harvest timing & quality per crop - Sugarcane f. Harvest timing & quality per crop - Banana g. After harvest PART VI - Other inputs - After Harvest a. Input costs b. Abiotic stress c. Irrigation

    See all questionnaires in external materials tab

    Cleaning operations

    Data processing:

    Kynetec uses SPSS (Statistical Package for the Social Sciences) for data entry, cleaning, analysis, and reporting. After collection, the farm data is entered into a local database, reviewed, and quality-checked by the local Kynetec agency. In the case of missing values or inconsistencies, farmers are re-contacted. In some cases, grower data is verified with local experts (e.g. retailers) to ensure data accuracy and validity. After country-level cleaning, the farm-level data is submitted to the global Kynetec headquarters for processing. In the case of missing values or inconsistences, the local Kynetec office was re-contacted to clarify and solve issues.

    Quality assurance Various consistency checks and internal controls are implemented throughout the entire data collection and reporting process in order to ensure unbiased, high quality data.

    • Screening: Each grower is screened and selected by Kynetec based on cluster-specific criteria to ensure a comparable group of growers within each cluster. This helps keeping variability low. • Evaluation of the questionnaire: The questionnaire aligns with the global objective of the project and is adapted to the local context (e.g. interviewers and growers should understand what is asked). Each year the questionnaire is evaluated based on several criteria, and updated where needed. • Briefing of interviewers: Each year, local interviewers - familiar with the local context of farming -are thoroughly briefed to fully comprehend the questionnaire to obtain unbiased, accurate answers from respondents. • Cross-validation of the answers: o Kynetec captures all growers' responses through a digital data-entry tool. Various logical and consistency checks are automated in this tool (e.g. total crop size in hectares cannot be larger than farm size) o Kynetec cross validates the answers of the growers in three different ways: 1. Within the grower (check if growers respond consistently during the interview) 2. Across years (check if growers respond consistently throughout the years) 3. Within cluster (compare a grower's responses with those of others in the group)

    o All the above mentioned inconsistencies are followed up by contacting the growers and asking them to verify their answers. The data is updated after verification. All updates are tracked.

    • Check and discuss evolutions and patterns: Global evolutions are calculated, discussed and reviewed on a monthly basis jointly by Kynetec and Syngenta. • Sensitivity analysis: sensitivity analysis is conducted to evaluate the global results in terms of outliers, retention rates and overall statistical robustness. The results of the sensitivity analysis are discussed jointly by Kynetec and Syngenta. • It is recommended that users interested in using the administrative level 1 variable in the location dataset use this variable with care and crosscheck it with the postal code variable.

    Data appraisal

    Due to the above mentioned checks, irregularities in fertilizer usage data were discovered which had to be corrected:

    For data collection wave 2014, respondents were asked to give a total estimate of the fertilizer NPK-rates that were applied in the fields. From 2015 onwards, the questionnaire was redesigned to be more precise and obtain data by individual fertilizer products. The new method of measuring fertilizer inputs leads to more accurate results, but also makes a year-on-year comparison difficult. After evaluating several solutions to this problems, 2014 fertilizer usage (NPK input) was re-estimated by calculating a weighted average of fertilizer usage in the following years.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Statistics (2022). Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7661

Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan

Explore at:
Dataset updated
Jan 12, 2022
Dataset authored and provided by
Department of Statistics
Time period covered
2008 - 2009
Area covered
Jordan
Description

Abstract

The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

Geographic coverage

National

Analysis unit

  • Household/families
  • Individuals

Universe

The survey covered a national sample of households and all individuals permanently residing in surveyed households.

Kind of data

Sample survey data [ssd]

Sampling procedure

The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.

To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.

It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.

Mode of data collection

Face-to-face [f2f]

Research instrument

List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

Cleaning operations

Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results

Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format

Search
Clear search
Close search
Google apps
Main menu