37 datasets found
  1. B

    Data Cleaning Sample

    • borealisdata.ca
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  2. d

    Navigating Stats Can Data & Scrubbing Data Clean with Excel Workshop

    • search.dataone.org
    • borealisdata.ca
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Costanzo, Lucia; Jadon, Vivek (2024). Navigating Stats Can Data & Scrubbing Data Clean with Excel Workshop [Dataset]. http://doi.org/10.5683/SP3/FF6AI9
    Explore at:
    Dataset updated
    Jul 31, 2024
    Dataset provided by
    Borealis
    Authors
    Costanzo, Lucia; Jadon, Vivek
    Description

    Ahoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.

  3. Excel-project: Glassdoor Data Cleaning

    • kaggle.com
    Updated Sep 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luis Lira (2023). Excel-project: Glassdoor Data Cleaning [Dataset]. https://www.kaggle.com/datasets/luisliraportfolio/excel-project-clean-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 26, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Luis Lira
    Description

    Dataset

    This dataset was created by Luis Lira

    Contents

  4. Global exporters importers-export import data of Clean excel

    • volza.com
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global exporters importers-export import data of Clean excel [Dataset]. https://www.volza.com/trade-data-global/global-exporters-importers-export-import-data-of-clean+excel
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of exporters, Count of importers, Count of shipments, Sum of export import value
    Description

    9130 Global exporters importers export import shipment records of Clean excel with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  5. popular baby names with data cleaning

    • kaggle.com
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Real Sourabh Singhal (2023). popular baby names with data cleaning [Dataset]. https://www.kaggle.com/datasets/realsourabhsinghal/popular-baby-names-with-data-cleaning/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Real Sourabh Singhal
    Description

    It completely data clean excel file to attain accurate data analysis with proper visualization

  6. o

    Data from: Cleaning Data with Open Refine

    • explore.openaire.eu
    Updated Jan 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Richard Berry; Dr Luc Small; Dr Jeff Christiansen (2016). Cleaning Data with Open Refine [Dataset]. http://doi.org/10.5281/zenodo.6423839
    Explore at:
    Dataset updated
    Jan 1, 2016
    Authors
    Dr Richard Berry; Dr Luc Small; Dr Jeff Christiansen
    Description

    About this course Do you have messy data from multiple inconsistent sources, or open-responses to questionnaires? Do you want to improve the quality of your data by refining it and using the power of the internet? Open Refine is the perfect partner to Excel. It is a powerful, free tool for exploring, normalising and cleaning datasets, and extending data by accessing the internet through APIs. In this course we’ll work through the various features of Refine, including importing data, faceting, clustering, and calling remote APIs, by working on a fictional but plausible humanities research project. Learning Outcomes Download, install and run Open Refine Import data from csv, text or online sources and create projects Navigate data using the Open Refine interface Explore data by using facets Clean data using clustering Parse data using GREL syntax Extend data using Application Programming Interfaces (APIs) Export project for use in other applications Prerequisites The course has no prerequisites. Licence Copyright © 2021 Intersect Australia Ltd. All rights reserved.

  7. covid19_clean_complete & Data_Excel & Assignment_1

    • kaggle.com
    Updated Feb 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Khaled Boyka (2025). covid19_clean_complete & Data_Excel & Assignment_1 [Dataset]. https://www.kaggle.com/datasets/mohammedkhaledboyka/covid19-clean-complete-and-data-excel-and-assignment-1/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohammed Khaled Boyka
    Description

    Dataset

    This dataset was created by Mohammed Khaled Boyka

    Released under Other (specified in description)

    Contents

  8. e

    Clean Energy Employment Assessment Tool (CEEAT) - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Clean Energy Employment Assessment Tool (CEEAT) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/clean-energy-employment-assessment-tool-ceeat
    Explore at:
    Dataset updated
    Feb 25, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    CEEAT MS Excel-based and uses an input-output (I-O) table-based approach to estimate the economy-wide net direct, indirect and induced employment impacts of various clean energy technology pathways, with a focus on the electricity sector. *Please note that the default setting is set to Morocco. Please enter data from your country of interest.

  9. f

    Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping

    • figshare.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maryam Binti Haji Abdul Halim (2025). Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping [Dataset]. http://doi.org/10.6084/m9.figshare.28147451.v1
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    figshare
    Authors
    Maryam Binti Haji Abdul Halim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.

  10. Towards a systematic approach to manual annotation of code smells - C#...

    • zenodo.org
    • data.niaid.nih.gov
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikola Luburić; Nikola Luburić; Simona Prokić; Simona Prokić; Katarina-Glorija Grujić; Katarina-Glorija Grujić; Jelena Slivka; Jelena Slivka; Aleksandar Kovačević; Aleksandar Kovačević; Goran Sladić; Goran Sladić; Dragan Vidaković; Dragan Vidaković (2022). Towards a systematic approach to manual annotation of code smells - C# Dataset of Long Method and Large Class code smells [Dataset]. http://doi.org/10.5281/zenodo.6520056
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nikola Luburić; Nikola Luburić; Simona Prokić; Simona Prokić; Katarina-Glorija Grujić; Katarina-Glorija Grujić; Jelena Slivka; Jelena Slivka; Aleksandar Kovačević; Aleksandar Kovačević; Goran Sladić; Goran Sladić; Dragan Vidaković; Dragan Vidaković
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes open-source projects written in C# programing language, annotated for the presence of Long Method and God Class code smells. Each instance was manually annotated by at least two annotators. We explain our motivation and methodology for creating this dataset in our preprint:

    Luburić, N., Prokić, S., Grujić, K.G., Slivka, J., Kovačević, A., Sladić, G. and Vidaković, D., 2021. Towards a systematic approach to manual annotation of code smells.

    The dataset contains two excel datasheets:

    • DataSet_Large Class.xlsx – C# classes annotated for the Large Class code smell severity.
    • DataSet_Long Method.xlsx – C# methods annotated for the Long method code smell severity.

    The columns in the datasheet represent:

    • Code Snippet ID – the full name of the code snippet.
      • For classes, this is the package/namespace name followed by the class name. The full name of inner classes also contains the names of any outer classes (e.g., namespace.subnamespace.outerclass.innerclass).
      • For methods, this is the full name of the class and the methods’s signature (e.g., namespace.class.method(param1Type, param2Type) ).
    • Link – The GitHub link to the code snippet, including the commit and the start and end LOC.
    • Code Smell – code smell for which the code snippet is examined (Large Class or Long Method).
    • Project Link – the link to the version of the code repository that was annotated.
    • Metrics – a list of metrics for the code snippet, calculated by our platform. Our dataset provides 25 class-level metrics for Large Class detection and 18 method-level metrics for Long Method detection The list of metrics and their definitions is available here.
    • Final annotation – a single severity score calculated by a majority vote.
    • Annotators – each annotator's (1, 2, or 3) assigned severity score.

    To help guide their reasoning for evaluating the presence and the severity of a code smell, three annotators independently annotated whether the considered heuristics apply to an evaluated code snippet. We provide these results in two separate excel datasheets:

    • LargeClass_Heuristics.xlsx - C# classes annotated for the presence of heuristics relevant for the Large Class code smell.
    • LongMethod_Heuristics.xlsx - C# classes annotated for the presence of heuristics relevant for the Large Class code smell.

    The columns of these two datasheets are:

    • Code Snippet ID - the full name of the code snippet (matching the IDs from DataSet_Large Class.xlsx and DataSet_Long Method.xlsx)
    • Annotators – heuristics labelled by each of the annotators (1, 2, or 3).
    • Heuristics – whether the heuristic is applicable to the examined code snippet or not (Section 1.2.4 lists heuristics relevant for the Large Class detection, and Section 1.2.5 lists the heuristics relevant for the Long Method detection).
  11. n

    Data from: Designing data science workshops for data-intensive environmental...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allison Theobold; Stacey Hancock; Sara Mannheimer (2020). Designing data science workshops for data-intensive environmental science research [Dataset]. http://doi.org/10.5061/dryad.7wm37pvp7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 8, 2020
    Dataset provided by
    California State Polytechnic University
    Montana State University
    Authors
    Allison Theobold; Stacey Hancock; Sara Mannheimer
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Over the last 20 years, statistics preparation has become vital for a broad range of scientific fields, and statistics coursework has been readily incorporated into undergraduate and graduate programs. However, a gap remains between the computational skills taught in statistics service courses and those required for the use of statistics in scientific research. Ten years after the publication of "Computing in the Statistics Curriculum,'' the nature of statistics continues to change, and computing skills are more necessary than ever for modern scientific researchers. In this paper, we describe research on the design and implementation of a suite of data science workshops for environmental science graduate students, providing students with the skills necessary to retrieve, view, wrangle, visualize, and analyze their data using reproducible tools. These workshops help to bridge the gap between the computing skills necessary for scientific research and the computing skills with which students leave their statistics service courses. Moreover, though targeted to environmental science graduate students, these workshops are open to the larger academic community. As such, they promote the continued learning of the computational tools necessary for working with data, and provide resources for incorporating data science into the classroom.

    Methods Surveys from Carpentries style workshops the results of which are presented in the accompanying manuscript.

    Pre- and post-workshop surveys for each workshop (Introduction to R, Intermediate R, Data Wrangling in R, Data Visualization in R) were collected via Google Form.

    The surveys administered for the fall 2018, spring 2019 academic year are included as pre_workshop_survey and post_workshop_assessment PDF files. 
    The raw versions of these data are included in the Excel files ending in survey_raw or assessment_raw.
    
      The data files whose name includes survey contain raw data from pre-workshop surveys and the data files whose name includes assessment contain raw data from the post-workshop assessment survey.
    
    
    The annotated RMarkdown files used to clean the pre-workshop surveys and post-workshop assessments are included as workshop_survey_cleaning and workshop_assessment_cleaning, respectively. 
    The cleaned pre- and post-workshop survey data are included in the Excel files ending in clean. 
    The summaries and visualizations presented in the manuscript are included in the analysis annotated RMarkdown file.
    
  12. KAP WASH 2019 in South Sudan's Ajuong Thok and Pamir Camps - South Sudan

    • datacatalog.ihsn.org
    • microdata.unhcr.org
    • +1more
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samaritan's Purse (2021). KAP WASH 2019 in South Sudan's Ajuong Thok and Pamir Camps - South Sudan [Dataset]. https://datacatalog.ihsn.org/catalog/9787
    Explore at:
    Dataset updated
    Oct 14, 2021
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Samaritan's Purse
    Time period covered
    2019
    Area covered
    South Sudan
    Description

    Abstract

    A Knowledge, Attitudes and Practices (KAP) survey was conducted in Ajuong Thok and Pamir Refugee Camps in October 2019 to determine the current Water, Sanitation and Hygiene (WASH) conditions as well as hygiene attitudes and practices within the households (HHs) surveyed. The assessment utilized a systematic random sampling method, and a total of 1,474 HHs (735 HHs in Ajuong Thok and 739 HHs in Pamir) were surveyed using mobile data collection (MDC) within a period of 21 days. Data was cleaned and analyzed in Excel. The summary of the results is presented in this report.

    The findings show that the overall average number of liters of water per person per day was 23.4, in both Ajuong Thok and Pamir Camps, which was slightly higher than the recommended United Nations High Commissioner for Refugees (UNHCR) minimum standard of at least 20 liters of water available per person per day. This is a slight improvement from the 21 liters reported the previous year. The average HH size was six people. Women comprised 83% of the surveyed respondents and males 17%. Almost all the respondents were refugees, constituting 99.5% (n=1,466). The refugees were aware of the key health and hygiene practices, possibly as a result of routine health and hygiene messages delivered to them by Samaritan´s Purse (SP) and other health partners. Most refugees had knowledge about keeping the water containers clean, washing hands during critical times, safe excreta disposal and disease prevention.

    Geographic coverage

    Ajuong Thok and Pamir Refugee Camps

    Analysis unit

    Households

    Universe

    All households in Ajuong Thok and Pamir Refugee Camps

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Households were selected using systematic random sampling. Enumerators systematically walked through the camp block by block, row by row, in such a way as to pass each HH. Within blocks, enumerators started at one corner, then systematically used the sampling interval as they walked up and down each of the rows throughout the block, covering every block in Ajuong Thok and Pamir.

    In each location, the first HH sampled in a block was generated using an Excel tool customized by UNHCR which generated a Random Start and Sampling Interval.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey questionnaire used to collect the data consists of the following sections: - Demographics - Water collection and storage - Drinking water hygiene - Hygiene - Sanitation - Messaging - Distribution (NFI) - Diarrhea prevalence, knowledge and health seeking behaviour - Menstrual hygiene

    Cleaning operations

    The data collected was uploaded to a server at the end of each day. IFormBuilder generated a Microsoft (MS) Excel spreadsheet dataset which was then cleaned and analyzed using MS Excel.

    Given that SP is currently implementing a WASH program in Ajuong Thok and Pamir, the assessment data collected in these camps will not only serve as the endline for UNHCR 2018 programming but also as the baseline for 2019 programming.

    Data was anonymized through decoding and local suppression.

  13. usa_incomes_database&dashboard

    • kaggle.com
    Updated Jun 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Israel (2022). usa_incomes_database&dashboard [Dataset]. https://www.kaggle.com/datasets/pedroisrael/usa-incomes-databasedashboard
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 29, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Pedro Israel
    Description

    This is a clean MySQL database on USA household Incomes retrieved & cleaned from another kaggler.

    Its a great way to practice SQL. It´s not meant to do a realworld analysis.

    It also comes with an Excel Dashboard analysing the dataset

  14. A

    Low-Income Energy Affordability Data (LEAD) Tool

    • data.amerigeoss.org
    • datadiscoverystudio.org
    • +1more
    csv, pdf, xls, xlsb
    Updated Jul 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Low-Income Energy Affordability Data (LEAD) Tool [Dataset]. https://data.amerigeoss.org/vi/dataset/clean-energy-for-low-income-communities-accelerator-energy-data-profiles-2fffb
    Explore at:
    csv, xlsb, xls, pdfAvailable download formats
    Dataset updated
    Jul 29, 2019
    Dataset provided by
    United States[old]
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABOUT THIS TOOL:

    The Better Building’s Clean Energy for Low Income Communities Accelerator (CELICA) was launched in 2016 to help state and local partners across the nation meet their goals for increasing uptake of energy efficiency and renewable energy technologies in low and moderate income communities. As a part of the Accelerator, DOE created this Low-Income Energy Affordability Data (LEAD) Tool to assist partners with understanding their LMI community characteristics. This can be utilized for low income and moderate income energy policy and program planning, as it provides interactive state, county and city level worksheets with graphs and data including number of households at different income levels and numbers of homeowners versus renters. It provides a breakdown based on fuel type, building type, and construction year. It also provides average monthly energy expenditures and energy burden (percentage of income spent on energy).

    HOW TO USE:

    The LEAD tool can be used to support program design and goal setting, and they can be paired with other data to improve LMI community energy benchmarking and program evaluation. Datasets are available for all 50 states, census divisions, and tract levels. You will have to enable macros in MS Excel to interact with the data. A description of each of the files and what states are included in each U.S. Census Division can be found in the file "DESCRIPTION OF FILES".

    For more information, visit: https://betterbuildingsinitiative.energy.gov/accelerators/clean-energy-low-income-communities

  15. h

    BusinessData

    • huggingface.co
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mita D (2025). BusinessData [Dataset]. https://huggingface.co/datasets/mitadhamdhere13/BusinessData
    Explore at:
    Dataset updated
    Jun 1, 2025
    Authors
    Mita D
    Description

    language:

    en --Generate a clean Excel dataset with the following columns: Date (from 01-01-2023 to 31-12-2025), Region (North, South, East, West), Branch (Branch A to Branch E), Business Type (B2B & B2C), Partner ID (should be unique), Client ID (should be unique), Total Investment, Total Revenue, Revenue generated by B2B, Revenue generated by B2C, Revenue generated by Partner, Partner share of 40% from total revenue, Admin Expenses, Employee & HR Expenses, Marketing Expense, Technology… See the full description on the dataset page: https://huggingface.co/datasets/mitadhamdhere13/BusinessData.

  16. Real Estate Data

    • kaggle.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AgarwalYashhh (2024). Real Estate Data [Dataset]. https://www.kaggle.com/datasets/agarwalyashhh/gurgaon-real-estate-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 7, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    AgarwalYashhh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Datasets contains 4 files- the excel file is the original file after scraping the data from the website but is very raw and uncleaned. After spending a lot of time, I tried to clean the data, which I thought fits best to represent the dataset and can be used for projects. Explore all the datasets and share your notebooks and insights! Consider upvoting if you find it helpful, Thank you.

  17. A

    ‘Cardiovascular diseases dataset (clean)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘Cardiovascular diseases dataset (clean)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cardiovascular-diseases-dataset-clean-cdcb/latest
    Explore at:
    Dataset updated
    Mar 15, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Cardiovascular diseases dataset (clean)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/aiaiaidavid/cardio-data-dv13032020 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Description of the data set

    This data set is a cleaned up copy of cardio_train.csv which can be found at:

    https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

    The original data set has been analyzed with Excel, correcting negative values, and removing outliers.

    A number of features in the dataset are used to predict the presence or absence of a cardiovascular disease.

    Below is a description of the features:

    AGE: integer (years of age)
    HEIGHT: integer (cm) 
    WEIGHT: integer (kg)
    GENDER: categorical (1: female, 2: male)
    AP_HIGH: systolic blood pressure, integer
    AP_LOW: diastolic blood pressure, integer 
    CHOLESTEROL: categorical (1: normal, 2: above normal, 3: well above normal)
    GLUCOSE: categorical (1: normal, 2: above normal, 3: well above normal)
    SMOKE: categorical (0: no, 1: yes)
    ALCOHOL: categorical (0: no, 1: yes)
    PHYSICAL_ACTIVITY: categorical (0: no, 1: yes)
    

    And the target variable:

    CARDIO_DISEASE: categorical (0: no, 1: yes)
    

    --- Original source retains full ownership of the source dataset ---

  18. ENTSO-E Hydropower modelling data (PECD) in CSV format

    • zenodo.org
    csv
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matteo De Felice; Matteo De Felice (2020). ENTSO-E Hydropower modelling data (PECD) in CSV format [Dataset]. http://doi.org/10.5281/zenodo.3950048
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Matteo De Felice; Matteo De Felice
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PECD Hydro modelling

    This repository contains a more user-friendly version of the Hydro modelling data released by ENTSO-E with their latest Seasonal Outlook.

    The original URLs:

    The original ENTSO-E hydropower dataset integrates the PECD (Pan-European Climate Database) released for the MAF 2019

    As I did for the wind & solar data, the datasets released in this repository are only a more user- and machine-readable version of the original Excel files. As avid user of ENTSO-E data, with this repository I want to share my data wrangling efforts to make this dataset more accessible.

    Data description

    The zipped file contains 86 Excel files, two different files for each ENTSO-E zone.

    In this repository you can find 5 CSV files:

    • PECD-hydro-capacities.csv: installed capacities
    • PECD-hydro-weekly-inflows.csv: weekly inflows for reservoir and open-loop pumping
    • PECD-hydro-daily-ror-generation.csv: daily run-of-river generation
    • PECD-hydro-weekly-reservoir-min-max-generation.csv: minimum and maximum weekly reservoir generation
    • PECD-hydro-weekly-reservoir-min-max-levels.csv: weekly minimum and maximum reservoir levels

    Capacities

    The file PECD-hydro-capacities.csv contains: run of river capacity (MW) and storage capacity (GWh), reservoir plants capacity (MW) and storage capacity (GWh), closed-loop pumping/turbining (MW) and storage capacity and open-loop pumping/turbining (MW) and storage capacity. The data is extracted from the Excel files with the name starting with PEMM from the following sections:

    • sheet Run-of-River and pondage, rows from 5 to 7, columns from 2 to 5
    • sheet Reservoir, rows from 5 to 7, columns from 1 to 3
    • sheet Pump storage - Open Loop, rows from 5 to 7, columns from 1 to 3
    • sheet Pump storage - Closed Loop, rows from 5 to 7, columns from 1 to 3

    Inflows

    The file PECD-hydro-weekly-inflows.csv contains the weekly inflow (GWh) for the climatic years 1982-2017 for reservoir plants and open-loop pumping. The data is extracted from the Excel files with the name starting with PEMM from the following sections:

    • sheet Reservoir, rows from 13 to 66, columns from 16 to 51
    • sheet Pump storage - Open Loop, rows from 13 to 66, columns from 16 to 51

    Daily run-of-river

    The file PECD-hydro-daily-ror-generation.csv contains the daily run-of-river generation (GWh). The data is extracted from the Excel files with the name starting with PEMM from the following sections:

    • sheet Run-of-River and pondage, rows from 13 to 378, columns from 15 to 51

    Miminum and maximum reservoir generation

    The file PECD-hydro-weekly-reservoir-min-max-generation.csv contains the minimum and maximum generation (MW, weekly) for reservoir-based plants for the climatic years 1982-2017. The data is extracted from the Excel files with the name starting with PEMM from the following sections:

    • sheet Reservoir, rows from 13 to 66, columns from 196 to 231
    • sheet Reservoir, rows from 13 to 66, columns from 232 to 267

    Minimum/Maximum reservoir levels

    The file PECD-hydro-weekly-reservoir-min-max-levels.csv contains the minimum/maximum reservoir levels at beginning of each week (scaled coefficient from 0 to 1). The data is extracted from the Excel files with the name starting with PEMM from the following sections:

    • sheet Reservoir, rows from 14 to 66, column 12
    • sheet Reservoir, rows from 14 to 66, column 13

    CHANGELOG

    [2020/07/17] Added maximum generation for the reservoir

  19. g

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • datasearch.gesis.org
    • openicpsr.org
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaplan, Jacob (2020). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Property Stolen and Recovered (Supplement to Return A) 1960-2017 [Dataset]. http://doi.org/10.3886/E105403V3
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    Kaplan, Jacob
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 3 release notes:Adds data in the following formats: Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 2 release notes:Adds data for 2017.Adds a "number_of_months_reported" variable which says how many months of the year the agency reported data.Property Stolen and Recovered is a Uniform Crime Reporting (UCR) Program data set with information on the number of offenses (crimes included are murder, rape, robbery, burglary, theft/larceny, and motor vehicle theft), the value of the offense, and subcategories of the offense (e.g. for robbery it is broken down into subcategories including highway robbery, bank robbery, gas station robbery). The majority of the data relates to theft. Theft is divided into subcategories of theft such as shoplifting, theft of bicycle, theft from building, and purse snatching. For a number of items stolen (e.g. money, jewelry and previous metals, guns), the value of property stolen and and the value for property recovered is provided. This data set is also referred to as the Supplement to Return A (Offenses Known and Reported). All the data was received directly from the FBI as text or .DTA files. I created a setup file based on the documentation provided by the FBI and read the data into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here: https://github.com/jacobkap/crime_data. The Word document file available for download is the guidebook the FBI provided with the raw data which I used to create the setup file to read in data.There may be inaccuracies in the data, particularly in the group of columns starting with "auto." To reduce (but certainly not eliminate) data errors, I replaced the following values with NA for the group of columns beginning with "offenses" or "auto" as they are common data entry error values (e.g. are larger than the agency's population, are much larger than other crimes or months in same agency): 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99942. This cleaning was NOT done on the columns starting with "value."For every numeric column I replaced negative indicator values (e.g. "j" for -1) with the negative number they are supposed to be. These negative number indicators are not included in the FBI's codebook for this data but are present in the data. I used the values in the FBI's codebook for the Offenses Known and Clearances by Arrest data.To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. If an agency has used a different FIPS code in the past, check to make sure the FIPS code is the same as in this data.

  20. u

    Data from: Survey data from the Australian Marine Debris Initiative

    • research.usc.edu.au
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidi Tait; Jodi Jones; Caitlin Smith; Kathy Townsend, Survey data from the Australian Marine Debris Initiative [Dataset]. https://research.usc.edu.au/esploro/outputs/dataset/Survey-data-from-the-Australian-Marine/991016398702621
    Explore at:
    csv(7054018 bytes)Available download formats
    Dataset provided by
    University of the Sunshine Coast
    Authors
    Heidi Tait; Jodi Jones; Caitlin Smith; Kathy Townsend
    Time period covered
    2024
    Description

    Survey data from the Australian Marine Debris Initiative and the result of spatial analysis from multiple creative commons datasets. Data consists of: • Spatial Data Queensland Coastline – Event summaries within an Excel data table and shapefile • All years • Number of Items removed, Weight volunteers, Volume, Distance, Latitude and Longitude. • Contributing organisation files table/ sites • Environmental, physical and biological variables associated with the closest catchment to each debris survey. TBF has made all reasonable efforts to ensure that the information in the Custom Dataset is accurate. TBF will not be held responsible: • for the way these data are used by the Entity for their Reports; • for any errors that may be contained in the Custom Dataset; or • any direct or indirect damage the use of the Custom Dataset may cause. Data collected by TBF comes from citizen science initiatives and is taken at face value from contributors with each entry being vetted and periodic checks being made to maintain the integrity of the overall dataset. Some clean-up data has been extrapolated by data collectors. Some weight and distance details have not been provided by contributors. The data was collected by various organisations and individuals in clean-up events at their chosen locations where man-made items greater than 5mm were removed from the beach, and sorted, counted and recorded on data sheets, using CyberTracker software devices or the AMDI mobile application. Items were identified according to the method laid out in the TBF Marine Debris Identification Manual in which items are grouped according to their material categories (the manual is available on the TBF website). The length of beach cleaned is at the discretion of the clean-up group and the total weight of items removed is either weighed with handheld scales or estimated.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177

Data Cleaning Sample

Explore at:
151 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 13, 2023
Dataset provided by
Borealis
Authors
Rong Luo
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Sample data for exercises in Further Adventures in Data Cleaning.

Search
Clear search
Close search
Google apps
Main menu