CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Ahoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.
This dataset was created by Luis Lira
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
9130 Global exporters importers export import shipment records of Clean excel with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
It completely data clean excel file to attain accurate data analysis with proper visualization
About this course Do you have messy data from multiple inconsistent sources, or open-responses to questionnaires? Do you want to improve the quality of your data by refining it and using the power of the internet? Open Refine is the perfect partner to Excel. It is a powerful, free tool for exploring, normalising and cleaning datasets, and extending data by accessing the internet through APIs. In this course we’ll work through the various features of Refine, including importing data, faceting, clustering, and calling remote APIs, by working on a fictional but plausible humanities research project. Learning Outcomes Download, install and run Open Refine Import data from csv, text or online sources and create projects Navigate data using the Open Refine interface Explore data by using facets Clean data using clustering Parse data using GREL syntax Extend data using Application Programming Interfaces (APIs) Export project for use in other applications Prerequisites The course has no prerequisites. Licence Copyright © 2021 Intersect Australia Ltd. All rights reserved.
This dataset was created by Mohammed Khaled Boyka
Released under Other (specified in description)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
CEEAT MS Excel-based and uses an input-output (I-O) table-based approach to estimate the economy-wide net direct, indirect and induced employment impacts of various clean energy technology pathways, with a focus on the electricity sector. *Please note that the default setting is set to Morocco. Please enter data from your country of interest.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes open-source projects written in C# programing language, annotated for the presence of Long Method and God Class code smells. Each instance was manually annotated by at least two annotators. We explain our motivation and methodology for creating this dataset in our preprint:
Luburić, N., Prokić, S., Grujić, K.G., Slivka, J., Kovačević, A., Sladić, G. and Vidaković, D., 2021. Towards a systematic approach to manual annotation of code smells.
The dataset contains two excel datasheets:
The columns in the datasheet represent:
To help guide their reasoning for evaluating the presence and the severity of a code smell, three annotators independently annotated whether the considered heuristics apply to an evaluated code snippet. We provide these results in two separate excel datasheets:
The columns of these two datasheets are:
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Over the last 20 years, statistics preparation has become vital for a broad range of scientific fields, and statistics coursework has been readily incorporated into undergraduate and graduate programs. However, a gap remains between the computational skills taught in statistics service courses and those required for the use of statistics in scientific research. Ten years after the publication of "Computing in the Statistics Curriculum,'' the nature of statistics continues to change, and computing skills are more necessary than ever for modern scientific researchers. In this paper, we describe research on the design and implementation of a suite of data science workshops for environmental science graduate students, providing students with the skills necessary to retrieve, view, wrangle, visualize, and analyze their data using reproducible tools. These workshops help to bridge the gap between the computing skills necessary for scientific research and the computing skills with which students leave their statistics service courses. Moreover, though targeted to environmental science graduate students, these workshops are open to the larger academic community. As such, they promote the continued learning of the computational tools necessary for working with data, and provide resources for incorporating data science into the classroom.
Methods Surveys from Carpentries style workshops the results of which are presented in the accompanying manuscript.
Pre- and post-workshop surveys for each workshop (Introduction to R, Intermediate R, Data Wrangling in R, Data Visualization in R) were collected via Google Form.
The surveys administered for the fall 2018, spring 2019 academic year are included as pre_workshop_survey and post_workshop_assessment PDF files.
The raw versions of these data are included in the Excel files ending in survey_raw or assessment_raw.
The data files whose name includes survey contain raw data from pre-workshop surveys and the data files whose name includes assessment contain raw data from the post-workshop assessment survey.
The annotated RMarkdown files used to clean the pre-workshop surveys and post-workshop assessments are included as workshop_survey_cleaning and workshop_assessment_cleaning, respectively.
The cleaned pre- and post-workshop survey data are included in the Excel files ending in clean.
The summaries and visualizations presented in the manuscript are included in the analysis annotated RMarkdown file.
A Knowledge, Attitudes and Practices (KAP) survey was conducted in Ajuong Thok and Pamir Refugee Camps in October 2019 to determine the current Water, Sanitation and Hygiene (WASH) conditions as well as hygiene attitudes and practices within the households (HHs) surveyed. The assessment utilized a systematic random sampling method, and a total of 1,474 HHs (735 HHs in Ajuong Thok and 739 HHs in Pamir) were surveyed using mobile data collection (MDC) within a period of 21 days. Data was cleaned and analyzed in Excel. The summary of the results is presented in this report.
The findings show that the overall average number of liters of water per person per day was 23.4, in both Ajuong Thok and Pamir Camps, which was slightly higher than the recommended United Nations High Commissioner for Refugees (UNHCR) minimum standard of at least 20 liters of water available per person per day. This is a slight improvement from the 21 liters reported the previous year. The average HH size was six people. Women comprised 83% of the surveyed respondents and males 17%. Almost all the respondents were refugees, constituting 99.5% (n=1,466). The refugees were aware of the key health and hygiene practices, possibly as a result of routine health and hygiene messages delivered to them by Samaritan´s Purse (SP) and other health partners. Most refugees had knowledge about keeping the water containers clean, washing hands during critical times, safe excreta disposal and disease prevention.
Ajuong Thok and Pamir Refugee Camps
Households
All households in Ajuong Thok and Pamir Refugee Camps
Sample survey data [ssd]
Households were selected using systematic random sampling. Enumerators systematically walked through the camp block by block, row by row, in such a way as to pass each HH. Within blocks, enumerators started at one corner, then systematically used the sampling interval as they walked up and down each of the rows throughout the block, covering every block in Ajuong Thok and Pamir.
In each location, the first HH sampled in a block was generated using an Excel tool customized by UNHCR which generated a Random Start and Sampling Interval.
Face-to-face [f2f]
The survey questionnaire used to collect the data consists of the following sections: - Demographics - Water collection and storage - Drinking water hygiene - Hygiene - Sanitation - Messaging - Distribution (NFI) - Diarrhea prevalence, knowledge and health seeking behaviour - Menstrual hygiene
The data collected was uploaded to a server at the end of each day. IFormBuilder generated a Microsoft (MS) Excel spreadsheet dataset which was then cleaned and analyzed using MS Excel.
Given that SP is currently implementing a WASH program in Ajuong Thok and Pamir, the assessment data collected in these camps will not only serve as the endline for UNHCR 2018 programming but also as the baseline for 2019 programming.
Data was anonymized through decoding and local suppression.
This is a clean MySQL database on USA household Incomes retrieved & cleaned from another kaggler.
Its a great way to practice SQL. It´s not meant to do a realworld analysis.
It also comes with an Excel Dashboard analysing the dataset
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABOUT THIS TOOL:
The Better Building’s Clean Energy for Low Income Communities Accelerator (CELICA) was launched in 2016 to help state and local partners across the nation meet their goals for increasing uptake of energy efficiency and renewable energy technologies in low and moderate income communities. As a part of the Accelerator, DOE created this Low-Income Energy Affordability Data (LEAD) Tool to assist partners with understanding their LMI community characteristics. This can be utilized for low income and moderate income energy policy and program planning, as it provides interactive state, county and city level worksheets with graphs and data including number of households at different income levels and numbers of homeowners versus renters. It provides a breakdown based on fuel type, building type, and construction year. It also provides average monthly energy expenditures and energy burden (percentage of income spent on energy).
HOW TO USE:
The LEAD tool can be used to support program design and goal setting, and they can be paired with other data to improve LMI community energy benchmarking and program evaluation. Datasets are available for all 50 states, census divisions, and tract levels. You will have to enable macros in MS Excel to interact with the data. A description of each of the files and what states are included in each U.S. Census Division can be found in the file "DESCRIPTION OF FILES".
For more information, visit: https://betterbuildingsinitiative.energy.gov/accelerators/clean-energy-low-income-communities
language:
en --Generate a clean Excel dataset with the following columns: Date (from 01-01-2023 to 31-12-2025), Region (North, South, East, West), Branch (Branch A to Branch E), Business Type (B2B & B2C), Partner ID (should be unique), Client ID (should be unique), Total Investment, Total Revenue, Revenue generated by B2B, Revenue generated by B2C, Revenue generated by Partner, Partner share of 40% from total revenue, Admin Expenses, Employee & HR Expenses, Marketing Expense, Technology… See the full description on the dataset page: https://huggingface.co/datasets/mitadhamdhere13/BusinessData.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Datasets contains 4 files- the excel file is the original file after scraping the data from the website but is very raw and uncleaned. After spending a lot of time, I tried to clean the data, which I thought fits best to represent the dataset and can be used for projects. Explore all the datasets and share your notebooks and insights! Consider upvoting if you find it helpful, Thank you.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Cardiovascular diseases dataset (clean)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/aiaiaidavid/cardio-data-dv13032020 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
This data set is a cleaned up copy of cardio_train.csv which can be found at:
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
The original data set has been analyzed with Excel, correcting negative values, and removing outliers.
A number of features in the dataset are used to predict the presence or absence of a cardiovascular disease.
Below is a description of the features:
AGE: integer (years of age)
HEIGHT: integer (cm)
WEIGHT: integer (kg)
GENDER: categorical (1: female, 2: male)
AP_HIGH: systolic blood pressure, integer
AP_LOW: diastolic blood pressure, integer
CHOLESTEROL: categorical (1: normal, 2: above normal, 3: well above normal)
GLUCOSE: categorical (1: normal, 2: above normal, 3: well above normal)
SMOKE: categorical (0: no, 1: yes)
ALCOHOL: categorical (0: no, 1: yes)
PHYSICAL_ACTIVITY: categorical (0: no, 1: yes)
And the target variable:
CARDIO_DISEASE: categorical (0: no, 1: yes)
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PECD Hydro modelling
This repository contains a more user-friendly version of the Hydro modelling data
released by ENTSO-E with their latest Seasonal Outlook.
The original URLs:
The original ENTSO-E hydropower dataset integrates the PECD (Pan-European Climate Database) released for the MAF 2019
As I did for the wind & solar data, the datasets released in this repository are only a more user- and machine-readable version of the original Excel files. As avid user of ENTSO-E data, with this repository I want to share my data wrangling efforts to make this dataset more accessible.
Data description
The zipped file contains 86 Excel files, two different files for each ENTSO-E zone.
In this repository you can find 5 CSV files:
PECD-hydro-capacities.csv
: installed capacitiesPECD-hydro-weekly-inflows.csv
: weekly inflows for reservoir and open-loop pumpingPECD-hydro-daily-ror-generation.csv
: daily run-of-river generationPECD-hydro-weekly-reservoir-min-max-generation.csv
: minimum and maximum weekly reservoir generationPECD-hydro-weekly-reservoir-min-max-levels.csv
: weekly minimum and maximum reservoir levelsCapacities
The file PECD-hydro-capacities.csv
contains: run of river capacity (MW) and storage capacity (GWh), reservoir plants capacity (MW) and storage capacity (GWh), closed-loop pumping/turbining (MW) and storage capacity and open-loop pumping/turbining (MW) and storage capacity. The data is extracted from the Excel files with the name starting with PEMM
from the following sections:
Run-of-River and pondage
, rows from 5 to 7, columns from 2 to 5Reservoir
, rows from 5 to 7, columns from 1 to 3Pump storage - Open Loop
, rows from 5 to 7, columns from 1 to 3Pump storage - Closed Loop
, rows from 5 to 7, columns from 1 to 3Inflows
The file PECD-hydro-weekly-inflows.csv
contains the weekly inflow (GWh) for the climatic years 1982-2017 for reservoir plants and open-loop pumping. The data is extracted from the Excel files with the name starting with PEMM
from the following sections:
Reservoir
, rows from 13 to 66, columns from 16 to 51Pump storage - Open Loop
, rows from 13 to 66, columns from 16 to 51Daily run-of-river
The file PECD-hydro-daily-ror-generation.csv
contains the daily run-of-river generation (GWh). The data is extracted from the Excel files with the name starting with PEMM
from the following sections:
Run-of-River and pondage
, rows from 13 to 378, columns from 15 to 51Miminum and maximum reservoir generation
The file PECD-hydro-weekly-reservoir-min-max-generation.csv
contains the minimum and maximum generation (MW, weekly) for reservoir-based plants for the climatic years 1982-2017. The data is extracted from the Excel files with the name starting with PEMM
from the following sections:
Reservoir
, rows from 13 to 66, columns from 196 to 231Reservoir
, rows from 13 to 66, columns from 232 to 267Minimum/Maximum reservoir levels
The file PECD-hydro-weekly-reservoir-min-max-levels.csv
contains the minimum/maximum reservoir levels at beginning of each week (scaled coefficient from 0 to 1). The data is extracted from the Excel files with the name starting with PEMM
from the following sections:
Reservoir
, rows from 14 to 66, column 12Reservoir
, rows from 14 to 66, column 13CHANGELOG
[2020/07/17] Added maximum generation for the reservoir
For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 3 release notes:Adds data in the following formats: Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 2 release notes:Adds data for 2017.Adds a "number_of_months_reported" variable which says how many months of the year the agency reported data.Property Stolen and Recovered is a Uniform Crime Reporting (UCR) Program data set with information on the number of offenses (crimes included are murder, rape, robbery, burglary, theft/larceny, and motor vehicle theft), the value of the offense, and subcategories of the offense (e.g. for robbery it is broken down into subcategories including highway robbery, bank robbery, gas station robbery). The majority of the data relates to theft. Theft is divided into subcategories of theft such as shoplifting, theft of bicycle, theft from building, and purse snatching. For a number of items stolen (e.g. money, jewelry and previous metals, guns), the value of property stolen and and the value for property recovered is provided. This data set is also referred to as the Supplement to Return A (Offenses Known and Reported). All the data was received directly from the FBI as text or .DTA files. I created a setup file based on the documentation provided by the FBI and read the data into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here: https://github.com/jacobkap/crime_data. The Word document file available for download is the guidebook the FBI provided with the raw data which I used to create the setup file to read in data.There may be inaccuracies in the data, particularly in the group of columns starting with "auto." To reduce (but certainly not eliminate) data errors, I replaced the following values with NA for the group of columns beginning with "offenses" or "auto" as they are common data entry error values (e.g. are larger than the agency's population, are much larger than other crimes or months in same agency): 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99942. This cleaning was NOT done on the columns starting with "value."For every numeric column I replaced negative indicator values (e.g. "j" for -1) with the negative number they are supposed to be. These negative number indicators are not included in the FBI's codebook for this data but are present in the data. I used the values in the FBI's codebook for the Offenses Known and Clearances by Arrest data.To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. If an agency has used a different FIPS code in the past, check to make sure the FIPS code is the same as in this data.
Survey data from the Australian Marine Debris Initiative and the result of spatial analysis from multiple creative commons datasets. Data consists of: • Spatial Data Queensland Coastline – Event summaries within an Excel data table and shapefile • All years • Number of Items removed, Weight volunteers, Volume, Distance, Latitude and Longitude. • Contributing organisation files table/ sites • Environmental, physical and biological variables associated with the closest catchment to each debris survey. TBF has made all reasonable efforts to ensure that the information in the Custom Dataset is accurate. TBF will not be held responsible: • for the way these data are used by the Entity for their Reports; • for any errors that may be contained in the Custom Dataset; or • any direct or indirect damage the use of the Custom Dataset may cause. Data collected by TBF comes from citizen science initiatives and is taken at face value from contributors with each entry being vetted and periodic checks being made to maintain the integrity of the overall dataset. Some clean-up data has been extrapolated by data collectors. Some weight and distance details have not been provided by contributors. The data was collected by various organisations and individuals in clean-up events at their chosen locations where man-made items greater than 5mm were removed from the beach, and sorted, counted and recorded on data sheets, using CyberTracker software devices or the AMDI mobile application. Items were identified according to the method laid out in the TBF Marine Debris Identification Manual in which items are grouped according to their material categories (the manual is available on the TBF website). The length of beach cleaned is at the discretion of the clean-up group and the total weight of items removed is either weighed with handheld scales or estimated.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.