Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.
A. Usecase/Applications possible with the data:
Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data
Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.
Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.
Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.
Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.
Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.
Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.
How does it work?
We create tailor-made solutions for every customer, so there are no limits to how we can customize your scraper. You don't have to worry about buying and maintaining complex and expensive software, or hiring developers.
You can get the data on a one-time or recurring (based on your needs) basis.
Get the data in any format and to any destination you need: Excel, CSV, JSON, XML, S3, GCP, or any other.
The Easiest Way to Collect Data from the Internet Download anything you see on the internet into spreadsheets within a few clicks using our ready-made web crawlers or a few lines of code using our APIs
We have made it as simple as possible to collect data from websites
Easy to Use Crawlers Amazon Product Details and Pricing Scraper Amazon Product Details and Pricing Scraper Get product information, pricing, FBA, best seller rank, and much more from Amazon.
Google Maps Search Results Google Maps Search Results Get details like place name, phone number, address, website, ratings, and open hours from Google Maps or Google Places search results.
Twitter Scraper Twitter Scraper Get tweets, Twitter handle, content, number of replies, number of retweets, and more. All you need to provide is a URL to a profile, hashtag, or an advance search URL from Twitter.
Amazon Product Reviews and Ratings Amazon Product Reviews and Ratings Get customer reviews for any product on Amazon and get details like product name, brand, reviews and ratings, and more from Amazon.
Google Reviews Scraper Google Reviews Scraper Scrape Google reviews and get details like business or location name, address, review, ratings, and more for business and places.
Walmart Product Details & Pricing Walmart Product Details & Pricing Get the product name, pricing, number of ratings, reviews, product images, URL other product-related data from Walmart.
Amazon Search Results Scraper Amazon Search Results Scraper Get product search rank, pricing, availability, best seller rank, and much more from Amazon.
Amazon Best Sellers Amazon Best Sellers Get the bestseller rank, product name, pricing, number of ratings, rating, product images, and more from any Amazon Bestseller List.
Google Search Scraper Google Search Scraper Scrape Google search results and get details like search rank, paid and organic results, knowledge graph, related search results, and more.
Walmart Product Reviews & Ratings Walmart Product Reviews & Ratings Get customer reviews for any product on Walmart.com and get details like product name, brand, reviews, and ratings.
Scrape Emails and Contact Details Scrape Emails and Contact Details Get emails, addresses, contact numbers, social media links from any website.
Walmart Search Results Scraper Walmart Search Results Scraper Get Product details such as pricing, availability, reviews, ratings, and more from Walmart search results and categories.
Glassdoor Job Listings Glassdoor Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Glassdoor.
Indeed Job Listings Indeed Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Indeed.
LinkedIn Jobs Scraper Premium LinkedIn Jobs Scraper Scrape job listings on LinkedIn and extract job details such as job title, job description, location, company name, number of reviews, and more.
Redfin Scraper Premium Redfin Scraper Scrape real estate listings from Redfin. Extract property details such as address, price, mortgage, redfin estimate, broker name and more.
Yelp Business Details Scraper Yelp Business Details Scraper Scrape business details from Yelp such as phone number, address, website, and more from Yelp search and business details page.
Zillow Scraper Premium Zillow Scraper Scrape real estate listings from Zillow. Extract property details such as address, price, Broker, broker name and more.
Amazon product offers and third party sellers Amazon product offers and third party sellers Get product pricing, delivery details, FBA, seller details, and much more from the Amazon offer listing page.
Realtor Scraper Premium Realtor Scraper Scrape real estate listings from Realtor.com. Extract property details such as Address, Price, Area, Broker and more.
Target Product Details & Pricing Target Product Details & Pricing Get product details from search results and category pages such as pricing, availability, rating, reviews, and 20+ data points from Target.
Trulia Scraper Premium Trulia Scraper Scrape real estate listings from Trulia. Extract property details such as Address, Price, Area, Mortgage and more.
Amazon Customer FAQs Amazon Customer FAQs Get FAQs for any product on Amazon and get details like the question, answer, answered user name, and more.
Yellow Pages Scraper Yellow Pages Scraper Get details like business name, phone number, address, website, ratings, and more from Yellow Pages search results.
Title: Cotality Smart Data Platform (SDP): Historical Property
Historical tax assessment data for all U.S. states, the U.S. Virgin Islands, Guam, and Washington, D.C. Each table represents a previous edition of Cotality's tax assessment data.
Formerly known as CoreLogic Smart Data Platform: Historical Property.
In the United States, parcel data is public record information that describes a division of land (also referred to as "property" or "real estate"). Each parcel is given a unique identifier called an Assessor’s Parcel Number or APN. The two principal types of records maintained by county government agencies for each parcel of land are deed and property tax records. When a real estate transaction takes place (e.g. a change in ownership), a property deed must be signed by both the buyer and seller. The deed will then be filed with the County Recorder’s offices, sometimes called the County Clerk-Recorder or other similar title. Property tax records are maintained by County Tax Assessor’s offices; they show the amount of taxes assessed on a parcel and include a detailed description of any structures or buildings on the parcel, including year built, square footages, building type, amenities like a pool, etc. There is not a uniform format for storing parcel data across the thousands of counties and county equivalents in the U.S.; laws and regulations governing real estate/property sales vary by state. Counties and county equivalents also have inconsistent approaches to archiving historical parcel data.
To fill researchers’ needs for uniform parcel data, Cotality collects, cleans, and normalizes public records that they collect from U.S. County Assessor and Recorder offices. Cotality augments this data with information gathered from other public and non-public sources (e.g., loan issuers, real estate agents, landlords, etc.). The Stanford Libraries has purchased bulk extracts from Cotality's parcel data, including mortgage, owner transfer, pre-foreclosure, and historical and contemporary tax assessment data. Data is bundled into pipe-delimited text files, which are uploaded to Data Farm (Redivis) for preview, extraction and analysis.
For more information about how the data was prepared for Redivis, please see Cotality 2024 GitLab.
Each table contains an archived snapshot of the property data, roughly corresponding to the following assessed years:
%3C!-- --%3E
Users can check theASSESSED_YEAR
variable to confirm the year of assessment.
Roughly speaking, the tables use the following census geographies:
%3C!-- --%3E
The Property, Mortgage, Owner Transfer, Historical Property and Pre-Foreclosure data can be linked on the CLIP
, a unique identification number assigned to each property.
For more information about included variables, please see **cotality_sdp_historical_property_data_dictionary_2024.txt **and Historical Property_v3.xlsx.
Under Supporting files, users can also find record counts per FIPS code for each edition of the Historical Property data.
For more information about how the Cotality Smart Data Platform: Historical Property data compares to legacy data, please see 2025_Legacy_Content_Mapping.pdf.
Data access is required to view this section.
Note:- Only publicly available data can be worked upon
APISCRAPY collects and organizes data from Zillow's massive database, whether it's property characteristics, market trends, pricing histories, or more. Because of APISCRAPY's first-rate data extraction services, tracking property values, examining neighborhood trends, and monitoring housing market variations become a straightforward and efficient process.
APISCRAPY's Zillow real estate data scraping service offers numerous advantages for individuals and businesses seeking valuable insights into the real estate market. Here are key benefits associated with their advanced data extraction technology:
Real-time Zillow Real Estate Data: Users can access real-time data from Zillow, providing timely updates on property listings, market dynamics, and other critical factors. This real-time information is invaluable for making informed decisions in a fast-paced real estate environment.
Data Customization: APISCRAPY allows users to customize the data extraction process, tailoring it to their specific needs. This flexibility ensures that the extracted Zillow real estate data aligns precisely with the user's requirements.
Precision and Accuracy: The advanced algorithms utilized by APISCRAPY enhance the precision and accuracy of the extracted Zillow real estate data. This reliability is crucial for making well-informed decisions related to property investments and market trends.
Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can access the desired Zillow real estate data without unnecessary delays.
User-friendly Interface: APISCRAPY provides a user-friendly interface, making it accessible for individuals and businesses to navigate and utilize the Zillow real estate data scraping service with ease.
APISCRAPY provides real-time real estate market data drawn from Zillow, ensuring that consumers have access to the most up-to-date and comprehensive real estate insights available. Our real-time real estate market data services aren't simply a game changer in today's dynamic real estate landscape; they're an absolute requirement.
Our dedication to offering high-quality real estate data extraction services is based on the utilization of Zillow Real Estate Data. APISCRAPY's integration of Zillow Real Estate Data sets it different from the competition, whether you're a seasoned real estate professional or a homeowner wanting to sell, buy, or invest.
APISCRAPY's data extraction is a key element, and it is an automated and smooth procedure that is at the heart of the platform's operation. Our platform gathers Zillow real estate data quickly and offers it in an easily consumable format with the click of a button.
[Tags;- Zillow real estate scraper, Zillow data, Zillow API, Zillow scraper, Zillow web scraping tool, Zillow data extraction, Zillow Real estate data, Zillow scraper, Zillow scraping API, Zillow real estate da extraction, Extract Real estate Data, Property Listing Data, Real estate Data, Real estate Data sets, Real estate market data, Real estate data extraction, real estate web scraping, real estate api, real estate data api, real estate web scraping, web scraping real estate data, scraping real estate data, real estate scraper, best real, estate api, web scraping real estate, api real estate, Zillow scraping software ]
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This is a mock-up of a real estate company, this is based on an actual company that had a number of challenges - collection and revenue is the biggest issue. A deep dive into the available data will provide the possible reasons and is the purpose of the data analytics project.
Ms. Aurora Sanchez, the Chief Operations Officer (COO) of Prime Estate talked to the operations data analyst team to discuss a couple of her requirements. Ms. Sanchez is responsible for sales, property and project management, customer service, collections, and several other operations departments under her umbrella. When she joined the organization in late 2018, she quickly got several escalations from buyers who were complaining about units, properties that were not turned over on time, and delays in the projects. Ms. Sanchez also noted problems with collections not meeting the targets, and inconsistent sales performance.
As the COO, Ms. Sanchez wants to identify and validate the history of these problems as well as see if there have been improvements in these pain points ever since she joined Prime Estate. Her focus points are Collections, Project Management, Customer Service, Collections, and Sales.
As the Business/Data Analyst Lead, your responsibility is to gather the performance data related to this part of operations, find trends, present findings, and provide recommendations that will help the organization improve the pain points of operations. You must work with the manager of customer service and collections, and the project and property management managers for this undertaking.
The data that is available is an inventory database that includes a listing of all projects, properties, their cost, package price, current status, and sales date. Another database provided is the project management database that tracks the construction initiation, time lapsed till the project is at 90% completion, and another date that tags it at 100% completed. Lastly, the collections database includes a listing of all units that are tagged as sold and tracks the turnover date (the date that the unit was turned over to the owner), collection date (the date that the full amount was based on the package price and all other charges) was collected from the buyer through multiple channels.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in the United States (MEDDAYONMARUS) from Jul 2016 to Jul 2025 about median and USA.
McGRAW’s Real Estate Professionals Masterfile offers the most comprehensive real estate professional database in the U.S., including emails, phone numbers, LinkedIn, SIC/NAICS codes, and demographics like income and marital status. We can get you the most active, and up-to-date data on the market.
Title: Cotality Smart Data Platform (SDP): Owner Transfer and Mortgage
The Owner Transfer and Mortgage data covers over 450 million properties, and includes over 50 years of sales history. The tables were generated in June 2024, and cover all U.S. states, the U.S. Virgin Islands, Guam, and Washington, D.C.
Formerly known as CoreLogic Smart Data Platform: Owner Transfer & Mortgage.
In the United States, parcel data is public record information that describes a division of land (also referred to as "property" or "real estate"). Each parcel is given a unique identifier called an Assessor’s Parcel Number or APN. The two principal types of records maintained by county government agencies for each parcel of land are deed and property tax records. When a real estate transaction takes place (e.g. a change in ownership), a property deed must be signed by both the buyer and seller. The deed will then be filed with the County Recorder’s offices, sometimes called the County Clerk-Recorder or other similar title. Property tax records are maintained by County Tax Assessor’s offices; they show the amount of taxes assessed on a parcel and include a detailed description of any structures or buildings on the parcel, including year built, square footages, building type, amenities like a pool, etc. There is not a uniform format for storing parcel data across the thousands of counties and county equivalents in the U.S.; laws and regulations governing real estate/property sales vary by state. Counties and county equivalents also have inconsistent approaches to archiving historical parcel data.
To fill researchers’ needs for uniform parcel data, Cotality collects, cleans, and normalizes public records that they collect from U.S. County Assessor and Recorder offices. Cotality augments this data with information gathered from other public and non-public sources (e.g., loan issuers, real estate agents, landlords, etc.). The Stanford Libraries has purchased bulk extracts from Cotality's parcel data, including mortgage, owner transfer, pre-foreclosure, and historical and contemporary tax assessment data. Data is bundled into pipe-delimited text files, which are uploaded to Data Farm (Redivis) for preview, extraction and analysis.
For more information about how the data was prepared for Redivis, please see Cotality 2024 GitLab.
The Owner Transfer and Mortgage data covers over 450 million properties, and includes over 50 years of sales history. The tables were generated in June 2024, and cover all U.S. states, the U.S. Virgin Islands, Guam, and Washington, D.C. The Owner Transfer data provides historical information about property sales and ownership-related transactions, including full, nominal, and quitclaim transactions (involving a change in title/ownership). It contains comprehensive property and transaction information, such as property characteristics, current ownership, transaction history, title company, cash purchase/foreclosure/resale/short sale indicators, and buyer information.
The Mortgage data provides historical information at the mortgage level, including purchase, refinance, equity, as well as details associated with each transaction, such as lender, loan amount, loan date, interest rate, etc. Mortgage details include mortgage amount, type of loan (conventional, FHA, VHA), mortgage rate type, mortgage purpose (cash out first, consolidation, standalone subordinate), mortgage ARM features, and mortgage indicators such as fixed-rate, conforming loan, construction loan, and private party. The Mortgage data also includes subordinate mortgage types, rate details, and lender details (NMLS ID, Loan Company, Loan Officers).
The Property, Mortgage, Owner Transfer, Historical Property and Pre-Foreclosure data can be linked on the CLIP
, a unique identification number assigned to each property.
Mortgage records can be linked to a transaction using the MORTGAGE_COMPOSITE_TRANSACTION_ID
.
For more information about included variables, please see:
%3C!-- --%3E
For a count of records per FIPS code, please see cotality_sdp_owner_transfer_counts_2024.txt and cotality_sdp_mortgage_counts_2024.txt.
For more information about how the Cotality Smart Data Platform: Owner Transfer and Mortgage data compares to legacy data, please see 2025_Legacy_Content_Mapping.pdf.
Data access is required to view this section.
The Property Group is a leading real estate organization that provides expert guidance throughout the home buying and selling process. With a strong presence in Little Rock, Arkansas, the company has established itself as a trusted partner for individuals and families seeking to buy, sell, or rent properties. The Property Group's expert agents are well-versed in local market trends, ensuring that clients receive tailored solutions to their unique needs.
Through their user-friendly website, The Property Group offers a range of resources and tools for homebuyers, including exclusive property listings, neighborhood information, and real-time market reports. Whether buying or selling a home, clients can rely on the company's dedicated professionals to navigate the complex process with ease. With a focus on transparency, efficiency, and personalized attention, The Property Group has earned a reputation as a top choice for those seeking a seamless and stress-free real estate experience.
Yoursouthtampahome.com is a real estate company specializing in property listings and information for the South Tampa area. With a focus on providing detailed and up-to-date data, the company aims to help individuals and families find their dream homes. Their website is a valuable resource for anyone looking to buy, sell, or rent a property in South Tampa, offering a comprehensive view of the local real estate market.
Yoursouthtampahome.com is a trusted source of information for property seekers, with a vast database of listings, sales data, and market trends. By providing easy access to this critical information, the company helps individuals make informed decisions in their home buying or selling journey.
Title: Cotality Smart Data Platform (SDP): Property
Tax assessment data for all U.S. states, the U.S. Virgin Islands, Guam, and Washington, D.C., as of June 2024.
Formerly known as CoreLogic Smart Data Platform (SDP): Property.
In the United States, parcel data is public record information that describes a division of land (also referred to as "property" or "real estate"). Each parcel is given a unique identifier called an Assessor’s Parcel Number or APN. The two principal types of records maintained by county government agencies for each parcel of land are deed and property tax records. When a real estate transaction takes place (e.g. a change in ownership), a property deed must be signed by both the buyer and seller. The deed will then be filed with the County Recorder’s offices, sometimes called the County Clerk-Recorder or other similar title. Property tax records are maintained by County Tax Assessor’s offices; they show the amount of taxes assessed on a parcel and include a detailed description of any structures or buildings on the parcel, including year built, square footages, building type, amenities like a pool, etc. There is not a uniform format for storing parcel data across the thousands of counties and county equivalents in the U.S.; laws and regulations governing real estate/property sales vary by state. Counties and county equivalents also have inconsistent approaches to archiving historical parcel data.
To fill researchers’ needs for uniform parcel data, Cotality collects, cleans, and normalizes public records that they collect from U.S. County Assessor and Recorder offices. Cotality augments this data with information gathered from other public and non-public sources (e.g., loan issuers, real estate agents, landlords, etc.). The Stanford Libraries has purchased bulk extracts from Cotality's parcel data, including mortgage, owner transfer, pre-foreclosure, and historical and contemporary tax assessment data. Data is bundled into pipe-delimited text files, which are uploaded to Data Farm (Redivis) for preview, extraction and analysis.
For more information about how the data was prepared for Redivis, please see Cotality 2024 GitLab.
The Property, Mortgage, Owner Transfer, Historical Property and Pre-Foreclosure data can be linked on the CLIP
, a unique identification number assigned to each property.
Census tracts are based on the 2020 census.
For more information about included variables, please see **cotality_sdp_property_data_dictionary_2024.txt **and Property_v3.xlsx.
For a count of records per FIPS code, please see cotality_sdp_property_counts_2024.txt.
For more information about how the Cotality Smart Data Platform: Property data compares to legacy data, please see 2025_Legacy_Content_Mapping.pdf.
Data access is required to view this section.
Stewart Property is a prominent real estate company that has been a major player in the industry for decades. With a focus on providing exceptional service and expertise, the company has built a reputation for delivering high-quality results to its clients.
From property listings and market analysis to transaction support and consulting, Stewart Property offers a wide range of services that cater to the needs of both buyers and sellers. With a deep understanding of the local market, the company's experienced professionals work tirelessly to ensure that their clients receive the best possible outcomes.
Blaze Property is a real estate company that offers a range of services, including property management, sales, and rentals. With a focus on Amarillo and surrounding areas, the company provides expert guidance for homes, apartments, offices, and commercial properties. Their experienced team is committed to delivering personalized service, ensuring that clients receive the best possible outcomes.
From property repairs to pest control, Blaze Property is there to support the entire property management process. They also offer REO sales and management, providing a one-stop solution for all real estate needs. With a strong presence online, the company provides easy access to property listings, allowing potential buyers and renters to browse and find the perfect fit. Through their website, customers can also connect with professionals for personalized advice and support.
Rental data is essential for making informed decisions. Property managers streamline operations, investors find opportunities, and asset managers enhance valuation tools using this critical resource. With verified listings and broad market coverage, our rental data outperforms traditional sources.
VITAL SIGNS INDICATOR List Rents (EC9)
FULL MEASURE NAME List Rents
LAST UPDATED October 2016
DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.
DATA SOURCE real Answers (1994 – 2015) no link
Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.
Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.
Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.
Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.
Zillow reigns supreme in the U.S. real estate website landscape, attracting a staggering ***** million monthly visits in 2024. This figure dwarfs its closest competitor, Realtor.com, which garnered less than half of Zillow's traffic. Online platforms are extremely popular, with the majority of homebuyers using a mobile device during the buying process. The rise of Zillow Founded in 2006, the Seattle-headquartered proptech Zillow has steadily grown over the years, establishing itself as the most popular U.S. real estate website. In 2023, the listing platform recorded about *** million unique monthly users across its mobile applications and website. Despite holding an undisputed position as a market leader, Zillow's revenue has decreased since 2021. A probable cause for the decline is the plummeting of housing transactions and the negative housing sentiment. Performance and trends in the proptech market The proptech market has shown remarkable performance, with companies like Opendoor and Redfin experiencing significant stock price increase in 2023. This growth is particularly notable in the residential brokerage segment. Meanwhile, major players in proptech fundraising, such as Fifth Wall and Hidden Hill Capital, have raised billions in direct investment, further fueling the sector's development. As technology continues to reshape the real estate industry, online platforms like Zillow are likely to play an increasingly crucial role in how people search for and purchase homes. (1477916, 1251604)
Berkshire Business Sales & Acquisitions is a Phoenix-based business brokerage and consultancy firm specializing in the marketing and sale of accounting practices and CPA firms in Arizona and surrounding communities. With an unparalleled network of buyers and sellers, Berkshire offers a comprehensive and confidential transaction experience to its clients. The company's team of experts has a deep understanding of the industry, ensuring that clients receive personalized support and guidance throughout the selling or buying process.
Berkshire's expertise lies in its ability to provide a stress-free transition for accounting practices and CPA firms, allowing owners to exit their businesses with confidence. The company's success is attributed to its dedicated team, who work tirelessly to find the right buyer for each practice, ensuring that clients receive the maximum value for their business. With its proven track record and commitment to excellence, Berkshire Business Sales & Acquisitions has established itself as a trusted leader in the accounting practice and CPA firm sales market.
Tax assessment data for all U.S. states, the U.S. Virgin Islands, Guam, and Washington, D.C., as of August 2022.
The CoreLogic Smart Data Platform (SDP) Property data was formerly known as the CoreLogic Tax data. The CoreLogic SDP Property data is an enhanced version of the CoreLogic Tax data. The CoreLogic SDP Property data contains almost all of the variables that were included in the CoreLogic Tax data, and its records are augmented with additional property-level characteristics.
In the United States, parcel data is public record information that describes a division of land (also referred to as "property" or "real estate"). Each parcel is given a unique identifier called an Assessor’s Parcel Number or APN. The two principal types of records maintained by county government agencies for each parcel of land are deed and property tax records. When a real estate transaction takes place (e.g. a change in ownership), a property deed must be signed by both the buyer and seller. The deed will then be filed with the County Recorder’s offices, sometimes called the County Clerk-Recorder or other similar title. Property tax records are maintained by County Tax Assessor’s offices; they show the amount of taxes assessed on a parcel and include a detailed description of any structures or buildings on the parcel, including year built, square footages, building type, amenities like a pool, etc. There is not a uniform format for storing parcel data across the 3,006 counties in the U.S.; laws and regulations governing real estate/property sales vary by state. Counties also have inconsistent approaches to archiving historical parcel data.
To fill researchers’ needs for uniform parcel data, CoreLogic collects, cleans, and normalizes public records that they collect from U.S. County Assessor and Recorder offices. CoreLogic augments this data with information gathered from other public and non-public sources (e.g., loan issuers, real estate agents, landlords, etc.). The Stanford Libraries have purchased bulk extracts from CoreLogic’s public records data, including mortgage, owner transfer, pre-foreclosure, and historical and contemporary tax assessment data. Data is bundled into pipe-delimited text files, which we upload to Redivis for preview, extraction and light analysis.
The Property, Mortgage, Owner Transfer, Historical Property and Pre-Foreclosure data can be linked on the CLIP, a unique identification number assigned to each property.
Census tracts are based on the 2020 census.
For more information about included variables, please see Core_Logic_SDP_Property_Codebook.xlsx (under Supporting files).
For a count of records per FIPS code, please see ***property_counts.txt ***(under** Supporting files**).
For more information about how the CoreLogic Smart Data Platform: Property data compares to legacy data, please see ***Legacy_Content_Mapping.pdf ***(under Supporting files).
For more information about the terms of use, please see 2022_corelogic_sdp_end_user_license_agreement.pdf (under Supporting files).
Data access is required to view this section.
Premiere Property Group is a real estate company that specializes in residential and commercial properties. The company's website provides information on a wide range of properties, including vacant land, single-family homes, and multi-unit dwellings. With a strong focus on customer satisfaction, Premiere Property Group's team of experienced agents and brokers work closely with clients to understand their unique needs and preferences.
Premiere Property Group's website offers a wealth of information for those looking to buy, sell, or rent properties. The company's extensive property listings are regularly updated to reflect the latest market trends and developments. By partnering with Premiere Property Group, clients can gain insights into the local real estate market, receive expert advice, and navigate the buying and selling process with confidence.
Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.
A. Usecase/Applications possible with the data:
Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data
Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.
Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.
Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.
Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.
Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.
Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.
How does it work?